説明

放射線撮像装置、放射線撮像システム、及び放射線撮像方法

【課題】撮像タイミングの同期を必要とせずに、低コストで且つ効率良く放射線画像のノイズを低減させる放射線撮像装置、放射線撮像システム、及び放射線撮像方法を提供する。
【解決手段】放射線検出器66に対する被写体14のポジショニングを検出し、検出されたポジショニングに応じて、画素102に蓄積された電気信号を読み出す読出しモードを開始する。読み出された前記電気信号の値が、任意に設定可能な閾値よりも大きくなった場合、前記電気信号の読み出しを終了させることで、放射線検出器66を露光状態に移行させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、人体を透過した放射線を撮像する放射線撮像装置、放射線撮像システム、及び放射線撮像方法に関する。
【背景技術】
【0002】
医療分野においては、人体を透過した放射線の強度を検出することで人体内部の撮像を行うFPD(Flat Panel Detector)等の可搬性の放射線撮像装置が用いられている。このFPD(以下、電子カセッテという)は患者をベッド等に乗せたまま撮像することができ、電子カセッテの位置を変更することにより撮像箇所も調整することができるため、動けない患者に対しても柔軟に対処することができる。
【0003】
ところで、電子カセッテは、放射線が照射されていない状態であっても暗電流によって電荷が発生して各画素に電荷が蓄積される。この暗電流が放射線画像のノイズとして現れてしまうため、電子カセッテは、放射線撮像を行う直前に、電子カセッテの各画素に蓄積された電荷を除去する動作を行うのが一般的である。そして、制御装置は、放射線撮影を行う場合は、電子カセッテ及び放射線を照射する放射線装置に対して、撮影要求を指示する。撮影要求があると、放射線装置は放射線の照射を開始し、電子カセッテは露光を開始する。そして、放射線の照射が終了すると電子カセッテは、放射線照射により蓄積された電荷を読み出す。このとき、放射線装置による放射線の照射タイミング及び電子カセッテの露光タイミングとは同期している。つまり、撮影タイミングの同期が取られている。
【0004】
下記に示す特許文献1には、コンソール(制御装置)に時間を計時する第1計測手段を設けるとともに、電子カセッテに前記第1計測手段と同期させた時間を計時する第2計測手段を設け、コンソールで予め定められた曝射開始時間となった場合に、放射線装置から放射線を所定期間照射させ、電子カセッテで、前記曝射開始時間から所定期間経過した後に、放射線検出器に発生した電荷を読み出すことが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−081960号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
撮影タイミングの同期を取るためには、制御装置と放射線装置とを電気的に接続する必要がある。制御装置と放射線装置とを電気的に接続するためには、システムの設置時にメーカーのサービスマンが接続作業を行う必要があり、コストがかかり、メンテナンス費用も必要となる。また、制御装置のメーカーと放射線装置のメーカーとが異なる場合には、安全面の観点から電気的接続が行えない場合が多々ある。逆に、制御装置と放射線装置とを電気的に接続しない場合は、撮影タイミングの同期が取れない。この場合は、放射線の照射時間よりも長い時間電子カセッテに露光を行わせ、電子カセッテが露光を行っている間に放射線を照射させることで、電子カセッテは、照射された放射線を全て露光して、放射線画像を撮影することができる。
【0007】
このように、制御装置と放射線装置とを電気的に接続しない場合は、撮影タイミングの同期が取れない。そうすると、撮影の直前等の適切なタイミングで、電子カセッテの各画素に蓄積された不要な電荷を除去する動作が行えない場合がある。このとき、暗電流に起因するノイズの多い放射線画像が得られてしまう。
【0008】
そこで、前記ノイズによる不都合を解消するために、撮影タイミングと無関係に、蓄積された不要な電荷を除去する動作を繰り返し行ってもよい。ところが、近々に撮影の予定がない(いわゆるスタンバイ状態の)電子カセッテであっても、前記動作を継続して行う必要がある。特に、バッテリの容量に制約がある可搬性の電子カセッテでは、前記動作を頻繁に行うことで電力を浪費し、取得可能な放射線画像の枚数が減る。このため、電子カセッテの利便性が低下するという不都合が生じる。
【0009】
そこで本発明は、かかる従来の問題点に鑑みてなされたものであり、撮影タイミングの同期を必要とせずに、低コストで且つ効率良く放射線画像のノイズを低減させる放射線撮像装置、放射線撮像システム、及び放射線撮像方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明に係る放射線撮像装置は、被写体を透過した放射線源からの放射線を電気信号に変換して蓄積する行列状に配置された複数の画素を有する撮像パネルと、前記撮像パネルに対する前記被写体のポジショニングを検出するポジショニング検出部と、前記ポジショニング検出部により検出された前記ポジショニングに応じて、前記画素に蓄積された前記電気信号を読み出す読出しモードを開始し、該読出しモードで読み出された前記電気信号の値が、任意に設定可能な閾値よりも大きくなった場合、前記電気信号の読み出しを終了させることで、前記撮像パネルを露光状態に移行させる読出制御部とを備えることを特徴とする。
【0011】
また、前記ポジショニング検出部により検出された前記ポジショニングに基づいて前記撮像パネルの使用状態を識別する使用状態識別部をさらに備え、前記読出制御部は、前記使用状態識別部により識別された前記使用状態に応じて前記読出しモードを開始することが好ましい。
【0012】
さらに、前記ポジショニング検出部は、前記ポジショニングの際に生じる前記被写体を介した圧力変化を検出する圧力センサで構成されており、前記使用状態識別部は、前記圧力センサにより検出された前記圧力変化に応じて前記撮像パネルの前記使用状態を識別することが好ましい。
【0013】
さらに、前記ポジショニング検出部は、前記ポジショニングの際に生じる前記被写体を介した温度変化を検出する温度センサで構成されており、前記使用状態識別部は、前記温度センサにより検出された前記温度変化に応じて前記撮像パネルの前記使用状態を識別することが好ましい。
【0014】
さらに、前記ポジショニング検出部は、人体・物体検知センサで構成されており、前記使用状態識別部は、前記人体・物体検知センサにより前記被写体が検出されたか否かに応じて前記撮像パネルの前記使用状態を識別することが好ましい。
【0015】
さらに、前記ポジショニング検出部は、光学式センサで構成されており、前記使用状態識別部は、前記光学式センサにより照射野ランプの点灯が検出されたか否かに応じて前記撮像パネルの前記使用状態を識別することが好ましい。
【0016】
さらに、前記読出制御部は、前記ポジショニング検出部により前記被写体が存在しない状態であると所定時間連続して検出された場合に前記読出しモードを終了することを特徴とする。
【0017】
さらに、前記読出しモードが開始及び/又は終了した旨を報知する開始終了報知部をさらに備えることが好ましい。
【0018】
さらに、前記読出しモードでは、前記複数の画素に蓄積された前記電気信号を複数の行単位で同時に読み出すことが好ましい。
【0019】
さらに、前記読出しモードでは、予め決められた行の前記画素に蓄積された電荷を読み出すことが好ましい。
【0020】
本発明に係る放射線撮像システムは、上記したいずれかの放射線撮像装置と、放射線を照射する放射線源とを備えることを特徴とする。
【0021】
本発明に係る放射線撮像方法は、被写体を透過した放射線源からの放射線を電気信号に変換して蓄積する行列状に配置された複数の画素を有する撮像パネルを用いて、放射線画像を撮像する方法であって、前記撮像パネルに対する前記被写体のポジショニングを検出するステップと、検出された前記ポジショニングに応じて、前記画素に蓄積された前記電気信号を読み出す読出しモードを開始するステップと、前記読出しモードで読み出された前記電気信号の値が、任意に設定可能な閾値よりも大きくなった場合、前記電気信号の読み出しを終了させることで、前記撮像パネルを露光状態に移行させるステップとを備えることを特徴とする。
【発明の効果】
【0022】
本発明によれば、読出しモードの実行により画素から読み出された電気信号に基づいて放射線の照射開始を判定し、放射線の照射が開始されたと判断すると、電荷の読み出しを終了して蓄積状態に移行するので、撮影タイミングの同期を必要とせず、コストが低廉となる。また、放射線の照射の開始を判定するまで読出しモードを実行するので、画素に蓄積された不要電荷を除去することができ、放射線画像のノイズを低減させることができる。さらに、撮像パネルに対する被写体のポジショニングを検出するようにしたので、ポジショニングに応じて現時点での撮影可能性の有無を予測可能である。すなわち、撮影の直前等の適切なタイミングで読出しモードを開始することで、消費電力をさらに低減できる。
【図面の簡単な説明】
【0023】
【図1】本実施の形態の放射線撮像システムの構成図である。
【図2】図1に示す電子カセッテの斜視図である。
【図3】図2に示す電子カセッテのIII−III断面図である。
【図4】図3に示す放射線検出器の3画素分の構成を概略的に示す図である。
【図5】図4に示すTFT及び電荷蓄積部の概略構成図である。
【図6】図1に示す電子カセッテの電気的な概略構成図である。
【図7】図6に示す放射線変換パネル、ゲート駆動部、チャージアンプ、及びマルチプレクサ部の詳細図である。
【図8】順次読出しモード時に、カセッテ制御部からゲート駆動部に入力される入力信号及び、ゲート駆動部からカセッテ制御部に出力される出力信号のタイムチャートである。
【図9】スキャンモード時に、カセッテ制御部からゲート駆動部に入力される入力信号及び、ゲート駆動部からカセッテ制御部に出力される出力信号のタイムチャートである。
【図10】システムコントローラ及びコンソールの電気的な概略構成図である。
【図11】図10に示すテーブルの一例を示す図である。
【図12】放射線撮像システムのシステムコントローラ及びコンソールの動作を示すフローチャートである。
【図13】カセッテ制御部の動作を示すフローチャートである。
【図14】電子カセッテの動作を示すタイムチャートである。
【図15】撮影枚数が2枚と設定されたときの電子カセッテの動作を示すタイムチャートである。
【図16】0行目の画素に蓄積された電荷を読み出したときに放射線が検出された場合であって、スキャンモードの1サイクル終了後に蓄積状態に移行した場合の各行の画素に蓄積される電荷の様子を示す図である。
【図17】238行目の画素に蓄積された電荷を読み出したときに放射線が検出された場合であって、スキャンモードの1サイクル終了後に蓄積状態に移行した場合の各行の画素に蓄積される電荷の様子を示す図である。
【図18】放射線が検出されたときにスキャンモードによる画素に蓄積された電荷の読み出しを直ちに終了して蓄積状態に移行する場合の各行の画素に蓄積される電荷の様子を示す図である。
【図19】変形例3における電子カセッテの動作を示すタイムチャートである。
【図20】本変形例4の放射線変換パネルの一部詳細図である。
【図21】本変形例5の放射線変換パネルの一部詳細図である。
【図22】本変形例7の電子カセッテの斜視図である。
【図23】図22の電子カセッテの電気的な概略構成図である。
【図24】図22の電子カセッテの動作を示すフローチャートである。
【図25】図22の電子カセッテの動作の時系列を示す概略説明図である。
【図26】図22の電子カセッテの動作の時系列を示す概略説明図である。
【図27】本変形例7の電子カセッテの別の斜視図である。
【発明を実施するための形態】
【0024】
本発明に係る放射線撮像装置及び前記放射線撮像装置を有する放射線撮像システムについて、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。
【0025】
図1は、本実施の形態の放射線撮像システム10の構成図である。放射線撮像システム10は、ベッド等の撮影台12に横臥した被写体14である患者に対して、放射線16を照射する放射線装置18と、被写体14を透過した放射線16を検出して放射線画像に変換する電子カセッテ(放射線撮像装置)20と、放射線撮像システム10全体を制御するシステムコントローラ24と、医師又は技師等(以下、ユーザーという)の入力操作を受け付けるコンソール26と、撮影した放射線画像等を表示する表示装置28とを備える。
【0026】
システムコントローラ24と、電子カセッテ20と、表示装置28との間には、例えば、UWB(Ultra Wide Band)、IEEE802.11.a/b/g/n等の無線LAN、又は、ミリ波等を用いた無線通信により信号の送受信が行われる。なお、ケーブルを用いた有線通信により信号の送受信を行ってもよい。
【0027】
システムコントローラ24には、病院内の放射線科において取り扱われる放射線画像やその他の情報を統括的に管理する放射線科情報システム(RIS)30が接続され、RIS30には、病院内の医事情報を統括的に管理する医事情報システム(HIS)32が接続されている。
【0028】
放射線装置18は、放射線16を照射する放射線源34と、放射線源34を制御する放射線制御装置36と、放射線スイッチ38とを備える。放射線源34は、電子カセッテ20に対して放射線16を照射する。放射線源34が照射する放射線16は、X線、α線、β線、γ線、電子線等であってもよい。放射線スイッチ38は、2段階のストロークを持つように構成され、放射線制御装置36は、放射線スイッチ38がユーザーによって半押されると放射線16の照射準備を行い、全押されると放射線源34から放射線16を照射させる。放射線制御装置36は、図示しない入力装置を有し、ユーザーは、前記入力装置を操作することで、放射線16の照射時間、管電圧、管電流等の値を設定することができる。放射線制御装置36は、設定された照射時間等に基づいて、放射線源34から放射線16を照射させる。
【0029】
図2は、図1に示す電子カセッテ20の斜視図であり、図3は、図2に示す電子カセッテ20のIII−III断面図である。電子カセッテ20は、パネル部52と、該パネル部52上に配置された制御部54とを備える。なお、パネル部52の厚みは、制御部54の厚みよりも薄く設定されている。
【0030】
パネル部52は、放射線16に対して透過可能な材料からなる略矩形状の筐体56を有し、パネル部52の撮像面42には放射線16が照射される。撮像面42の略中央部には、被写体14の撮像領域及び撮像位置を示すガイド線58が形成されている。ガイド線58の外枠が、放射線16の照射野を示す撮像可能領域60になる。また、ガイド線58の中心位置(ガイド線58が十字状に交差する交点)は、撮像可能領域60の中心位置である。
【0031】
パネル部52は、シンチレータ62及び放射線変換パネル64とを有する放射線検出器(撮像パネル)66と、放射線変換パネル64を駆動させる後述する駆動回路部106(図6参照)とを備える。シンチレータ62は、被写体14を透過した放射線16を、可視光領域に含まれる蛍光に変換する。放射線変換パネル64は、シンチレータ62が変換した前記蛍光を電気信号に変換する間接変換型放射線変換パネルである。放射線16が照射される撮像面42から順に、シンチレータ62と放射線変換パネル64とが筐体56内部に配設される。なお、放射線変換パネル64が放射線を直接電気信号に変換する直接型放射線変換パネルの場合は、該放射線変換パネル64が放射線検出器66となる。この場合は、シンチレータ62は不要だからである。
【0032】
制御部54は、放射線16に対して非透過性の材料からなる略矩形状の筐体68を有する。該筐体68は、撮像面42の一端に沿って延在しており、撮像面42における撮像可能領域60の外に制御部54が配設される。この場合、筐体68の内部には、後述するパネル部52を制御するカセッテ制御部122と、撮像した放射線画像の画像データを記憶するバッファメモリとしてのメモリ124と、システムコントローラ24との間で無線による信号の送受信が可能な通信部126と、バッテリ等の電源部128とが配置されている(図6参照)。電源部128は、カセッテ制御部122及び通信部126に対して電力供給を行う。
【0033】
図4は、放射線検出器66の3画素分の構成を概略的に示す図である。放射線検出器66は、基板70上に、電界効果型薄膜トランジスタであるTFT(Thin Film Transistor)72及び電荷蓄積部74と、センサ部76と、シンチレータ62が順次積層されており、電荷蓄積部74及びセンサ部76により画素が構成されている。画素は基板70上に行列状に配設されており、各TFT(スイッチング素子)72は自己に接続された画素の電荷蓄積部74の電荷を出力する。シンチレータ62は、センサ部76上に透明絶縁膜78を介して形成されており、上方(基板70と反対側)から入射してくる放射線16を光に変換して発光する蛍光体を成膜したものである。
【0034】
シンチレータ62が発光する光の波長域は、可視光域(波長360nm〜830nm)であることが好ましく、この放射線検出器66によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。シンチレータ62に用いる蛍光体としては、放射線16としてX線を用いて撮像する場合、ガドリニウムオキサイドサルファ(GOS)またはヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが420nm〜600nmにあるCsI(Ti)(チタンが添加されたヨウ化セシウム)を用いることが特に好ましい。なお、CsI(Ti)の可視光域における発光ピーク波長は565nmである。
【0035】
センサ部76は、上部電極80、下部電極82、及び該上下の電極80、82間に配置された光電変換膜84を有する。上部電極80は、シンチレータ62により生じた光を光電変換膜84に入射させる必要があるため、少なくともシンチレータ62の発光波長に対して透明な導電性材料で構成することが好ましい。
【0036】
光電変換膜84は、有機光導電体(OPC)を含み、シンチレータ62から発せられた光を吸収し、吸収した光に応じた電荷を発生する。有機光導電体を含む光電変換膜84であれば、可視光域にシャープな吸収スペクトルを持ち、シンチレータ62による発光以外の電磁波が光電変換膜84によって吸収されることが殆どなく、放射線16が光電変換膜84で吸収されることによって発生するノイズを効果的に抑制することができる。
【0037】
光電変換膜84を構成する有機光導電体は、シンチレータ62で発光した光を最も効率良く吸収するために、そのピーク波長が、シンチレータ62の発光ピーク波長と近いほど好ましい。有機光導電体の吸収ピーク波長とシンチレータ62の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ62から発せられた光を十分に吸収することが可能である。具体的には、有機光導電体の吸収ピーク波長と、シンチレータ62の放射線16に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。
【0038】
このような条件を満たすことが可能な有機光導電体としては、例えば、キナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えば、キナクリドンの可視光域における吸収ピーク波長は560nmであるため、有機光導電体としてキナクリドンを用い、シンチレータ62の材料としてCsI(Ti)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜84で発生する電荷量をほぼ最大にすることができる。
【0039】
1対の電極80、82と該電極80、82間に挟まれた光電変換膜84を含む有機層により電磁波吸収/光電変換部位を構成することができる。この有機層は、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び層間接触改良部位等の積み重ね若しくは混合により形成することができる。上記有機層は、有機p型化合物又は有機n型化合物を含有することが好ましい。
【0040】
有機p型化合物(半導体)は、主に正孔輸送性有機化合物に代表されるドナー性有機化合物(半導体)であり、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物としては、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。
【0041】
有機n型化合物(半導体)は、主に電子輸送性有機化合物に代表されるアクセプター性有機化合物(半導体)であり、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。この有機p型化合物及び有機n型化合物として適用可能な材料、及び光電変換膜84の構成については、特開2009−32854号公報において詳細に説明されているため説明を省略する。
【0042】
下部電極82は、画素部毎に分割された薄膜とする。下部電極82は、透明又は不透明の導電性材料で構成することができ、アルミニウム、銀等を好適に用いることができる。センサ部76では、上部電極80と下部電極82との間に所定のバイアス電圧を印加することで、光電変換膜84で発生した電荷(正孔、電子)のうち、一方を上部電極80に移動させ、他方を下部電極82に移動させることができる。本実施の形態の放射線検出器66では、上部電極80に配線が接続され、この配線を介してバイアス電圧が上部電極80に印加されるものとする。また、バイアス電圧は、光電変換膜84で発生した電子が上部電極80に移動し、正孔が下部電極82に移動するように極性が決められているものとするが、この極性は逆であってもよい。
【0043】
各画素を構成するセンサ部76は、少なくとも下部電極82、光電変換膜84、及び上部電極80を含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜86及び正孔ブロッキング膜88の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。
【0044】
電子ブロッキング膜86は、下部電極82と光電変換膜84との間に設けることができ、下部電極82と上部電極80との間にバイアス電圧を印加したときに、下部電極82から光電変換膜84に電子が注入されて暗電流が増加してしまうのを抑制することができる。電子ブロッキング膜86には、電子供与性有機材料を用いることができる。実際に電子ブロッキング膜86に用いられる材料は、隣接する下部電極82の材料及び隣接する光電変換膜84の材料等に応じて選択すればよく、隣接する下部電極82の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、且つ、隣接する光電変換膜84の材料のイオン化ポテンシャル(Ip)と同等のIp若しくはそれより小さいIpを持つものが好ましい。この電子供与性有機材料として適用可能な材料については、特開2009−32854号公報において詳細に説明されているため説明を省略する。
【0045】
電子ブロッキング膜86の厚みは、暗電流抑制効果を確実に発揮させるとともに、センサ部76の光電変換率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。
【0046】
正孔ブロッキング膜88は、光電変換膜84と上部電極80との間に設けることができ、下部電極82と上部電極80との間にバイアス電圧を印加したときに、上部電極80から光電変換膜84に正孔が注入されて暗電流が増加してしまうのを抑制することができる。
【0047】
正孔ブロッキング膜88には、電子受容性有機材料を用いることができる。正孔ブロッキング膜88の厚みは、暗電流抑制効果を確実に発揮させるとともに、センサ部76の光電変換率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは、30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。
【0048】
実際に正孔ブロッキング膜88に用いる材料は、隣接する上部電極80の材料及び隣接する光電変換膜84の材料等に応じて選択すればよく、隣接する上部電極80の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が高く、且つ、隣接する光電変換膜84の材料の電子親和力(Ea)と同等のEa若しくはそれより大きいEaを持つものが好ましい。この電子受容性有機材料として適用可能な材料については、特開2009−32854号公報において詳細に説明されているため説明を省略する。
【0049】
図5は、TFT72及び電荷蓄積部74の概略構成図である。下部電極82に移動した電荷を蓄積する電荷蓄積部74と、電荷蓄積部74に蓄積された電荷を電気信号に変換して出力するTFT72とが形成されている。電荷蓄積部74及びTFT72の形成された領域には、平面視において下部電極82と重なる部分を有しており、このような構成とすることで、各画素におけるTFT72とセンサ部76とが厚さ方向で重なりを有することになる。なお、放射線検出器66の平面積を最小にするために、電荷蓄積部74及びTFT72の形成された領域が下部電極82によって完全に覆われていることが好ましい。
【0050】
電荷蓄積部74は、基板70と下部電極82との間に設けられた絶縁膜90を貫通して形成された導電性材料の配線を介して対応する下部電極82と電気的に接続されている。これにより、下部電極82で捕集された電荷を電荷蓄積部74に移動させることができる。
【0051】
TFT72は、ゲート電極92、ゲート絶縁膜94、及び活性層(チャネル層)96が積層され、さらに、活性層96上にソース電極98とドレイン電極100が所定の間隔を開けて形成されている。活性層96は、非晶質酸化物により形成されている。活性層96を構成する非晶質酸化物としては、In、Ga及びZnのうち少なくとも1つを含む酸化物(例えば、In−O系)が好ましく、In、Ga、及びZnのうち少なくとも2つを含む酸化物(例えば、In−Zn−O系、In−Ga系、Ga−Zn−O系)がより好ましく、In、Ga、及びZnを全て含む酸化物が特に好ましい。In−Ga−Zn−O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。
【0052】
TFT72の活性層96を非晶質酸化物で形成したものとすれば、X線等の放射線16を吸収せず、あるいは吸収したとしても極めて微量に留まるため、TFT72におけるノイズの発生を効果的に抑制することができる。ここで、TFT72の活性層96を構成する非晶質酸化物及び光電変換膜84を構成する有機光導電体は、いずれも低温での成膜が可能である。したがって、基板70としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板、アラミド、バイオナノファイバを用いることができる。具体的には、ポリエチレンテレフタレート、ポリエチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることもできる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることができ、例えば持ち運び等に有利となる。
【0053】
アラミドは、200度以上の高温プロセスを適用できるために、透明電極材料を高温硬化させて低抵抗化でき、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドは、ITO(Indium Tin Oxide)及びガラス基板と熱膨張係数が近いため、製造後の反りが少なく割れ難い。さらに、アラミドは、ガラス基板等と比べて薄く基板70を形成できる。なお、超薄型ガラス基板とアラミドを積層して基板70を形成してもよい。
【0054】
バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinun)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、且つ、高強度、高弾性、低熱膨張である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸させて硬化させることで、繊維を60−70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3−7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、且つフレキシブルであることから、ガラス基板等と比べ薄く基板70を形成できる。
【0055】
本実施の形態では、基板70上に、TFT72及び電荷蓄積部74と、センサ部76と、透明絶縁膜78とを順に形成し、当該基板70上に光吸収性の低い接着樹脂等を用いてシンチレータ62を貼り付けることにより放射線検出器66を形成している。透明絶縁膜78まで形成されたものを放射線変換パネル64と呼ぶ。
【0056】
放射線検出器66は、光電変換膜84を有機光導電体により構成しており、光電変換膜84では放射線16が殆ど吸収されない。このため、本実施の形態に係る放射線検出器66は、裏面照射により放射線16が放射線変換パネル64を透過する場合でも光電変換膜84による放射線16の吸収量を少なくすることができ、放射線16に対する感度の低下を抑えることができる。裏面照射では、放射線16が放射線変換パネル64を透過してシンチレータ62に到達するが、放射線変換パネル64の光電変換膜84を有機光導電体により構成した場合、光電変換膜84での放射線16の吸収が殆どなく、放射線16の減衰を抑えることができるので、裏面照射にも適している。
【0057】
図6は、図1に示す電子カセッテ20の電気的な概略構成図である。電子カセッテ20は、画素102を行列状のTFT72上に配置した構造を有する。画素102は、行列状に配置されており、図示しない光電変換素子を有する。駆動回路部106を構成するバイアス電源108からバイアス電圧が供給される各画素102では、可視光を光電変換することにより発生した電荷が蓄積され、各列毎にTFT72を順次オンすることにより、各信号線112を介して電荷信号(電気信号)をアナログ信号の画素値として読み出すことができる。なお、図6では便宜上、画素102及びTFT72を、縦4×横4個の配列としたが、実際は、縦2880個×横2304個の配列である。
【0058】
各画素102に接続されるTFT72は、行方向に延びるゲート線110と、列方向に延びる信号線112とが接続される。各ゲート線110は、駆動回路部106を構成するゲート駆動部114に接続され、各信号線112は、チャージアンプ116を介して、駆動回路部106を構成するマルチプレクサ部118に接続される。マルチプレクサ部118には、アナログ信号の電気信号をデジタル信号の電気信号に変換するAD変換部120が接続されている。AD変換部120は、デジタル信号に変換した電気信号(デジタル信号の画素値、以下、デジタル値という場合もある)をカセッテ制御部122に出力する。
【0059】
カセッテ制御部122は、電子カセッテ20全体の制御を行うものであり、また、図示しないクロック回路を含みタイマーとしても機能する。コンピュータ等の情報処理装置に所定のプログラムを読み込ませることによって、コンピュータを本実施の形態のカセッテ制御部122として機能させることができる。
【0060】
カセッテ制御部122には、メモリ124及び通信部126が接続されている。メモリ124は、デジタル信号の画素値を記憶し、通信部126は、システムコントローラ24との間で信号の送受信を行う。通信部126は、複数の画素値が行列状に配置されて構成される1枚の画像(1フレームの画像)を、1行単位でシステムコントローラ24にパケット送信する。電源部128は、カセッテ制御部122、メモリ124、及び通信部126に電力を供給する。バイアス電源108は、カセッテ制御部122から送られてきた電力を、各画素102に供給する。
【0061】
カセッテ制御部122は、第1読出制御部130と、照射開始判定部132と、経過時間判定部134と、第2読出制御部136とを有する。第1読出制御部130は、画素102に蓄積された電荷を複数の行(line)単位で同時に読み出すことで、各画素102に蓄積された電荷を読み出すスキャンモード(第1読出しモード、単に読出しモード)を実行する。第1読出制御部130は、ゲート駆動部114、チャージアンプ116、マルチプレクサ部118、及びAD変換部120を制御することで、スキャンモードを実行する。
【0062】
なお、第1読出しモードとしてのスキャンモードは、後述する第2読出しモードとしての順次読出しモードに比べ、短時間で1フレームの画像データを読み出すことができる高速読出しモードである。
【0063】
以下、スキャンモードの概念を説明する。スキャンモードが実行されると、ゲート駆動部114は、例えば、0行目及び2行目のゲート線110にゲート信号を出力することで、0行目及び2行目のTFT72をオンにさせ(0行目と2行目とを活性化させ)、各信号線112を介して0行目及び2行目の画素102に蓄積された電荷を同時に読み出す。この読み出された各列の電荷は、電荷信号(画素値)として各列のチャージアンプ116に出力される。ここで、0行目及び2行目の画素102に蓄積された電荷は、同時に読み出されるので、チャージアンプ116に入力される電気信号は0行目及び2行目の画素102に蓄積された電気信号が加算されたものとなる。つまり、0行目及び2行目の画素102に蓄積された電気信号が列毎に加算され、加算された電気信号が各列のチャージアンプ116に出力される。これにより、0行目及び2行目の画素102の電荷を加算して読み出すことができる。
【0064】
チャージアンプ116は、入力された電荷信号を電圧信号に変換してマルチプレクサ部118に出力する。マルチプレクサ部118は、入力された電圧信号を順次選択してAD変換部120に出力し、AD変換部120は、入力された電圧信号をデジタル信号に変換して出力する。これにより、0行目と2行目の画素102に蓄積された電気信号(画素値)が列毎に加算されて、デジタル信号の電気信号(画素値)としてAD変換部120から出力される。AD変換部120から出力されたデジタル信号の電気信号(画素値)はカセッテ制御部122に送られ、カセッテ制御部122は、該送られたデジタル値をメモリ124に記憶させる。つまり、メモリ124には、0行目及び2行目の画像データが列毎に加算された画像データが記憶される。
【0065】
ゲート駆動部114は、上述のように0行目及び2行目の画素102に蓄積された電荷を読み出すと、今度は、1行目及び3行目のゲート線110にゲート信号を送ることで、1行目及び3行目のTFT72をオンにさせ(1行目と3行目とを活性化させ)、各信号線112を介して1行目及び3行目の画素102に蓄積された電荷(電気信号)を同時に読み出す。読み出された電気信号は、上述した動作を経てデジタル信号としてカセッテ制御部122に送られ、メモリ124に記憶される。
【0066】
第1読出制御部130は、後述する照射開始判定部132により放射線16の照射が開始されたと判定されると、スキャンモードの実行を終了する。このとき、1フレーム分の画像データの読み出しが終了していない場合は、該1フレーム分の画像データの読み出し終了後にスキャンモードの実行を終了する。
【0067】
このように、スキャンモードにより画素102に蓄積された電荷を読み出すので、短時間で1フレームの画像データを読み出すことができ、画素102に蓄積されたノイズ電荷を短時間で除去することができる。スキャンモードにより画素102に蓄積された電荷を読み出すので、放射線16の照射が開始されたと判定された場合であっても、直ぐに露光状態に移行することができ、画像情報を有する放射線16を余り無駄にすることがない。逆に、後述する順次読出しモードで画素102に蓄積されたノイズ電荷を除去する場合は、1フレームの画像データを読み出すのに時間がかかってしまい、1フレームの画像データの読出し中に、放射線16の照射が開始されたと判定された場合は、直ぐに露光状態に移行することができず、画像情報である放射線16を無駄にしてしまう。
【0068】
照射開始判定部132は、第1読出制御部130により読み出され、メモリ124に記憶されたデジタル値が閾値より大きいか否かを判断する。デジタル値が閾値より大きい場合には、放射線16の照射が開始されたと判定する。つまり、照射開始判定部132は、得られたデジタル値が閾値より大きいか否かで放射線16を検出している。放射線16が照射されていない状態の場合は、画素102に蓄積される電荷はノイズであり、微量である。然しながら、放射線16が照射され、電子カセッテ20に入射すると、画素102に蓄積される電荷は、放射線16が照射されていないときに比べ多くなる。したがって、スキャンモードにより読み出されてデジタル信号に変換された電気信号が閾値より大きい場合には、放射線16の照射が開始されたと判定することができる。
【0069】
また、スキャンモードにより複数の行単位で画素102に蓄積された電荷を同時に読み出すので、放射線16の照射開始を早期且つ正確に判定することができる。つまり、画素102の電荷を加算することで、放射線16が照射されている場合は、得られるデジタル信号の電気信号は飛躍的に大きくなるので、放射線16の照射開始を早期に判定することができる。逆に、画素102に蓄積された電荷を加算せずに閾値の値を下げることで、放射線16の照射開始を早期に検出することができるが、閾値に対する電気信号のノイズの割合が大きくなり、正確に放射線16の照射開始を検出することができない。なお、この閾値は、ユーザーが任意に設定可能である。
【0070】
経過時間判定部134は、放射線16の照射が開始されてから予め決められた所定時間が経過したか否かを判定する。この予め決められた所定時間とは、放射線源34が放射線16を照射する時間であってもよいし、電子カセッテ20が放射線画像を撮像するために放射線16を露光する時間であってもよい。この予め決められた所定時間は、メモリ124に記憶されている。
【0071】
第2読出制御部136は、画素102に蓄積された電気信号を1行単位で順次読み出す順次読出しモード(第2読出しモード)を実行する。第2読出制御部136は、ゲート駆動部114、チャージアンプ116、マルチプレクサ部118、及びAD変換部120を制御することで、順次読出しモードを実行する。
【0072】
以下、順次読出しモードの概念を説明する。順次読出しモードが実行されると、ゲート駆動部114は、0行目のゲート線110にゲート信号を出力することで、0行目のTFT72をオンにさせ(0行目を活性化させ)、各信号線112を介して0行目の画素102に蓄積された電荷を読み出す。この読み出された各列の電荷は、電荷信号(画素値)として各列のチャージアンプ116に出力されて、電圧信号に変換される。変換された電圧信号は、マルチプレクサ部118に出力され、AD変換部120によって、0行目の画素102に蓄積された電気信号(画素値)が、デジタル信号としてカセッテ制御部122に送られ、メモリ124に記憶される。つまり、0行目の画像データがメモリ124に記憶される。
【0073】
ゲート駆動部114は、0行目の画素102に蓄積された電荷を読み出すと、今度は、1行目のゲート線110にゲート信号を送ることで、1行目のTFT72をオンにさせ(1行目を活性化させ)、各信号線112を介して1行目の画素102に蓄積された電荷(電気信号)を読み出す。読み出された電気信号は、上述した動作を経てデジタル信号としてカセッテ制御部122に送られ、メモリ124に記憶される。
【0074】
1行目の画素102に蓄積された電荷の読み出しを行うと、ゲート駆動部114は、2行目の画素102に蓄積された電荷の読み出しを行い、その後、3行目の画素102に蓄積された電荷の読み出しを行う。
【0075】
カセッテ制御部122は、メモリ124に記憶した1行分の画像データを通信部126を介して順次システムコントローラ24に送信する。つまり、行単位で順次1行分の画像データを送信する。なお、行単位ではなく、1フレーム分の画像データを一括して送信してもよい。
【0076】
図7は、図6に示す放射線変換パネル64、ゲート駆動部114、チャージアンプ116、及びマルチプレクサ部118の詳細図である。ゲート駆動部114は、12個のゲート駆動回路150(第1〜第12のゲート駆動回路150)を有し、各ゲート駆動回路150には、240本のゲート線110が接続されている。各ゲート駆動回路150は、自己に接続された240本のゲート線110にTFT72を介して接続されている画素102に蓄積された電荷の読み出しを行う。つまり、各ゲート駆動回路150は、自己が読み出しを担当する領域(0行目〜239行目)の画素102に蓄積された電荷の読み出しを行う。なお、第1〜第12のゲート駆動回路150を総称してゲート駆動回路150と呼ぶ。
【0077】
マルチプレクサ部118は、9個のマルチプレクサ152(第1〜第9のマルチプレクサ152)を有し、各マルチプレクサ152は、256本の信号線112が接続されている。各マルチプレクサ152には、自己が担当する領域(1列目〜255列目)の画素102の電荷信号がチャージアンプ116を介して入力される。なお、第1〜第9のマルチプレクサ152を総称して、マルチプレクサ152と呼ぶ。このように、放射線変換パネル64は、縦2880(240×12)個×横2304(256×9)個の画素102及びTFT72を有することになる。
【0078】
AD変換部120は、9個のA/D変換器154(第1〜第9のA/D変換器154)を有し、各マルチプレクサ152が出力した電圧信号が各A/D変換器154に出力される。具体的には、第1のマルチプレクサ152が出力した電圧信号が第1のA/D変換器154に出力され、第2のマルチプレクサ152が出力した電圧信号が第2のA/D変換器154に出力される。このように、各マルチプレクサ152が出力した電圧信号は、各マルチプレクサ152に対応するA/D変換器154に出力される。A/D変換器154は、入力された電圧信号をデジタル信号の電圧信号に変換する。なお、第1〜第9のA/D変換器154を総称してA/D変換器154と呼ぶ。
【0079】
各ゲート駆動回路150は、行単位でTFT72を順次オンにする。これにより、行単位で画素102に蓄積された電荷は順次読み出され、電荷信号として信号線112を介してチャージアンプ116に出力される。具体的には、各ゲート駆動回路150は、自己に接続されている複数のゲート線110のうち、0行(最初に読み出すべき行)目のゲート線110を選択し、該選択したゲート線110にゲート信号を出力することで、0行目のTFT72をオンにさせて、0行目の画素102に蓄積された電荷を読み出す。そして、0行目の画素102に蓄積された電荷を読み出すと、1行(2番目に読み出すべき行)目のゲート線110を選択し、該選択したゲート線110にゲート信号を出力することで、1行目のTFT72をオンにさせて、1行目の画素102に蓄積された電荷を読み出す。そして、2行目、3行目というように、239行(最後に読み出すべき行)目まで順次ゲート線110を選択し、該選択したゲート線110にゲート信号を出力することで、TFT72を行単位で順次オンにさせて各行の画素102に蓄積された電荷を読み出す。
【0080】
読み出された各列の電荷は、各信号線112を介して各列のチャージアンプ116に入力される。各チャージアンプ116は、オペアンプ156と、コンデンサ158と、スイッチ160とで構成されている。チャージアンプ116は、スイッチ160がオフの場合には、オペアンプ156に入力された電荷信号を電圧信号に変換して出力する。チャージアンプ116は、カセッテ制御部122によって設定されたゲインで電気信号を増幅して出力する。また、スイッチ160がオンの場合は、コンデンサ158に蓄積された電荷が、コンデンサ158とスイッチ160との閉回路により放電されるとともに、画素102に蓄積された電荷が、閉じられたスイッチ160及びオペアンプ156を介してGND(グランド電位)に放出される。スイッチ160をオンにして、画素102に蓄積された電荷をGND(グランド電位)に放出させる動作のことを、リセット動作(空読み動作)と呼ぶ。つまり、リセット動作の場合は、画素102に蓄積された電荷信号に対応する電圧信号は、マルチプレクサ部118及びAD変換部120に出力されずに捨てられる。なお、本実施の形態で、「画素102に蓄積された電荷の読み出し」と言った場合は、画素102に蓄積された電荷に対応する電圧信号がマルチプレクサ部118及びAD変換部120に出力される。
【0081】
各チャージアンプ116によって変換された電圧信号は、各マルチプレクサ152に出力される。マルチプレクサ152は、カセッテ制御部122からの制御信号にしたがって、入力された複数の電圧信号を順次選択して出力する。各A/D変換器154は、各マルチプレクサ152から出力された電圧信号をデジタル信号に変換し、該変換したデジタル信号をカセッテ制御部122に出力する。
【0082】
図8は、順次読出しモード時に、カセッテ制御部122からゲート駆動部114に入力される入力信号及び、ゲート駆動部114からカセッテ制御部122に出力される出力信号のタイムチャートである。通常読出しモードにおいては、カセッテ制御部122は、第1のゲート駆動回路150に、入力信号(駆動信号)a1を出力する。第1のゲート駆動回路150は、駆動信号a1が入力されると、自己が担当するゲート線110を0行目から順次選択し、該選択したゲート線110にゲート信号を出力する。これにより、TFT72が行単位で順次オンにされ、行単位で画素102に蓄積された電荷が読み出される。第1のゲート駆動回路150は、最終行(239行)を選択すると、出力信号(終了信号)b1をカセッテ制御部122に出力する。カセッテ制御部122は、終了信号b1を受け取ると、入力信号(駆動信号)a2を第2のゲート駆動回路150に出力する。
【0083】
第2のゲート駆動回路150は、入力信号a2が入力されると、自己が担当するゲート線110を0行目から順次選択し、該選択したゲート線110にゲート信号を出力する。これにより、TFT72が行単位で順次オンにされ、行単位で画素102に蓄積された電荷が読み出される。第2のゲート駆動回路150は、最終行(239行)を選択すると、出力信号(終了信号)b2をカセッテ制御部122に出力する。カセッテ制御部122は、終了信号b2を受け取ると、入力信号(駆動信号)a3を第3のゲート駆動回路150に入力する。このような動作を第12のゲート駆動回路150まで行う。
【0084】
このように、第1のゲート駆動回路150から第12のゲート駆動回路150まで、駆動信号a1〜a12を入力させることで、各ゲート駆動回路150を順次駆動させて、行単位で画素102に蓄積された電荷の読み出しを順次行う。これにより、放射線変換パネル64の0行目から2879行目までの画素102に蓄積された電荷が、0行目から行単位で順次読み出される。この順次読出しモードでは、撮像される放射線画像の画質も考慮すると、画素102に蓄積された電荷を1行読み出すのに約173μsecの時間を要する。したがって、順次読み出しモードでは、全ての行(2880行)を読み出すのに、約500msec(173μsec/l×2880line)の時間を要することになる。
【0085】
図9は、スキャンモード時に、カセッテ制御部122からゲート駆動部114に入力される入力信号及び、ゲート駆動部114からカセッテ制御部122に出力される出力信号のタイムチャートである。スキャンモード時においては、カセッテ制御部122は、第1〜第12のゲート駆動回路150に、各入力信号c1〜c12を同時に出力する。第1〜第12のゲート駆動回路150は、各駆動信号c1〜c12が入力されると、自己が担当するゲート線110を0行目から順次選択し、該選択したゲート線110にゲート信号を出力する。これにより、各ゲート駆動回路150が担当する領域のTFT72が行単位で順次オンにされ、各ゲート駆動回路150が担当する領域の画素102に蓄積された電荷が行単位で順次読み出される。
【0086】
具体的には、各ゲート駆動回路150が担当する領域の0行目の画素102に蓄積された電荷が同時に読み出され、次に、1行目の画素102に蓄積された電荷が同時に読み出される。このように、各ゲート駆動回路150が担当する領域の画素102に蓄積された電荷が一斉に行単位で順次読み出される。したがって、各ゲート駆動回路150によって読み出される画素102の電荷は、列毎に加算される。例えば、各ゲート駆動回路150が同時に0行目の画素102の電荷を読み出した場合は、読み出された各0行目の画素102の電荷が列毎に加算される。この列毎に加算された電荷が各列のチャージアンプ116に入力される。各ゲート駆動回路150は、最終行(239行)を選択すると、各出力信号(終了信号)d1〜d12をカセッテ制御部122に出力する。
【0087】
スキャンモードでは、画素102に蓄積された電荷の読み出しに要する時間を短くする必要がある。その一方で、電荷の読み出しに要する時間を短くし過ぎると、画素102に蓄積された余剰電荷を取り除くことができなくなり、画質の良い放射線画像を撮像することができない。この両者の要求を満たすために、21μsecの時間で、画素102に蓄積された電荷を1行読み出す。したがって、スキャンモードでは、全ての行(2880行)を読み出すのに、約5msec(21μsec×2880line×(1/12))の時間を要する。これは、順次読出しモードで要する時間の約1/100で、全画素102に蓄積された電荷を読み出すことができる。ここで、21μsec×2880lineに(1/12)を乗算する理由は、スキャンモードでは、12行単位で画素102に蓄積された電荷を同時に読み出すからである。
【0088】
つまり、電子カセッテ20は、行列状に配置された複数の画素102と、複数の画素102に蓄積された電気信号を読み出すための行列状に配置された複数のTFT72と、各行のTFT72に接続された行方向に平行な複数のゲート線110と、ゲート線110が複数接続され、ゲート線110を介して各行のTFT72にゲート信号を出力する列方向に沿って並列配置された複数のゲート駆動回路150と、複数の画素102に蓄積された電気信号を読み出すための列方向に平行な複数の信号線112とを少なくとも備える。
【0089】
TFT72のゲートはゲート線110に接続され、ソースが画素102に接続されている。また、TFT72のドレインは信号線112に接続されている。各ゲート駆動回路150は、駆動信号a又はcが入力されると、自己に接続されたゲート線110を順次選択し、該選択したゲート線110にゲート信号を出力することで、TFT72をオンにさせ、複数の信号線112を介して自己に接続された画素102に蓄積された電気信号を行単位で順次読み出す。
【0090】
第1読出制御部130は、各ゲート駆動回路150に同時に駆動信号cを入力することで、複数の画素102に蓄積された電気信号を複数の行単位で同時に読み出すスキャンモードを実行する。
【0091】
カセッテ制御部122の第2読出制御部136は、各ゲート駆動回路150に順次駆動信号aを入力することで各ゲート駆動回路150を順番に駆動させて、複数の画素102の電気信号を1行単位で順次読み出す順次読出しモードを実行する。
【0092】
図10は、システムコントローラ24及びコンソール26の電気的な概略構成図である。コンソール26は、ユーザーの入力操作を受け付ける入力部200と、コンソール26全体を制御する制御部202と、ユーザーの入力操作を補助する画像を表示する表示部204と、システムコントローラ24との間で信号の送受信を行うインターフェースI/F206とを有する。
【0093】
システムコントローラ24は、コンソール26との間で信号の送受信を行うインターフェースI/F210と、放射線撮像システム10全体を制御する制御部212と、電子カセッテ20及び表示装置28との間で無線通信により信号の送受信を行う通信部214と、通信部214を介して電子カセッテ20から送られてきた画像データとプログラム等とを記録する記録部216と、放射線16の照射時間等を含む撮影条件が撮影部位及び診断部位に対応付けて記録されたテーブル218を有するデータベース220とを有する。インターフェースI/F206とインターフェースI/F210とはケーブル230によって接続されている。入力部200は、図示しないマウス及びキーボード等で構成されており、入力部200は、ユーザーによって入力された操作信号を制御部202に出力する。
【0094】
制御部202は、ユーザーが撮影部位及び診断部位と撮影枚数とを入力するための画面を表示させることで、表示部204をGUI(Graphical User Interface)として機能させる。医師は、表示部204に表示された画像(表示部204の画面)を見ながら、入力部200を操作して撮影部位及び診断部位と撮影枚数とを選択する。ここで、撮影部位とは、放射線撮影を行う患者の体の部位のことであり、例えば、胸部、下腹部、足等がある。診断部位とは、放射線撮影により得られた画像を用いて診断する部位を示し、例えば、撮影部位が同じ胸部であっても循環器、肋骨、心臓等のように診断部位が異なる。
【0095】
制御部202は、ユーザーによって選択された撮影部位、診断部位、及び撮影枚数をインターフェースI/F206、210を介して、システムコントローラ24の制御部212に出力する。制御部212の撮影条件設定部(照射時間設定部)222は、コンソール26から送られてきた(ユーザーにより選択された)撮影部位及び診断部位に対応する撮影条件を設定する。詳しくは、撮影条件設定部222は、ユーザーにより選択された撮影部位及び診断部位に対応する撮影条件をテーブル218から読み出し、読み出した撮影条件をこれから行う放射線撮影の撮影条件として設定する。撮影条件設定部222は、通信部214を介して該設定した撮影条件のうち少なくとも照射時間を電子カセッテ20に送信する。電子カセッテ20は、送られてきた照射時間をメモリ124に記憶させる。この記憶された照射時間が、前記した予め決められた所定時間となる。
【0096】
制御部212の撮影枚数設定部224は、コンソール26から送られてきた(ユーザーにより選択された)撮影枚数を設定する。撮影枚数設定部224は、通信部214を介して該設定した撮影枚数を電子カセッテ20に送信する。電子カセッテ20は、送られてきた撮影枚数をメモリ124に記憶させる。制御部212の画像記録制御部226は、通信部214を介して電子カセッテ20から送られてきた1フレーム分の画像データを記録部216に記録させる。
【0097】
図11は、テーブル218の一例を示す図である。テーブル218には、撮影部位及び診断部位に対応して、照射時間、管電圧、管電流等の撮影条件が記録されている。また、撮影部位の中に複数の診断部位があり、該診断部位に応じて撮影条件が記録されている。例えば、撮影部位が胸部の場合には、循環器、肋骨、心臓等の診断部位が複数設けられており、該診断部位に対応して撮影条件が記録されている。撮影部位が胸部であり、診断部位が循環器の場合は、照射時間が200msec、管電圧が100kV、管電流が10mA等となる。このテーブル218に記録されている情報は、ユーザーがコンソール26の入力部200を操作することで、任意に変更可能である。
【0098】
次に、放射線撮像システム10の動作を図12及び図13のフローチャートにしたがって説明する。図12は、放射線撮像システム10のシステムコントローラ24及びコンソール26の動作を示すフローチャートであり、図13は、カセッテ制御部122の動作を示すフローチャートである。まず、システムコントローラ24及びコンソール26の動作を説明してから、カセッテ制御部122の動作を説明する。
【0099】
コンソール26の制御部202は、ユーザーの入力部200の操作により撮影部位及び診断部位と撮影枚数とが選択されたか否かを判断する(ステップS1)。このとき、制御部202は、ユーザーが撮影部位及び診断部位と撮影枚数を選択するための画像を表示部204に表示させる。ユーザーは、表示された画像を見ながら、これから放射線撮影の対象となる患者の撮影部位及び診断部位を選択することができる。
【0100】
ステップS1で、撮影部位及び診断部位と撮影枚数とが選択されていないと判断すると、選択されるまでステップS1に留まる。
【0101】
一方、ステップS1で、撮影部位及び診断部位と撮影枚数とがユーザーに選択されたと判断すると、撮影条件設定部222は、ユーザーによって選択された撮影部位及び診断部位に応じた撮影条件をテーブル218から読み出し、該読み出した撮影条件をこれから行う放射線撮影の撮影条件として設定するとともに、撮影枚数設定部224は、ユーザーによって選択された撮影枚数を設定する(ステップS2)。詳しくは、撮影部位等がユーザーの入力部200の操作により選択されると、制御部202は、選択された撮影部位等をインターフェースI/F206、210を介して、システムコントローラ24の制御部212に出力する。そして、制御部212の撮影条件設定部222は、コンソール26から送られてきた撮影部位及び診断部位に対応する撮影条件に設定するとともに、コンソール26から送られてきた撮影枚数に設定する。なお、システムコントローラ24は、該設定した撮影条件を、インターフェースI/F210、206を介して制御部202に出力し、制御部202は、設定された該撮影条件及び撮影枚数を表示部204に表示させてもよい。これにより、ユーザーは、設定された撮影条件の内容を視認することができる。
【0102】
ユーザーは、設定した撮影条件で放射線源34から放射線16が照射されるようにするために、放射線制御装置36に設けられた前記入力装置を操作することで、システムコントローラ24側で設定した撮影条件と同一の撮影条件を放射線制御装置36にも設定させる。例えば、放射線装置18に、テーブル218と同一のテーブルを持たせて、ユーザーが撮影部位及び診断部位を選択することで、同一の撮影条件を設定しても良く、ユーザーが直接照射時間、管電圧、管電流等を入力してもよい。
【0103】
撮影条件を設定すると、制御部212は、通信部214を介して、電子カセッテ20に起動信号を送信することで、電子カセッテ20を起動させる(ステップS3)。なお、電子カセッテ20は、起動信号が送られてくるまではスリープ状態となっている。スリープ状態とは、少なくとも放射線変換パネル64及び駆動回路部106には電力が供給されていない状態をいう。なお、電子カセッテ20は、起動するとスキャンモードを実行する。電子カセッテ20は、起動後、スキャンモードを実行する前にリセット動作を行ってもよい。
【0104】
次いで、撮影条件設定部222及び撮影枚数設定部224は、通信部214を介して、該設定した照射時間及び撮影枚数を電子カセッテ20に送信する(ステップS4)。
【0105】
次いで、制御部212は、電子カセッテ20からの読出し開始信号を受信したか否かを判断する(ステップS5)。読出し開始信号とは、順次読出しモードで画素102に蓄積された電荷の読み出しを開始することを示す信号である。
【0106】
ステップS5で、読出し開始信号を受信していないと判断すると受信するまでステップS5に留まり、読出し開始信号を受信したと判断すると、画像記録制御部226は、1行分の画像データが送られてきたか否かを判断する(ステップS6)。電子カセッテ20は、行単位で順次読み出された1行分の画像データを順次システムコントローラ24に出力するので、システムコントローラ24には、1行分の画像データが順次送られてくる。
【0107】
ステップS6で、1行分の画像データが送られてきたと判断すると、画像記録制御部226は、送られてきた1行分の画像データを制御部212の図示しないバッファメモリに記憶する(ステップS7)。
【0108】
次いで、画像記録制御部226は、1フレーム分の画像データの読み出しが終了したか否かを判断する(ステップS8)。電子カセッテ20は、1フレーム分の画像データの読み出しが終了した場合には、読出し終了信号をシステムコントローラ24に出力し、画像記録制御部226は、該読出し終了信号を受信した場合は、1フレーム分の画像データの読み出しが終了したと判断する。
【0109】
ステップS8で、1フレーム分の画像データの読み出しが終了していないと判断した場合は、ステップS6に戻り、上記した動作を繰り返す。
【0110】
ステップS8で、1フレーム分の画像データの読み出しが終了したと判断すると、バッファメモリに記憶した1フレーム分の画像データから画像ファイルを生成して記録部216に記録する(ステップS9)。
【0111】
次いで、画像記録制御部226は、ステップS2で設定された撮影枚数分の画像データが送られてきたか否かを判断する(ステップS10)。ステップS10で、設定された撮影枚数分の画像データが送られてきていないと判断するとステップS6に戻り、撮影枚数分の画像データが送られてきたと判断すると処理を終了する。
【0112】
次に、電子カセッテ20の動作を、図13に示すフローチャート及び図14に示すタイムチャートにしたがって説明する。システムコントローラ24から起動信号が送られてくると、電子カセッテ20は起動し、カセッテ制御部122は、システムコントローラ24から送られてくる照射時間及び撮影枚数をメモリ124に記憶させる(ステップS21)。
【0113】
次いで、カセッテ制御部122の第1読出制御部130は、スキャンモードの実行を開始する(ステップS22)。スキャンモードの実行を開始すると、第1読出制御部130は、各ゲート駆動回路150に駆動信号cを出力する。各ゲート駆動回路150は、駆動信号cを受け取ると、自己が担当するゲート線110を0行目から順次選択し、該選択したゲート線110にゲート信号を出力することで、自己が担当する領域の画素102に蓄積された電荷を0行目から行単位で順次読み出す。これにより、各ゲート駆動回路150が担当する領域の画素102に蓄積された電荷が同時に行単位で順次読み出され、読み出された電荷は列毎に加算される。
【0114】
詳しくは、各ゲート駆動回路150が担当する領域の0行目の画素102に蓄積された電荷が同時に読み出され、列毎に加算されて、各列のチャージアンプ116に出力される。そして、各ゲート駆動回路150が担当する領域の1行目の画素102に蓄積された電荷が同時に読み出され、列毎に加算されて、各列のチャージアンプ116に出力される。このような動作を239行目まで行う。
【0115】
行単位で順次読み出され、列毎に加算された1行分の電荷は、チャージアンプ116に送られ、マルチプレクサ部118及びAD変換部120を介してデジタル信号の電気信号としてメモリ124に記憶されていく。これにより、メモリ124には、加算された1行分の画像データが順次記憶されていくことになる。各ゲート駆動回路150は、239行目の画素102に蓄積された電荷を読み出すと、終了信号dをカセッテ制御部122に出力する。
【0116】
なお、第1読出制御部130は、スキャンモードを実行している間は、各チャージアンプ116のスイッチ160をオフ状態に制御する。これにより、各チャージアンプ116は、入力された電荷信号を電圧信号として出力することができる。カセッテ制御部122は、起動してからスキャンモードの実行を開始する前に、リセット動作を行うようにしてもよい。また、第1読出制御部130は、起動してから一定時間(例えば、10秒)経過後にスキャンモードの実行を開始するようにしてもよい。
【0117】
次いで、照射開始判定部132は、メモリ124に記憶されたデジタル信号の電気信号が、閾値より大きいか否かを判断する(ステップS23)。放射線源34から電子カセッテ20に対して放射線16が照射されると、メモリ124に記憶されるデジタル信号の電気信号は閾値より大きくなる。つまり、デジタル信号の電気信号が閾値より大きいか否かで、放射線16が照射されたか否かを検出している。ステップS23で、電気信号が閾値より大きくないと判断すると、閾値より大きいと判断されるまでステップS23に留まる。各ゲート駆動回路150から終了信号d1〜d12がカセッテ制御部122に送られてきた場合は(1フレーム分の電荷を読み出した場合は)、第1読出制御部130は、再び駆動信号c1〜c12を各ゲート駆動回路150に出力する。駆動信号c1〜c12が各ゲート駆動回路150に入力されてから終了信号d1〜d12が出力されるまでをスキャンモードの1サイクルとする。なお、終了信号d1〜d12は、同じタイミングで各ゲート駆動回路150から送られてくる。
【0118】
一方、ステップS23で、メモリ124に記憶されたデジタル信号の電気信号が、閾値より大きいと判断した場合は、照射開始判定部132は、放射線源34により放射線16の照射が開始されたと判定する(ステップS24)。
【0119】
すなわち、ユーザーがスキャンモードの実行中に、放射線スイッチ38を半押すると、放射線制御装置36は放射線16の照射準備を行い、その後、ユーザーが放射線スイッチ38を全押すると、放射線制御装置36は放射線源34から放射線16を予め決められた所定時間照射する。放射線制御装置36は、上述したように、ユーザーによって選択された撮影部位及び診断部位に対応した撮影条件で放射線16を照射するので、予め決められた所定時間は、ユーザーによって選択された撮影部位及び診断部位に応じた照射時間である。また、複数毎撮影を行う場合は、ユーザーは、ある程度の時間間隔で放射線スイッチ38を操作して、放射線源34から放射線16を照射させる。
【0120】
ステップS24で放射線16の照射が開始されたと判定すると、カセッテ制御部122は、次に、タイマーをスタートさせ(ステップS25)、第1読出制御部130は、スキャンモードの実行により、全画素102に蓄積された電荷の読み出しが全て終了したか(1フレーム分の電荷の読み出しが終了したか)否かを判断する(ステップS26)。つまり、第1読出制御部130は、放射線16の照射が開始されたと判定されてから、スキャンモードの1サイクルが終了したか否かを判断する。具体的には、第1読出制御部130は、放射線16の照射開始判定後に、各ゲート駆動回路150から終了信号d1〜d12が送られてきたか否かを判断する。
【0121】
ステップS26で、全画素102に蓄積された電荷の読み出しが終了していないと判断した場合は、終了したと判断するまでステップS26に留まり、全画素102に蓄積された電荷の読み出しが終了したと判断した場合は、放射線撮影を行う。つまり、放射線16を露光し、該放射線16の露光によって画素102に蓄積された電荷の読み出しを行う。詳しくは、第1読出制御部130は、露光を開始するためにスキャンモードの実行を終了して、露光状態に移行させる(ステップS27)。つまり、第1読出制御部130は、終了信号d1〜d12が送られてきても、それ以後、駆動信号c1〜c12を各ゲート駆動回路150に出力しない。なお、第1読出制御部130は、スキャンモードが終了すると同時に、チャージアンプ116のスイッチ160をオンにする。これにより、コンデンサ158に蓄えられた不要な電荷を放出させることができ、放射線画像の画質を良くすることができる。
【0122】
図14に示すように、放射線源34により放射線16の照射が開始されたと判定されるまでは、スキャンモードが繰り返し実行される。タイミングt1は、放射線16の照射が開始されたと判定されたタイミングを示す。矢印Aは、スキャンモードの1サイクルを示すものであり、その時間は約5msecである。放射線16の照射が開始されたと判定された場合は、現在行っているスキャンモードのサイクルが終了すると、スキャンモードの実行を終了して、露光状態に移行する。
【0123】
ステップS27で、スキャンモードの実行を終了すると、経過時間判定部134は、放射線16の照射が開始されたと判定されてから予め決められた所定時間が経過したか否かを判断する(ステップS28)。ステップS28で、放射線16の照射が開始されてから予め決められた所定時間が経過していないと判断すると、所定時間が経過するまでステップS28に留まる。この予め決められた所定時間は、ユーザーによって選択された撮影部位及び診断目的に対応する照射時間なので、ステップS28では、放射線16の照射が終了したか否かを判断している。したがって、スキャンモードの実行を終了してから予め決められた所定時間が経過するまでは、放射線撮影のための露光を行っている。
【0124】
一方、ステップS28で、放射線16の照射が開始されてから予め決められた所定時間が経過したと判断すると、露光を終了し、放射線16の露光により得られた電荷を読み出すために、第2読出制御部136は、順次読出しモードの実行を開始する(ステップS29)。このとき、第2読出制御部136は、順次読出しモードの実行を開始するのに先立って、又は、開始時、若しくは開始後に、通信部126を介して読出し開始信号をシステムコントローラ24に出力する。これにより、システムコントローラ24は、これから放射線画像の画像データが電子カセッテ20から送られてくることがわかり、画像データの受け入れ準備をすることができる。
【0125】
順次読出しモードが実行されると、第2読出制御部136は、第1のゲート駆動回路150に駆動信号a1を出力する。第1のゲート駆動回路150は、駆動信号a1を受け取ると、自己が担当するゲート線110を0行目から順次選択し、該選択したゲート線110にゲート信号を出力することで、自己が担当する領域の画素102に蓄積された電荷を0行目から行単位で順次読み出す。これにより、第1のゲート駆動回路150が担当する領域の画素102に蓄積された電荷が行単位で0行目〜239行目まで順次読み出される。第1のゲート駆動回路150は、239行目を選択すると、終了信号b1をカセッテ制御部122に出力する。
【0126】
第2読出制御部136は、終了信号b1を受け取ると、駆動信号a2を第2のゲート駆動回路150に出力する。このような動作を第12のゲート駆動回路150まで行う。これにより、放射線変換パネル64の0行目から2879行目までの画素102に蓄積された電荷が行単位で順次読み出される。この行単位で順次読み出された電荷は、各列のチャージアンプ116に入力され、その後、マルチプレクサ部118及びAD変換部120を介して、デジタル信号の電気信号としてメモリ124に記憶される。つまり、メモリ124には、行単位で得られた1行分の画像データが順次記憶される。
【0127】
図14に示すタイミングt3は、ステップS28で、予め決められた所定時間が経過したと判断されたタイミングを示し、タイミングt3と略同時又はタイミングt3の直後に順次読出しモードの実行が開始されている。順次読出しモードの開始と同時に第2読出制御部136から読出し開始信号がシステムコントローラ24に向けて出力されている。矢印Bは、順次読出しモードの1サイクルを示すものであり、その時間が約500msecである。つまり、駆動信号a1が第1のゲート駆動回路150に入力されてから、第12のゲート駆動回路150が終了信号b12を出力するまでを順次読出しモードの1サイクルとする。
【0128】
なお、カセッテ制御部122は、順次読出しモードを実行している間は、各チャージアンプ116のスイッチ160をオフ状態に制御する。これにより、各チャージアンプ116は、入力された電荷信号を電圧信号として出力することができる。
【0129】
順次読出しモードの実行を開始すると、カセッテ制御部122は、行単位で得られた1行分の画像データを順次システムコントローラ24に送信する動作を開始する(ステップS30)。つまり、メモリ124に1行分の画像データを記憶すると、通信部126を介して該記憶した画像データをシステムコントローラ24に送信する。
【0130】
次いで、第2読出制御部136は、順次読出しモードの実行により、全画素102に蓄積された電荷の読み出しが終了したか(1フレーム分の電荷の読み出しが終了したか)否かを判断する(ステップS31)。つまり、順次読出しモードの1サイクルが終了したか否かを判断する。具体的には、第2読出制御部136は、第12のゲート駆動回路150から終了信号b12が送られてきたか否かを判断する。
【0131】
ステップS31で、全画素102に蓄積された電荷の読み出しが終了していないと判断した場合は、終了したと判断するまでステップS31に留まり、全画素102に蓄積された電荷の読み出しが終了したと判断した場合は、第2読出制御部136は、順次読出しモードの実行を終了する(ステップS32)。このとき、第2読出制御部136は、通信部126を介して、読出し終了信号をシステムコントローラ24に出力する。
【0132】
次いで、カセッテ制御部122は、ステップS21で記憶した撮影枚数(ユーザーによって設定された撮影枚数)分の撮影を行ったか(撮影枚数分の露光及び順次読み出しを実行したか)否かを判断する(ステップS33)。ステップS33で、記憶した撮影枚数分の撮影を行っていないと判断するとステップS22に戻り上記した動作を繰り返し、記憶した撮影枚数分の撮影を行ったと判断すると処理を終了する。
【0133】
図15は、撮影枚数が2枚と設定されたときの電子カセッテ20の動作を示すタイムチャートである。1回目の放射線16が照射されるまでは、電子カセッテ20の第1読出制御部130は、スキャンモードを繰り返し実行する。そして、放射線源34による放射線16の照射が開始されて、照射開始判定部132によって放射線16の照射が開始されたと判定され、現在行っているスキャンモードの1サイクルが終了すると露光状態に移行する。その後、予め決められた所定時間が経過すると(放射線16の照射が終了すると)、第2読出制御部136は、順次読出しモードを実行し、放射線16の照射によって画素102に蓄積された電荷を読み出す。その後、再び、第1読出制御部130は、スキャンモードを繰り返し実行する。そして、照射開始判定部132によって放射線16の照射が開始されたと判定され、現在行っているスキャンモードの1サイクルが終了すると露光状態に移行する。その後、予め決められた所定時間が経過すると(放射線16の照射が終了すると)、画素102に蓄積された電荷を読み出して、処理を終了する。このとき、ユーザーは、ある程度の間隔を開けて、放射線スイッチ38を2回操作することで、放射線16を2回被写体14に照射させることができる。
【0134】
このように、放射線16が照射される前は、順次読出しモードより高速で読み出すことができるスキャンモードで画素102に蓄積された電荷を読み出し、電荷の読み出しにより得られたデジタル値が閾値より大きい場合は、放射線16の照射が開始されたと判断して、露光を開始するので、撮影タイミングの同期(放射線16の照射タイミングと電子カセッテ20の露光タイミングの同期)をとる必要がなく、良好に放射線画像を撮像することができる。
【0135】
また、スキャンモードでは、複数の行単位で画素102に蓄積された電荷を同時に読み出すので、放射線16の照射開始を早期且つ正確に判定することが可能となる。つまり、画素102に蓄積された電荷が加算されて読み出されるので、放射線16が照射されている場合は、放射線16が照射されていない場合に比べ、得られたデジタル値が飛躍的に大きくなり、放射線16の照射開始を早期に判定することができる。逆に、電荷を加算せずに閾値の値を単に下げると、下げた分だけ放射線16の照射開始を早期に検出することができるが、閾値に対するノイズの割合が大きくなり、正確な放射線16の照射開始を検出することができない。
【0136】
また、スキャンモードでは、複数の行単位で同時に読み出していくので、1フレームの画像の読み出し速度を早くすることができ(スキャンモードの1サイクルを短くすることができ)、放射線16の照射が開始されたと判定された場合であっても、露光状態に移行するまでの時間を短くすることができる。
【0137】
また、スキャンモードでは、各ゲート駆動回路150が自己が担当する領域の画素102に蓄積された電荷を同時に0行目から行単位で順次読み出すので、放射線変換パネル64のどの領域に放射線16が照射されても放射線16の照射が開始されたことを早期に検出することができる。仮に、放射線16の照射開始の検出のために、順次読出しモードで画素102に蓄積されていた電荷を読み出す場合であって、2000行から2879行目までの領域に放射線16が照射されている場合は、0行目から1999行目までの画素102に蓄積された電荷を読み出す期間は、放射線16の照射を検出することができない。しかし、各ゲート駆動回路150が、0行目から239行目まで行単位で画素102に蓄積された電荷を読み出すので、つまり、240行間隔で画素102に蓄積された電荷を同時に読み出すので、どこの領域に放射線16が照射されても迅速に検出することができる。
【0138】
また、電子カセッテ20は、放射線16の照射が開始されたと判定されるまでは、スキャンモードを実行し、放射線16の照射が開始されたと判定されると露光状態に移行するので、撮影タイミングの同期を必要とせず、放射線装置18とシステムコントローラ24を電気的に接続しなくて済み、コストが低廉となる。放射線16の照射の開始を判定するまでスキャンモードを実行するので、画素102に蓄積された不要電荷を除去することができ、放射線画像のノイズを低減させることができる。
【0139】
また、放射線16の照射が開始されたと判定されると、スキャンモードを終了して露光状態に移行するので、画像情報である放射線16を無駄にすることがない。放射線16の照射の開始から照射時間(所定時間)が経過すると、順次読出しモードを実行するので、画素の露光期間を必要最小限に抑えることができ、放射線画像のノイズをさらに低減させることができる。また、放射線検出用のセンサを別個に設けなくても済み、コストが低廉となる。
【0140】
上記実施の形態は、以下のように変形可能である。
【0141】
(変形例1)上記実施の形態では、スキャンモードの実行中に放射線16が照射されたと判定された場合は、1サイクルが終了するまで露光状態に移行しなかったが、スキャンモードの実行中に放射線16が照射されたと判定された場合は、直ちに露光状態に移行してもよい。
【0142】
図16及び図17は、放射線16が検出されて、スキャンモードの1サイクル終了後に蓄積状態に移行した場合の各行の画素102に蓄積される電荷の様子を示す図である。スキャンモードが実行している間は、各ゲート駆動回路150は、行単位で0行目から画素102に蓄積された電荷を順次読み出している。この場合において、例えば、0行目の画素102に蓄積された電荷を読み出して得られたデジタル値が閾値より大きいと判断して放射線を検出した場合であっても、スキャンモードは239行目の画素102に蓄積された電荷が読み出されるまで、露光状態に移行できない。
【0143】
したがって、放射線16を検出した後もスキャンモードの実行により、放射線16の照射により画素102に蓄積された電荷が読み出されることになり(捨てられることになり)、画像情報を持つ放射線16を無駄にすることになる。これは、スキャンモードの1サイクルの速い段階で放射線16が検出された場合は尚更である。つまり、放射線16が照射されたと検出したときのタイミングが、239行目の画素102に蓄積された電荷を読み出すタイミングに近ければ近いほど放射線16を無駄にしない。
【0144】
具体的に説明すると、図16に示すように、0行目の画素102の電荷の読み出しで放射線16が検出された場合は、その後もスキャンモードの実行により1行目〜239行目までの画素102に蓄積された電荷は行単位で順次読み出されるので、放射線16の照射により1行目から239行目までの画素102に蓄積された電荷は捨てられてしまう。このため、放射線16の照射によって折角蓄積された電荷が無駄になってしまう。放射線撮影のための露光により得られた0行目の画素102に蓄積された電荷量Q0と、239行目の画素102に蓄積された電荷量Q239との関係は、Q0>Q239となり、その差は大きく、各行の画素102に蓄積される電荷量のバラツキが大きい。
【0145】
一方で、図17に示すように、238行目の電荷の読み出しで放射線16が検出された場合は、239行目の画素102に蓄積された電荷が読み出されるだけなので、放射線16の照射により239行目の画素102に蓄積された電荷のみが捨てられる。この場合は、放射線撮影のための露光により得られた0行目の画素102に蓄積された電荷量Q0と、238行目の画素102に蓄積された電荷量Q238と、239行目の画素102に蓄積された電荷量Q239との関係は、Q0>Q238>Q239となるが、その差は小さく、各行の画素102に蓄積された電荷量のバラツキが小さい。
【0146】
このように、放射線撮影のための露光により各行の画素102に蓄積される電荷の量は、放射線16が照射されるタイミングに左右されてしまいバラツキが生じてしまう。
【0147】
そこで、本変形例1では、放射線16の照射が検出されると、放射線16の検出以降は、画素102に蓄積された電荷の読み出しを行うことなく蓄積状態に移行する。具体的には、カセッテ制御部122は、放射線16の照射の開始を検出すると、各ゲート駆動回路150に読み出しを中止する中止信号を送る。各ゲート駆動回路150は、駆動信号c1〜c12が送られると、ゲート線110を順次選択していき、該選択したゲート線110にゲート信号を出力することで、画素102に蓄積された電荷を行単位で順次読み出す動作を行うが、中止信号が送られると、マスク処理が行われてゲート駆動回路150からゲート信号が出力されない。つまり、第1読出制御部130は、スキャンモードの実行による画素102に蓄積された電荷の読み出しを禁止する。この場合、各ゲート駆動回路150は、中止信号が送られてくると、ゲート線110を順次選択していくという動作は継続して行うが(スキャンモードは継続して行われるが)、マスク処理が行われるため該選択したゲート線110にゲート信号が出力されない。これにより、放射線16の検出後は、露光状態に移行することができる。
【0148】
例えば、各ゲート駆動回路150は、0行目のゲート線110にゲート信号を出力した後に、中止信号が送られてきた場合は、1行目、2行目というように、中止信号が送られた後であっても、ゲート線110を順次選択していくが、該選択したゲート線110にゲート信号が出力されない。この場合、各ゲート駆動回路150は、中止信号が送られた場合であっても、ゲート線110を順次選択していくので、239行目のゲート線110を選択した後は、各ゲート駆動回路150は、各終了信号d1〜d12を出力する。第1読出制御部130は、この終了信号d1〜d12が各ゲート駆動回路150から送られてくるとスキャンモードを終了させる。
【0149】
図18は、放射線16が検出されたときにスキャンモードによる画素102の電荷の読み出しを直ちに終了して蓄積状態に移行する場合の各行の画素102に蓄積される電荷の様子を示す図である。
【0150】
図18では、0行の画素102に蓄積された電荷の読み出しで放射線16が検出された場合の各行の画素102に蓄積される電荷の様子を示す図である。カセッテ制御部122は、放射線を検出すると、各ゲート駆動回路150に中止信号を送るので、2行目以降の画素102に蓄積された電荷は読み出されずに、放射線16の照射によって電荷がそのまま蓄積されている。この場合、放射線撮影の露光により得られた0行目の画素102に蓄積された電荷量Q0と、1行目の画素102に蓄積された電荷量Q1と、239行目の画素102に蓄積された電荷量Q239は、Q0<Q1=Q239の関係を満たし、Q0とQ1及びQ239との電荷量の差は小さい。したがって、画像情報を有する放射線16を無駄にすることなく露光を行うことができ、バラツキを小さくすることができる。
【0151】
本変形例1におけるカセッテ制御部122の動作は、図13に示すフローチャートと略同一であるが、図13のステップS24で照射開始判定部132が放射線16の照射が開始されたと判定した場合は、第1読出制御部130は、各ゲート駆動回路150に中止信号を送って、ステップS25の動作に移行する。これにより露光状態に移行することができる。ステップS26では、第1読出制御部130は、各ゲート駆動回路150から終了信号d1〜d12が送られてきたか否かを判断し、終了信号d1〜d12が送られてきたと判断するとステップS27で、スキャンモードの実行を終了する。
【0152】
このように、電子カセッテ20は、放射線16の照射が開始されたと判定されると、各ゲート駆動回路150に中止信号を出力することで、スキャンモードは1サイクルが終了するまで継続するが、画素102に蓄積された電荷が読み出されないので、画像情報を有する放射線16を無駄にすることがなく、放射線16を撮影することができる。
【0153】
(変形例2)上記実施の形態及び上記変形例1では、システムコントローラ24の撮影枚数設定部224は、ユーザーの入力部200の操作により入力された撮影枚数を設定して、電子カセッテ20に送信するようにしたが、テーブル218に、撮影部位及び診断目的に応じて撮影枚数も記録しておいてもよい。この場合は、撮影条件設定部222は、ユーザーによって選択された撮影部位及び診断目的に応じた撮影枚数をテーブル218から読み出して設定し、設定した撮影枚数を電子カセッテ20に送信する。
【0154】
(変形例3)上記実施の形態及び上記変形例1、2では、放射線撮影を複数回行う場合は、放射線源34は、ユーザーの放射線スイッチ38の操作により、放射線16を複数回照射するようにしたが、複数回放射線撮影を行う場合は、放射線源34は、放射線16を一定時間連続して照射し、電子カセッテ20は、前記一定時間の間に、放射線撮影を複数回行うようにしてもよい。この前記一定時間は、ユーザーが放射線制御装置36の入力装置を操作することで設定することができ、該放射線制御装置36は該設定された前記一定時間放射線16を照射するように放射線源34を制御する。
【0155】
図19は、変形例3における電子カセッテ20の動作を示すタイムチャートである。放射線16が照射されるまでは、電子カセッテ20の第1読出制御部130は、スキャンモードを繰り返し実行する。そして、放射線源34により放射線16の照射が開始されると、照射開始判定部132は放射線16の照射が開始されたと判定して露光状態に移行する。その後、予め決められた所定時間が経過すると、第2読出制御部136は、順次読出しモードを実行し、放射線16の照射によって画素102に蓄積された電荷を読み出す。その後、第1読出制御部130は、再びスキャンモードを実行するが、放射線16が照射され続けているので、直ぐに照射開始判定部132により放射線16の照射が開始されたと判定して、露光状態に移行する。その後、予め決められた所定時間が経過すると、第2読出制御部136は、順次読出しモードを実行して、その放射線16の照射により画素102に蓄積された電荷を読み出す。このように、放射線16が照射されている間に、放射線撮影を複数回行ってもよい。この予め決められた所定時間は、ユーザーによって選択された撮影部位及び診断目的に対応する照射時間であってもよく、デフォルト値であってもよく、ユーザーが個別に設定した照射時間であってもよい。
【0156】
(変形例4)上記実施の形態及び上記変形例1〜3では、スキャンモードは、複数の行単位で同時に読み出すという動作を順次行うことで、全画素102に蓄積された電荷を読み出すようにしたが、予め決められた行の画素のみを読み出すようにしてもよい。以下、本変形例4について詳しく説明する。
【0157】
図20は、本変形例4の放射線変換パネル64の一部詳細図である。放射線変換パネル64は、ゲート線250を有し、該ゲート線250は、カセッテ制御部122に直接接続されている。ゲート線250は、TFT252を介して画素254に接続されており、TFT252がオンされることにより、画素254に蓄積された電荷は、信号線112から読み出される。このゲート線250は、スキャンモードにより画素254に蓄積された電荷を読み出すためのゲート信号をTFT252に供給するためのものである。つまり、ゲート線250、TFT252、及び画素254は、スキャンモード用に、ゲート線110、TFT72、及び画素102とは別個に設けられたものである。このゲート線250は、放射線変換パネル64に1本設けるようにしてもよく、各ゲート駆動回路150の間に1本設けるようにしてもよい。また、放射線変換パネル64の全領域に亘って等間隔にゲート線250を複数設けてもよい。例えば、第1のゲート駆動回路150及び第2のゲート駆動回路150の間と、第6のゲート駆動回路150及び第7のゲート駆動回路150の間と、第11のゲート駆動回路150及び第12のゲート駆動回路150の間とに、ゲート線250を設けることで、どの領域に放射線16が照射された場合であっても、何れかの画素254は、放射線16を受光することができる。ゲート線250に接続された画素254が、予め決められた行の画素となる。
【0158】
なお、図示しないが、各ゲート駆動回路150には、240本のゲート線110が接続されており、各ゲート線110には、TFT72を介して画素102がそれぞれ接続されている。
【0159】
本変形例4におけるスキャンモードにおいては、第1読出制御部130は、ゲート線250にゲート信号を直接出力することで、画素254に蓄積された電荷を行単位で繰り返し読み出す。例えば、ゲート線250は、1本しかない場合は、該ゲート線250にゲート信号を出力すると、スキャンモードの1サイクルが終了し、次のサイクルで再び該ゲート線250にゲート信号を出力することで、画素254に蓄積された電荷を繰り返し読み出す。
【0160】
ゲート線250が複数ある場合は、第1読出制御部130は、順次ゲート線250にゲート信号を直接出力することで、画素254に蓄積された電荷を行単位で順次読み出す動作を繰り返す。例えば、ゲート線250が3本ある場合は、0行目のゲート線250にゲート信号を出力することで、0行目のゲート線250に接続された画素254に蓄積された電荷を読み出し、その次に、1行目のゲート線250にゲート信号を出力することで、1行目のゲート線250に接続された画素254に蓄積された電荷を読み出し、最後に、2行目のゲート線250にゲート信号を出力することで、2行目のゲート線250に接続された画素254に蓄積された電荷を読み出す。この2行目のゲート線250にゲート信号を出力すると、スキャンモードの1サイクルが終了し、次のサイクルで再び0行目のゲート線250にゲート信号を出力する。
【0161】
照射開始判定部132により放射線16の照射が開始したと判断された場合は、直ちにスキャンモードの実行を終了し、露光状態に移行する。ゲート駆動回路150は、照射開始判定部132により放射線16の照射の開始が判定されると、それ以後、ゲート線250にはゲート信号を出力しない。例えば、ゲート線250が3本ある場合であって、0行目のゲート線250へのゲート信号の出力により得られたデジタル値が閾値より大きいと判断された場合は、1行目及び2行目のゲート線250にゲート信号を出力することなく直ちにスキャンモードの実行を終了する。これにより、スキャンモードによる消費電力を抑えることができる。
【0162】
そして、放射線16を検出してから(放射線16の照射が開始されたと判定されてから)、予め定められた所定時間が経過すると(放射線16の照射が終了すると)、第2読出制御部136は、順次読出しモードを実行する。
【0163】
つまり、電子カセッテ20は、行列状に配置された複数の画素(第1画素)102と、複数の画素102に蓄積された電気信号を読み出すための行列状に配置された複数のTFT(第1スイッチング素子)72と、各行のTFT72に接続された行方向に平行な複数のゲート線(第1ゲート線)110と、ゲート線110が複数接続され、ゲート線110を介して各行のTFT72にゲート信号を出力する列方向に沿って並列配置された複数のゲート駆動回路150と、複数の画素102に蓄積された電気信号を読み出すための列方向に平行な複数の信号線112とを少なくとも備える。
【0164】
さらに、電子カセッテ20は、複数の画素102が配置された平面状に、行方向に沿って配置された複数の画素(第2画素)254と、画素102に蓄積された電気信号を読み出すための行方向に沿って配置された複数のTFT(第2スイッチング素子)252と、TFT252に接続された行方向に少なくとも1本以上のゲート線250とを備える。
【0165】
TFT72、252のゲートはゲート線110、250に接続され、ソースが画素102、254に接続されている。また、TFT72、252のドレインは信号線112に接続されている。各ゲート駆動回路150は、駆動信号aが入力されると、自己に接続されたゲート線110を順次選択し、該選択したゲート線110にゲート信号を出力することで、TFT72をオンにさせ、複数の信号線112を介して自己に接続された画素102に蓄積された電気信号を行単位で順次読み出す。
【0166】
第1読出制御部130は、ゲート線250にゲート信号を順次入力することで、画素254に蓄積された電気信号を1行単位で順次読み出すスキャンモードを実行する。第2読出制御部136は、各ゲート駆動回路150に順次駆動信号aを入力することで各ゲート駆動回路150を順番に駆動させて、複数の画素102の電気信号を1行単位で順次読み出す順次読出しモードを実行する。
【0167】
本変形例4におけるカセッテ制御部122の動作は、図13に示すフローチャートと略同一であるが、図13のステップS24で照射開始判定部132が放射線16の照射が開始されたと判定した場合は、第1読出制御部130は、ゲート線250へのゲート信号の出力を直ちに停止して(スキャンモードの実行を終了して)、ステップS25の動作に移行する。ステップS25で、タイマーがスタートされると、ステップS26及びステップS27の動作を経ることなく、そのままステップS28に進む。
【0168】
本変形例4においては、画素102は、スキャンモードの実行中に電荷の読み出しが行われないので、スキャンモードの実行中も露光状態となる。したがって、画像情報である放射線16を無駄にすることなく、照射された放射線16に応じた電荷を蓄積することができる。また、画素254に蓄積された電荷を読み出して放射線16の照射開始を判定するので、放射線16の照射開始タイミングが分かる。また、放射線16の照射開始タイミングから照射時間が経過すると順次読出しモードに移行するので、放射線16の照射終了後に無駄に露光を行うことがなく、放射線画像のノイズを低減させることができる。画素254に蓄積された電荷を読み出すことにより、放射線16の照射開始を判定するので、スキャンモードによる消費電力を抑えることができる。
【0169】
本変形例4におけるスキャンモードは、順次スキャンモードと同様に、173μsecの時間で、1行分の画素102に蓄積された電荷を読み出しても良い。このように、173μsecの時間で、画素102に蓄積された電荷を読み出すので、画素102に蓄積された電荷を加算せずとも、放射線16の照射開始の判定精度が低下することがない。また、スキャンモード用のゲート線250は、放射線撮影用のゲート線110より本数が少ないので、順次読出しモードと同じ時間で1行分の画素102に蓄積された電荷を読み出しても、スキャンモードの1サイクルの時間を短くすることができる。例えば、ゲート線250の本数が29本なら、スキャンモードの1サイクルの時間は、約5msecとなり、上記実施の形態のスキャンモードの1サイクルと同じ時間となる。
【0170】
なお、ゲート線250を複数設ける場合は、ユーザーは、コンソール26の入力部200を操作することで、複数のゲート線250の中から、スキャンモードの実行に用いられるゲート線250を1本又は2本以上選択してもよい。ユーザーは、放射線源34により電子カセッテ20のどの領域に放射線16が照射されるかを予め認識することができるので、放射線16が照射される領域に該当するゲート線250を選択する。選択されたゲート線250を示す情報は、コンソール26からシステムコントローラ24を介して電子カセッテ20に送られる。第1読出制御部130は、スキャンモードを実行する場合は、該選択されたゲート線250に対してのみ、ゲート信号を出力する。
【0171】
これにより、照射開始判定部132は、早期に且つ確実に放射線16の照射開始を判定することができる。また、放射線16が照射されていない領域のゲート線250にゲート信号を出力しないので、スキャンモードの実行による消費電力をさらに抑えることができる。
【0172】
また、ゲート線250を複数設ける場合は、放射線16が照射される可能性が高い領域若しくは照射される領域のゲート線250を多く選択し、放射線16が照射される可能性が低い若しくは照射されない領域のゲート線250を少なく選択してもよい。スキャンモードを実行する場合は、該選択されたゲート線250に対してのみ、ゲート信号を出力する。放射線16が照射される可能性が高い領域若しくは照射される領域は、ユーザーがコンソール26の入力部200を操作することで指定することができる。この場合、放射線16が照射される可能性が高い領域若しくは照射される領域は、ユーザーが直接指定してもよいし、ユーザーが選択した撮影部位及び診断目的に応じた領域をシステムコントローラ24の制御部212がテーブル218から読み出して指定してもよい。システムコントローラ24の制御部212は、指定した領域に基づいて、スキャンモードの実行に用いられるゲート線110を選択し、該選択したゲート線110を示す情報を電子カセッテ20に送る。
【0173】
(変形例5)変形例4では、ゲート線110、TFT72、及び画素102とは別個に、スキャンモード用のゲート線250、TFT252、及び画素254を設けるようにしたが、予め決められたゲート線110、TFT72、及び画素102をスキャンモード用として兼用してもよい。
【0174】
図21は、本変形例5の放射線変換パネル64の一部詳細図である。図示しないが、各ゲート駆動回路150には、240本のゲート線110が接続されており、各ゲート線110は、TFT72を介して画素102に接続されている。各ゲート駆動回路150に接続されている240本のゲート線110のうち何れか1つのゲート線110は、バイパス線260を介してカセッテ制御部122に接続されている。バイパス線260には、スイッチング素子262が設けられている。
【0175】
ここで、第1のゲート駆動回路150のゲート線110に接続されているバイパス線260を第1のバイパス線260と呼び、第2のゲート駆動回路150のゲート線110に接続されているバイパス線を第2のバイパス線260と呼ぶ。同様に、第3〜第12のゲート駆動回路150のゲート線110に接続されている各バイパス線を、第3〜第12のバイパス線260と呼ぶ。また、第1のバイパス線260が接続されているゲート線110を便宜上、第1のスキャン兼用ゲート線110と呼び、第2のバイパス線260が接続されているゲート線110を、第2のスキャン兼用ゲート線110と呼ぶ。同様に、第3〜第12のバイパス線260に接続されているゲート線110を、第3〜第12のスキャン兼用ゲート線110と呼ぶ。なお、本変形例5では、便宜上、ゲート駆動回路150に接続されている240本のゲート線110のうち、何れか1つをスキャン兼用ゲート線110としたが、スキャン兼用ゲート線110が設けられていないゲート駆動回路150があってもよいし、複数のスキャン兼用ゲート線110が設けられたゲート駆動回路150があってもよい。
【0176】
本変形例5におけるスキャンモードにおいては、全てのスイッチング素子262がオン、又は、一部のスイッチング素子262がオンになり、第1読出制御部130は、スイッチング素子262がオンになったバイパス線260に順次ゲート信号を出力し、画素102に蓄積された電荷を行単位で順次読み出す。そして、スイッチング素子262がオンになった全てのバイパス線260にゲート信号を出力するとスキャンモードの1サイクルが終了し、次のサイクルに移行する。
【0177】
例えば、全てのバイパス線260のスイッチング素子262がオンの場合は、第1読出制御部130は、第1のバイパス線260にゲート信号を出力することで、第1のスキャン兼用ゲート線110に接続されている画素102に蓄積された電荷を行単位で読み出す。そして、第2のバイパス線260にゲート信号を出力することで、第2のスキャン兼用ゲート線110に接続されている画素102に蓄積された電荷を行単位で読み出す。このように、第1読出制御部130は、第1のバイパス線260から第12のバイパス線260にゲート信号を順次出力して、第1〜第12のスキャン兼用ゲート線110に接続されている画素102に蓄積された電荷を行単位で順次読み出す。第12のバイパス線260にゲート信号を出力するとスキャンモードの1サイクルが終了し、次のサイクルで、第1のバイパス線260にゲート信号を出力する。
【0178】
つまり、電子カセッテ20は、行列状に配置された複数の画素102と、複数の画素102に蓄積された電気信号を読み出すための行列状に配置された複数のTFT72と、各行のTFT72に接続された行方向に平行な複数のゲート線110と、ゲート線110が複数接続され、ゲート線110を介して各行のTFT72にゲート信号を出力する列方向に沿って並列配置された複数のゲート駆動回路150と、複数の画素102に蓄積された電気信号を読み出すための列方向に平行な複数の信号線112とを少なくとも備える。
【0179】
また、複数のゲート線110のうち、少なくとも1本以上のゲート線110には、スイッチング素子262が設けられたバイパス線260が接続されている。つまり、複数のゲート線110のうち、少なくとも1本以上のゲート線110に接続されたスイッチング素子262を有するバイパス線260を1本以上有する。
【0180】
TFT72のゲートはゲート線110に接続され、ソースが画素102に接続されている。また、TFT72のドレインは信号線112に接続されている。各ゲート駆動回路150は、駆動信号aが入力されると、自己に接続されたゲート線110を順次選択し、該選択したゲート線110にゲート信号を出力することで、TFT72をオンにさせ、複数の信号線112を介して自己に接続された画素102に蓄積された電気信号を行単位で順次読み出す。
【0181】
第1読出制御部130は、予め決められたゲート線(スキャン兼用ゲート線)110に接続されたバイパス線260のスイッチング素子262をオンにしてゲート信号を出力することで、該予め決められたゲート線110に接続された画素102に蓄積された電気信号を1行単位で順次読み出すスキャンモードを実行する。第2読出制御部136は、各ゲート駆動回路150に順次駆動信号aを入力することで各ゲート駆動回路150を順番に駆動させて、複数の画素102の電気信号を1行単位で順次読み出す順次読出しモードを実行する。
【0182】
ここで、ユーザーは、コンソール26の入力部200を操作することで、スキャンモードの実行に用いられるスキャン兼用ゲート線110を選択する。この選択されたスキャン兼用ゲート線110が予め決められたゲート線110となり、選択されたスキャン兼用ゲート線110に接続された画素102が予め決められた行の画素102となる。ユーザーは、放射線源34により電子カセッテ20のどの領域に放射線16が照射されるかを予め認識することができるので、放射線16が照射される領域に該当するスキャン兼用ゲート線110を選択する。選択されたスキャン兼用ゲート線110を示す情報は、コンソール26からシステムコントローラ24を介して電子カセッテ20に送られる。第1読出制御部130は、スキャンモードを実行する際に、ユーザーによって選択されたスキャン兼用ゲート線110に接続されたバイパス線260のスイッチング素子262をオンにする。なお、スキャンモードの実行を終了するときは、第1読出制御部130は、全てのスイッチング素子262をオフ状態にさせる。
【0183】
本変形例5においては、スキャンモードの実行中は、選択されたスキャン兼用ゲート線110のみにゲート信号が出力されるので、選択されたスキャン兼用ゲート線110に接続された画素102(予め決められた画素102)以外の画素102は、スキャンモードの実行中であっても露光状態となる。したがって、画像情報である放射線16を無駄にすることなく、照射された放射線16に応じた電荷を蓄積することができる。放射線16の照射開始タイミングから照射時間が経過すると順次読出しモードに移行するので、放射線16の照射終了後に無駄に露光を行うことがなく、放射線画像のノイズを低減させることができる。
【0184】
ユーザーは、放射線16が照射される領域にあるスキャン兼用ゲート線110を選択するので、照射開始判定部132は、早期に且つ確実に放射線16の照射開始を判定することができる。また、選択されたスキャン兼用ゲート線110に対してのみゲート信号が出力されるので、スキャンモードの実行による消費電力を抑えることができる。
【0185】
本変形例5におけるスキャンモードは、順次スキャンモードと同様に、173μsecの時間で、1行分の画素102に蓄積された電荷を読み出しても良い。このように、173μsecの時間で、画素102に蓄積された電荷を読み出すので、画素102に蓄積された電荷を加算せずとも、放射線16の照射開始の判定精度が低下することがない。また、スキャン兼用ゲート線110は、本数が少ないので、順次読出しモードと同じ時間で1行分の画素102に蓄積された電荷を読み出しても、スキャンモードの1サイクルの時間を短くすることができる。
【0186】
なお、放射線16が照射される可能性が高い領域若しくは照射される領域のスキャン兼用ゲート線110を多く選択し、放射線16が照射される可能性が低い若しくは照射されない領域のゲート線110を少なく選択してもよい。スキャンモードを実行する場合は、該選択されたスキャン兼用ゲート線110に対してのみ、ゲート信号を出力する。放射線16が照射される可能性が高い領域若しくは照射される領域は、ユーザーがコンソール26の入力部200を操作することで指定することができる。この場合、放射線16が照射される可能性が高い領域若しくは照射される領域は、ユーザーが直接指定してもよいし、ユーザーが選択した撮影部位及び診断目的に応じた領域をシステムコントローラ24の制御部212がテーブル218から読み出して指定してもよい。システムコントローラ24の制御部212は、指定した領域に基づいて、スキャンモードの実行に用いられるスキャン兼用ゲート線110を選択し、該選択したスキャン兼用ゲート線110を示す情報を電子カセッテ20に送る。
【0187】
(変形例6)変形例4では、ゲート線110、TFT72、及び画素102とは別個に、スキャンモード用のゲート線250、TFT252、及び画素254を設けるようにしたが、スキャンモードの実行に用いられる予め決められたゲート駆動回路150を駆動させることで、該ゲート駆動回路150が担当する領域のゲート線110、TFT72、及び画素102をスキャンモード用として兼用してもよい。
【0188】
第1読出制御部130は、スキャンモードを実行すると、予め決められた1つのゲート駆動回路150に駆動信号cを出力する。駆動信号cが入力されたゲート駆動回路150は、自己が担当する領域の画素102に蓄積された電荷を行単位で0行目から239行目まで順次読み出す。これにより、行単位でデジタル信号の電気信号が順次得られ、照射開始判定部132は、該デジタル信号の電気信号が閾値より大きいと判断した場合は、第1読出制御部130は、スキャンモードの実行を終了する。第1読出制御部130は、照射開始が判定されるまで、スキャンモードを繰り返す。つまり、ゲート駆動回路150から終了信号dが送られてきた場合は、再び駆動信号cを予め決められた該ゲート駆動回路150に出力する。この場合は、1行分の画素102に蓄積された電荷を読み出す時間は、順次読出しモードと同様に173μsecであってもよく、上記実施の形態のスキャンモードと同様に、21μsecであってもよい。
【0189】
ユーザーは、コンソール26の入力部200を操作することで、スキャンモードの実行に用いられるゲート駆動回路150を選択することができる。ユーザーは、放射線源34により電子カセッテ20のどの領域に放射線16が照射されるかを予め認識することができるので、放射線16が照射される領域に該当する画素102の読み出しを行うゲート駆動回路150を選択する。ユーザーによって選択されたゲート駆動回路150を示す情報は、コンソール26からシステムコントローラ24を介して電子カセッテ20に送られる。第1読出制御部130は、スキャンモードを実行すると、ユーザーによって選択されたゲート駆動回路150を、予め決められたゲート駆動回路150として駆動信号cを出力する。
【0190】
また、ユーザーは、スキャンモードの実行に用いられるゲート駆動回路150を複数選択してもよい。この場合は、第1読出制御部130は、選択された各ゲート駆動回路150に駆動信号cを同時に出力してもよい。つまり、各ゲート駆動回路150を同時に駆動させてもよい。また、第1読出制御部130は、1つのゲート駆動回路150から終了信号dが送られてくると、次のゲート駆動回路150に駆動信号cを出力するというように、順々に予め決められたゲート駆動回路150を駆動させてもよい。
【0191】
本変形例6においては、スキャンモードの実行中は、選択されたゲート駆動回路150の以外のゲート駆動回路150は、ゲート信号を出力しないので、選択されたゲート駆動回路150が電荷の読み出しを担当する領域の画素102以外の画素102は、スキャンモードの実行中であっても露光状態となる。したがって、画像情報である放射線16を無駄にすることなく、照射された放射線16に応じた電荷を蓄積することができる。放射線16の照射開始タイミングから照射時間が経過すると順次読出しモードに移行するので、放射線16の照射終了後に無駄に露光を行うことがなく、放射線画像のノイズを低減させることができる。
【0192】
ユーザーは、放射線16が照射される領域にある画素102に蓄積された電荷を読み出すゲート駆動回路150を選択するので、照射開始判定部132は、早期に且つ確実に放射線16の照射開始を判定することができる。また、選択されたゲート駆動回路150のみが画素102に蓄積される電荷の読み出しを行うので、スキャンモードの実行による消費電力を抑えることができる。
【0193】
(変形例7)消費電力の低減の観点から、近々に撮影予定のないスタンバイ状態の電子カセッテ20に関して、撮影の直前等の適切なタイミングでスキャンモードを開始することが望ましい。
【0194】
そこで、図22〜図27に示すように、変形例7に係る電子カセッテ20は、被写体14のポジショニングを逐次検出し、ポジショニングの経時特性に基づいて現時点の撮影可能性を予測する。ここで、ポジショニングとは、放射線装置18及び電子カセッテ20の所定の配置関係下において、放射線撮影を行う際の被写体14の位置及び姿勢を意味する。本明細書中での「ポジショニング」の用語には、放射線撮影に用いる電子カセッテ20と被写体14との相対的位置関係が含まれる。
【0195】
そして、電子カセッテ20は、撮影直前と予測されるタイミングで、スリープ状態から起動状態に遷移させた後、スキャンモードを実行する。この際、システムコントローラ24を介した通信は不要である。
【0196】
図22は、本変形例7の電子カセッテ20の斜視図である。
【0197】
電子カセッテ20は、上記実施の形態(図2参照)の構成に加えて、3個の圧力センサ(ポジショニング検出部)520と、表示部(開始終了報知部)522とをさらに備えている。
【0198】
3個の圧力センサ520は、矩形平板状のパネル部52の三辺(四辺のうち、制御部54が配置された短辺を除く。)の各辺縁中央部に、1個ずつ配設されている。各圧力センサ520の検出面524は、撮像面42側にそれぞれ臨む。これにより、圧力センサ520は、撮像面42側からの受圧を検知し、圧力に関する情報を取得する。圧力センサ520として、圧力値を計測する圧力計を用いてもよく、圧力に応じてオンオフ動作を行う圧力スイッチを用いてもよい。特に、圧力スイッチは小型且つ安価であるため、1枚の電子カセッテ20につき複数個の圧力センサ520を配設する場合に適している。
【0199】
圧力計の例として、ダイアフラム式、カプセル式、ベローズ式、ブルドン管、圧電素子を含む種々の方式を採り得る。圧力スイッチの例として、ピストン式、マイクロスイッチ式、ダイアフラム式を含む種々の方式を採り得る。
【0200】
表示部522は、制御部54の上面端部に設けられており、電子カセッテ20の動作状態の変化等をユーザーに報知する。表示部522は、種々の文字及び図形を表示自在であり、例えば、液晶パネル、エレクトロルミネッセンスパネル等を用いて構成してもよい。
【0201】
図23は、図22の電子カセッテ20の電気的な概略構成図である。なお、説明の便宜のため、図23では、1個の圧力センサ520とその接続線のみを図示している。
【0202】
カセッテ制御部122は、第1読出制御部130、照射開始判定部132、経過時間判定部134及び第2読出制御部136に加えて、放射線検出器66の使用状態を識別する使用状態識別部526をさらに備える。
【0203】
なお、本明細書では、上記した「使用状態」の用語は、放射線検出器66だけでなく、電子カセッテ20に適用する場合がある。放射線検出器66は、通常、電子カセッテ20内部に固定して収納されており、実質的に同義だからである。
【0204】
カセッテ制御部122には、メモリ124及び通信部126に加えて、圧力センサ520と、表示部522とに接続されている。電源部128は、カセッテ制御部122、メモリ124、及び通信部126に加えて、圧力センサ520と、表示部522とに電力を供給する。
【0205】
使用状態識別部526は、被写体14のポジショニングに関する情報に基づいて、電子カセッテ20を現に使用している状態又は使用予定である状態(以下、使用中状態という。)であるか、使用していない状態(以下、待機状態という。)であるかを識別する。使用状態識別部526は、取得した電子カセッテ20の使用状態(例えば、履歴情報)に応じて、スリープ状態から起動状態への遷移(又は起動状態からスリープ状態への遷移)の許否を判別し、電子カセッテ20の動作状態の遷移を指示する電気信号を送信する。
【0206】
図24は、図22の電子カセッテ20の動作を説明するフローチャートである。本図の動作は、例えば、図12のフローチャート中で、所定の時間間隔(以下、時間間隔Δtという。)でタイマ割込みを行うことで実行される。
【0207】
先ず、圧力センサ520は、時間間隔Δtにおける電子カセッテ20の検出値DVを取得する(ステップS151)。検出値DVは、計測した圧力値、又はオンオフ値(予め設定された所定値を超えたか否かの情報)等のいずれでもよい。本変形例7では、説明の便宜のため、検出値DVは、圧力センサ520から取得した1個の圧力値であるとする。なお、3個の圧力センサ520から取得した圧力値の平均値であってもよいし、重み付け平均値であってもよい。
【0208】
次いで、使用状態識別部526は、圧力センサ520から取得した検出値DVと、所定の閾値THとの大小関係を比較する(ステップS152)。ここで、閾値THは、現時点での電子カセッテ20が使用中状態であるか、待機状態であるかを識別する閾値である。
【0209】
もし、DV>TH(YES)の条件を満たす場合、電子カセッテ20の使用状態値Sを取得し、電子カセッテ20の直近の使用状態を識別する(ステップS153)。ここで、使用状態値Sは、電子カセッテ20の直近(例えば、前回の検出時)の使用状態を表す変数である。本変形例7では、使用状態が「使用中状態」である場合はS=1とし、使用状態が「待機状態」である場合はS=0とする。なお、使用状態値Sは、2値(1又は0)に限られることなく、3種類以上の値を設けてもよい。
【0210】
使用状態値Sが1(使用中状態)である場合、使用状態識別部526は、使用状態値Sを維持(S=1)するとともに、カウンタCの値を0にリセットする(ステップS154)。なお、カウンタCは、電子カセッテ20の起動状態下に、使用中状態から待機状態に遷移された後、ステップS152において連続してDV≦TH(NO)であると判定された回数に相当する。
【0211】
一方、使用状態値Sが0(待機状態)である場合、電子カセッテ20の動作状態を、スリープ状態から起動状態に遷移させる(ステップS155)。このとき、使用状態識別部526は起動信号を送信するとともに、所定の制御信号を表示部522に送信する。すなわち、使用状態識別部526は、外部(被写体14)から受圧した時点が放射線撮影の直前のタイミングであると推定し、電子カセッテ20の起動状態への移行を許可する。
【0212】
次いで、表示部522は、使用状態識別部526からの制御信号を受信して、ユーザーに報知する(ステップS156)。例えば、表示部522は、電子カセッテ20が起動状態に遷移した旨のメッセージ等を画面上に表示する。その後、使用状態識別部526は、使用状態値Sを1に更新するとともに、カウンタCの値を0にリセットする(ステップS154)。
【0213】
このようにして、電子カセッテ20は、検出値DVに基づいて使用状態を識別することで、スリープ状態から起動状態に遷移し、あるいは起動状態をそのまま維持する。
【0214】
ところで、ステップS152に戻って、DV≦TH(NO)の条件を満たす場合、電子カセッテ20の動作状態を取得し、起動状態又はスリープ状態のいずれであるかを判別する(ステップS157)。電子カセッテ20が起動状態である場合、使用状態識別部526は、カウンタCと閾値CSLとの大小関係を比較する(ステップS158)。
【0215】
もし、C<CSL(YES)の場合、使用状態識別部526は、カウンタCの値を1だけ加算する(ステップS159)。
【0216】
一方、C≧CSL(NO)の場合、電子カセッテ20の動作状態を、起動状態からスリープ状態に遷移させる(ステップS160)。このとき、使用状態識別部526はスリープ信号を送信するとともに、所定の制御信号を表示部522に送信する。すなわち、使用状態識別部526は、被写体14からの押圧が解除された後で所定時間が経過した場合、放射線撮影が終了したものと推定し、電子カセッテ20のスリープ状態への移行を許可する。
【0217】
次いで、表示部522は、使用状態識別部526からの制御信号を受信して、ユーザーに報知する(ステップS161)。例えば、表示部522は、電子カセッテ20がスリープ状態に遷移した旨のメッセージ等を画面上に表示する。その後、使用状態識別部526は、使用状態値Sを0に更新する(ステップS162)。
【0218】
ところで、ステップS157に戻って、電子カセッテ20がスリープ状態である場合、使用状態識別部526は、使用状態値Sを維持(S=0)する(ステップS162)。
【0219】
このようにして、電子カセッテ20は、検出値DVに基づいて使用状態を識別することで、起動状態(又はスリープ状態)をそのまま維持し、あるいは起動状態からスリープ状態に遷移する。
【0220】
続いて、放射線撮影の直前に想定される電子カセッテ20の動作例について、図25及び図26の時系列を示す概略説明図を参照しながら具体的に説明する。
【0221】
先ず、ユーザーは、電子カセッテ20を所定の保管場所に載置し、電子カセッテ20を待機させる(時点0〜t1)。そして、ユーザーは、電子カセッテ20を前記保管場所から取り出し、該電子カセッテ20を撮影現場に搬入する(時点t1〜t2)。ステップS151で計測される検出値DVは常時0である。このとき、図24のステップS151、S152、S157及びS162の実行を繰り返して、電子カセッテ20はスリープ状態を維持する。
【0222】
次いで、ユーザーは、電子カセッテ20を用いた放射線撮影の準備を行う(時点t2〜t5)。ユーザーは、被写体14のポジショニングを行う際、被写体14の撮影部位の後方(又は下方)に、電子カセッテ20を密接(又は載置)させる。このとき、電子カセッテ20の撮像面42側から荷重が掛かり、圧力センサ520の検出面524が押圧される。
【0223】
そして、検出値DVは、時点t3で閾値THを超え、時点t3〜t4の範囲まで増加する。時点t3において、図24のステップS151、S152、S153、S155、S156及びS154が実行される。このとき、電子カセッテ20の動作状態は、スリープ状態から起動状態に遷移される。その後、第1読出制御部130は、スキャンモードを開始する。
【0224】
次いで、ユーザーは、撮影(時点t5〜t6)、撮影準備(時点t6〜t9)及び撮影(時点t9〜t10)を繰り返す。
【0225】
例えば、ユーザーは、撮影準備(時点t6〜t9)中に、撮影部位を変更するため被写体14のポジショニングを変更したとする。電子カセッテ20への押圧が一旦解除されるので、ステップS151で計測される検出値DVは、閾値THを下回っている(時点t7〜t8)。
【0226】
このとき、時点t7〜t8において、図24のステップS151、S152、S157、S158及びS159が繰り返し実行され、カウンタCが逐次加算される。ただし、時点t7〜t8の時間は、所定時間(CSL・Δt)を上回らない比較的短い時間であるとする。その後、時点t8において、図24のステップS151、S152、S153及びS154が実行される。これにより、使用状態値Sが0(待機状態)から1(使用中状態)に再度更新されるとともに、カウンタCの値が0にリセットされる。
【0227】
図26に示すように、ユーザーは、放射線撮影の終了後、電子カセッテ20を搬出し、所定の保管場所に載置する(時点t12〜t13)。電子カセッテ20への押圧が解除され、検出値DVが閾値THを下回った時点t11以降は、図24のステップS151、S152、S157、S158、及びS159の実行を繰り返す。このとき、カウンタCは、時間の経過に従って逐次加算される。
【0228】
そして、カウンタCが所定の閾値CSLを超えた場合、すなわち、使用中状態(S=1)から待機状態(S=0)に遷移した時点t11から所定時間(CSL・Δt)を超えた場合、図24のステップS151、S152、S157、S158、S160、S161及びS162が実行される。このとき、電子カセッテ20の動作状態は、起動状態からスリープ状態に遷移される。この際、第1読出制御部130は、スキャンモードを終了する。
【0229】
このように、放射線検出器66に対する被写体14のポジショニングを検出するポジショニング検出部(図22及び図23では圧力センサ520)を設けたので、ポジショニングに応じて現時点での撮影可能性の有無を予測可能である。すなわち、撮影の直前等の適切なタイミングでスキャンモードを開始することで、消費電力をさらに低減できる。
【0230】
ここで、スキャンモードは、上記実施の形態又は本変形例4に示す読出し動作に限られることなく、種々の方法を採り得ることは言うまでもない。例えば、スキャンモードでは、放射線検出器66の総行数(上記実施の形態例では、2880行)よりも少ない読出回数で画素102、254に蓄積された電気信号を読み出してもよいし、上述した順次読出しモードを用いて読み出してもよい。
【0231】
また、検出されたポジショニングに基づいて放射線検出器66の使用状態Sを識別する使用状態識別部526をさらに設けたので、電子カセッテ20を用いた現時点での撮影可能性の有無を精度良く予測できる。
【0232】
さらに、第1読出制御部130は、被写体14が存在しない状態であると所定時間(CSL・Δt)連続して検出された場合にスキャンモードを終了するようにした。これにより、不要なスキャンモードの実施を回避できるので、消費電力をさらに低減できる。
【0233】
なお、被写体14等の動作に応じた物理量の変化を検出可能であれば、被写体14のポジショニングを検出する手段は問わない。例えば、圧力センサ520に代替して、温度センサ、人体・物体検知センサ、又は光学式センサ等を用いてもよい。
【0234】
温度センサの場合、ポジショニングの際に生じる被写体14を介した温度変化を検出する。具体的には、図22の撮像面42(検出面524)と被写体14との接触により、電子カセッテ20に熱量が流入(又は、電子カセッテ20から熱量が流出)し、電子カセッテ20内部での温度変化が発生する。この温度変化を温度センサで検出することにより、電子カセッテ20と被写体14との接触の有無を識別可能である。このとき、図24〜図26に示す検出値DVは、圧力に代替して温度(又は、温度と対応付けられた計測データ)を用いる。
【0235】
電子カセッテ20の動作状態(撮影フェーズ)と温度変化との関係は、図25及び図26に例示した圧力センサの場合と略同様の傾向を示す。例えば、被写体14との接触がない状態が連続した後で、被写体14との接触が突如検出された場合、検出時点において、放射線撮影の直前であると推定可能である。
【0236】
温度センサの例として、測温抵抗体、サーミスタ、熱電対(非接地形・接地形)等を含む種々の方式を採り得る。また、温度センサの端子部は、リード線形、露出形、又は箱形のいずれの形状であってもよい。
【0237】
人体・物体検知センサの場合は、ポジショニングの際の被写体14と電子カセッテ20との位置関係を検出する。放射線撮影の際に、被写体14は、電子カセッテ20の撮像面42に密着して、又はその前方に所定間隔だけ離間して配置される。被写体14の存在(より詳細には、離間距離)を人体・物体検知センサで検出することにより、電子カセッテ20と被写体14との位置関係を検出可能である。このとき、図24〜図26に示す検出値DVは、圧力に代替して距離(又は、距離と対応付けられた計測データ)を用いる。
【0238】
人体・物体検知センサは、距離を計測可能な測距センサ(非接触式センサ)や、所定の範囲内における人体・物体の有無を判別可能な障害物センサ等を用いてもよい。また、電子カセッテ20と被写体14との密着の有無を検出する場合、接触式センサを用いてもよい。
【0239】
人体・物体検知センサの例として、電磁波(可視光、赤外線、マイクロ波、ミリ波等)のみならず、超音波、レーザ光等を含む種々の媒介を用いることができる。計測アルゴリズムとして、TOF(Time Of Flight)法、三角測量法のいずれを用いてもよい。
【0240】
図27は、変形例7の電子カセッテ20の別の斜視図である。図22に示すパネル部52に設けられた3個の圧力センサ520に代替して、制御部54の上面中央に、撮像面が円形状であるカメラユニット(光学式センサ)528が設けられている。
【0241】
カメラユニット528を用いて、異なる時点での画像を複数枚撮像し、公知の画像処理技術により、被写体14のポジショニングを取得してもよい。撮像素子として、フォトダイオードアレイ、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。
【0242】
あるいは、カメラユニット528を用いて、被写体14の位置決め作業に用いる照射野ランプの点灯を検出し、その検出タイミングでスキャンモードを開始してもよい。ここで、照射野ランプとは、放射線装置18等から照射される位置決め用の補助光源である。すなわち、照射野ランプは、放射線16を照射しようとする平面領域(照射野)を可視化する光源である。
【0243】
そこで、照射野ランプの光像(平面視した投影画像)における模様形状を予め記憶しておけば、公知の画像処理技術(テンプレートマッチング手法等)を用いて、カメラユニット528から取得した画像に基づき照射野ランプの点灯の有無を検出できる。なお、照射野ランプの模様は、矩形状、スリット状、十文字状、枠形状等のいずれであってもよい。
【0244】
本変形例7で示した各種センサの配置及び個数は、種々変更してもよい。また、異なる方式の各種センサ(例えば、圧力センサ及び光学式センサ)を種々組み合せて、被写体14のポジショニングを検出してもよい。これにより、ポジショニングの検出精度が一層向上する。
【0245】
また、ユーザーへの報知手段は、表示部522に限定されることなく、ユーザーの五感(視覚又は聴覚等)に訴える手段であれば構成は問わない。例えば、ランプ、スピーカ等を用いてもよい。さらに、電子カセッテ20自体に報知手段を設けることなく、外部の装置(図1のコンソール26又は表示装置28)を介して報知するようにしてもよい。
【0246】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【符号の説明】
【0247】
10…放射線撮像システム 16…放射線
18…放射線装置 20…電子カセッテ
24…システムコントローラ 26…コンソール
34…放射線源 36…放射線制御装置
38…放射線スイッチ 52…パネル部
54…制御部 62…シンチレータ
64…放射線変換パネル 66…放射線検出器
70…基板 72、252…TFT
102、254…画素 106…駆動回路部
110、250…ゲート線 112…信号線
114…ゲート駆動部 116…チャージアンプ
118…マルチプレクサ部 120…AD変換部
122…カセッテ制御部 124…メモリ
126…通信部 130…第1読出制御部
132…照射開始判定部 134…経過時間判定部
136…第2読出制御部 150…ゲート駆動回路
218…テーブル 222…撮影条件設定部
224…撮影枚数設定部 226…画像記録制御部
260…バイパス線 262…スイッチング素子
520…圧力センサ 522…表示部
526…使用状態識別部 528…カメラユニット

【特許請求の範囲】
【請求項1】
被写体を透過した放射線源からの放射線を電気信号に変換して蓄積する行列状に配置された複数の画素を有する撮像パネルと、
前記撮像パネルに対する前記被写体のポジショニングを検出するポジショニング検出部と、
前記ポジショニング検出部により検出された前記ポジショニングに応じて、前記画素に蓄積された前記電気信号を読み出す読出しモードを開始し、該読出しモードで読み出された前記電気信号の値が、任意に設定可能な閾値よりも大きくなった場合、前記電気信号の読み出しを終了させることで、前記撮像パネルを露光状態に移行させる読出制御部と
を備えることを特徴とする放射線撮像装置。
【請求項2】
請求項1記載の放射線撮像装置において、
前記ポジショニング検出部により検出された前記ポジショニングに基づいて前記撮像パネルの使用状態を識別する使用状態識別部をさらに備え、
前記読出制御部は、前記使用状態識別部により識別された前記使用状態に応じて前記読出しモードを開始する
ことを特徴とする放射線撮像装置。
【請求項3】
請求項2記載の放射線撮像装置において、
前記ポジショニング検出部は、前記ポジショニングの際に生じる前記被写体を介した圧力変化を検出する圧力センサで構成されており、
前記使用状態識別部は、前記圧力センサにより検出された前記圧力変化に応じて前記撮像パネルの前記使用状態を識別する
ことを特徴とする放射線撮像装置。
【請求項4】
請求項2記載の放射線撮像装置において、
前記ポジショニング検出部は、前記ポジショニングの際に生じる前記被写体を介した温度変化を検出する温度センサで構成されており、
前記使用状態識別部は、前記温度センサにより検出された前記温度変化に応じて前記撮像パネルの前記使用状態を識別する
ことを特徴とする放射線撮像装置。
【請求項5】
請求項2記載の放射線撮像装置において、
前記ポジショニング検出部は、人体・物体検知センサで構成されており、
前記使用状態識別部は、前記人体・物体検知センサにより前記被写体が検出されたか否かに応じて前記撮像パネルの前記使用状態を識別する
ことを特徴とする放射線撮像装置。
【請求項6】
請求項2記載の放射線撮像装置において、
前記ポジショニング検出部は、光学式センサで構成されており、
前記使用状態識別部は、前記光学式センサにより照射野ランプの点灯が検出されたか否かに応じて前記撮像パネルの前記使用状態を識別する
ことを特徴とする放射線撮像装置。
【請求項7】
請求項1〜6のいずれか1項に記載の放射線撮像装置において、
前記読出制御部は、前記ポジショニング検出部により前記被写体が存在しない状態であると所定時間連続して検出された場合に前記読出しモードを終了することを特徴とする放射線撮像装置。
【請求項8】
請求項1〜7のいずれか1項に記載の放射線撮像装置において、
前記読出しモードが開始及び/又は終了した旨を報知する開始終了報知部をさらに備えることを特徴とする放射線撮像装置。
【請求項9】
請求項1〜8のいずれか1項に記載の放射線撮像装置において、
前記読出しモードでは、前記複数の画素に蓄積された前記電気信号を複数の行単位で同時に読み出すことを特徴とする放射線撮像装置。
【請求項10】
請求項1〜8のいずれか1項に記載の放射線撮像装置において、
前記読出しモードでは、予め決められた行の前記画素に蓄積された電荷を読み出すことを特徴とする放射線撮像装置。
【請求項11】
請求項1〜10のいずれか1項に記載の放射線撮像装置と、放射線を照射する放射線源とを備えることを特徴とする放射線撮像システム。
【請求項12】
被写体を透過した放射線源からの放射線を電気信号に変換して蓄積する行列状に配置された複数の画素を有する撮像パネルを用いて、放射線画像を撮像する方法であって、
前記撮像パネルに対する前記被写体のポジショニングを検出するステップと、
検出された前記ポジショニングに応じて、前記画素に蓄積された前記電気信号を読み出す読出しモードを開始するステップと、
前記読出しモードで読み出された前記電気信号の値が、任意に設定可能な閾値よりも大きくなった場合、前記電気信号の読み出しを終了させることで、前記撮像パネルを露光状態に移行させるステップと
を備えることを特徴とする放射線撮像方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2012−24231(P2012−24231A)
【公開日】平成24年2月9日(2012.2.9)
【国際特許分類】
【出願番号】特願2010−164650(P2010−164650)
【出願日】平成22年7月22日(2010.7.22)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】