説明

液滴吐出装置、液滴吐出ヘッドの吐出異常検出方法及びプログラム

【課題】 ノズルの液滴の吐出異常の原因を正確に特定する。
【解決手段】本発明は、アクチュエータ22を駆動し、液滴吐出動作を行った際に、このアクチュエータによって変位させられた振動板の残留振動を検出し、その振動板の残留振動パターンに基づいて、液滴が正常に吐出されたか否かを検出し、吐出異常の場合、上記振動板の残留振動の残留振動波形から計測したパルス幅計測値に基づいて、液滴の吐出異常の原因が気泡混入によるものか否かを判定し、液滴の吐出異常の原因が気泡混入以外と判定された場合に、上記振動板の残留振動の残留振動波形から計測したパルス幅計測値の初期状態における初期計測値と、前記初期状態の後に液滴吐出動作を所定回数駆動する毎にパルス幅計測値の順次計測値を比較し、液滴吐出動作の駆動回数の増加に応じて初期計測値が順次計測値が大きくなった場合に紙粉異常と判定し、逆に小さくなる場合に乾燥異常と判断するようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インクジェットプリンタなどの液滴吐出装置、その液滴吐出ヘッドの吐出異常検出方法及びプログラムに関するものである。
【背景技術】
【0002】
液滴吐出装置の1つであるインクジェットプリンタは、複数のノズルからインク滴(液滴)を吐出して所定の用紙上に画像形成を行う。インクジェットプリンタのインクジェットヘッド(印刷ヘッド)には、多数のノズルが設けられているが、インクの粘度の増加や、気泡の混入、塵や紙粉の付着などの原因によって、いくつかのノズルが目詰まりしてインク滴を吐出できない場合がある。ノズルが目詰まりすると、画像内にドット抜けが生じ、画質を劣化させる原因となる。
【0003】
従来、このような不具合を解消するために、インク滴の吐出の有無を検査する装置として、インクを吐出するノズルを挟んで設けられた発光素子と受光素子により、その間をインク滴が通過することによる光の強弱の変化を検出し、各ノズルの動作を確認するものが知られている(例えば、特許文献1参照)。
この光学的検出方法では、光センサを設置するスペースが必要となる上、微小なインク滴を高感度で検出するために、インク滴が受光領域を通過する検出位置や検出タイミングの精度を高くしなければならないという未解決の課題がある。
【0004】
この未解決の課題を解決するために、インク滴の吐出の有無を検査する装置として、振動板と、この振動板を変位させる静電アクチュエータと、内部に液体が充填され、振動板の変位により、該内部の圧力が増減されるキャビティと、キャビティに連通し、キャビティ内の圧力の増減により液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、静電アクチュエータを駆動する駆動回路と、振動板の残留振動を検出する残留振動検出手段と、残留振動検出手段によって検出された振動板の残留振動に基づいて、液滴の吐出の異常を検出し、各ノズルの動作を確認する技術がある。
【特許文献1】特開2002−192740号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記記載の技術にあっては、ノズルの異常は検出できるものの、ノズル乾燥、紙粉付着に関して残留振動波形の変化は、共に同じ傾向となって現れるため、これらの区別が困難であるという課題を残したままであった。これらの回復処理は、乾燥の場合にはポンプ吸引により増粘したインクを吸引し、紙粉付着の場合にはワイピング処理が実施されるため、それぞれ回復処理が異なっている。このため、ノズルの液滴の吐出異常の原因が、ノズル乾燥によるものか、紙粉付着によるものかを判断できないため、ポンプ吸引とワイピング処理の両方を実行していたため、回復処理のために時間がかかり、さらに紙粉付着が原因であってもポンプ吸引が行われるため、インク滴を浪費していた。
【0006】
そこで、本発明は、このような未解決の課題に着目してなされたものであって、ノズルの液滴の吐出異常の原因を正確に特定することができる液滴吐出装置、液滴吐出ヘッドの吐出異常検出方法及びプログラムを提供することを目的としている。
【課題を解決するための手段】
【0007】
上記の課題を解決し本発明の目的を達成するために、各発明は、以下のように構成するようにした
すなわち、第1の発明は、
振動板と、該振動板を変位させるアクチュエータと、内部に液滴が充填され前記振動板の変位により内部の圧力が増減されるキャビティと、該キャビティに連通し当該キャビティ内部の圧力の増減により液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、
前記アクチュエータを駆動する所定の駆動信号を出力する駆動手段と、
前記振動板の残留振動を検出する残留振動検出手段と、
該残留振動検出手段で検出された前記振動板の残留振動パターンに基づいて液滴の吐出の異常を検出する吐出異常検出手段と、
該吐出異常検出手段で吐出異常を検出したときに、前記駆動手段でノズル周辺の音響インピーダンスが変化するように前記駆動信号を所定回数出力させた後の前記残留振動検出手段で検出した残留振動パターンに基づいて前記ノズルの吐出異常原因を分別する分別手段と、を備えている。
【0008】
このような構成からなる本発明によれば、ノズルの液滴の吐出異常の原因を正確に特定することができる。
第2の発明は、
振動板と、該振動板を変位させるアクチュエータと、内部に液滴が充填され前記振動板の変位により内部の圧力が増減されるキャビティと、該キャビティに連通し当該キャビティ内部の圧力の増減により液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、
前記アクチュエータを駆動する所定の駆動信号を出力する駆動手段と、
前記振動板の残留振動を検出する残留振動検出手段と、
該残留振動検出手段で検出された前記振動板の残留振動パターンに基づいて液滴の吐出の異常を検出する吐出異常検出手段と、
該吐出異常検出手段で吐出異常を検出したときに、前記駆動手段でノズル周辺の音響インピーダンスが変化するように前記駆動信号を所定回数出力させた後の前記残留振動検出手段で検出した残留振動パターンに基づいて前記ノズルの吐出異常原因を分別する分別手段と、
前記吐出異常検出手段と、前記分別手段の分別結果に応じた回復処理を行う回復処理手段と、を備えている。
【0009】
このような構成からなる本発明によれば、ノズルの液滴の吐出異常の原因を正確に特定することができ、原因に応じた最適な回復処理を行うことができる。
第3の発明は、第1又は2の発明において、
前記吐出異常検出手段は、前記振動板の残留振動波形のパルス幅を計測するパルス幅計測部と、該パルス幅計測部の計測値と前記振動板の残留振動波形におけるパルス幅の正常範囲を示す正常吐出基準値とを比較する比較手段と、該比較手段の比較結果に基づいてノズルから吐出される液滴が正常であるか否かを判定する第1の判定手段と、該第1の判定手段の判定結果がノズルから吐出される液滴が異常であるときに、ノズルからの液滴吐出異常原因が気泡混入であるか否かを判定する第2の判定手段を備え、該第2の判定手段の判定結果が気泡混入ではないときに、このことを表す分別信号と前記パルス幅計測部の計測値とを前記分別手段に出力するように構成されている。
【0010】
このような構成からなる本発明によれば、ノズルの液滴の吐出異常が発生したときに、残留振動波形のパルス幅に基づいてその異常の原因が、気泡混入によるものであるかが判定され、気泡混入でない場合に、分別手段による原因解析を行わせることができ、吐出異常原因を正確に特定することができる。
第4の発明は、第3の発明において、
前記第2の判定手段は、前記パルス幅計測部の計測値が正常範囲の下限値を示す正常吐出基準値未満であるときに気泡混入異常であると判定し、前記パルス幅計測部の計測値が正常範囲の上限値を示す正常吐出基準値を超えているときに気泡混入以外の異常であると判定するものである。
【0011】
このような構成からなる本発明によれば、ノズルの液滴の吐出異常の原因が、残留振動波形のパルス幅が正常範囲未満であるときに、気泡混入による異常であると正確に判定することができる。
第5の発明は、第3又は4の発明において、
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、該比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値未満になったときに紙粉異常であると判断する異常判断手段とを備えている。
【0012】
このような構成からなる本発明によれば、残留振動波形のパルス幅の初期計測値と、その後に計測した順次計測値を比較し、液滴の染み出しによる音響インピーダンスの変化によって初期計測値が順次計測値未満となったときに、ノズルの液滴の吐出異常の原因が紙粉異常であることを特定することができる。
第6の発明は、第3又は4の発明において、
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、前記比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値を超えたときに乾燥異常であると判断する異常判断手段とを備えている。
【0013】
このような構成からなる本発明によれば、残留振動波形のパルス幅の初期計測値と、その後に計測した順次計測値を比較し、ノズル付近のインクの粘性が増加したことによる音響インピーダンスの変化によって初期計測値が順次計測値を超えたときに、ノズルの液滴の吐出異常の原因が乾燥異常であることを特定することができる。
第7の発明は、第3又は4の発明において、
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、該比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値未満になったときに紙粉異常であると判断し、前記比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値を超えたときに乾燥異常であると判断する異常判断手段とを備えている。
【0014】
このような構成からなる本発明によれば、残留振動波形のパルス幅の初期計測値と、その後に計測した順次計測値を比較し、液滴の染み出しによる音響インピーダンスの変化によって初期計測値が順次計測値未満となったときに、ノズルの液滴の吐出異常の原因が紙粉異常であることを特定することができ、ノズル付近のインクの粘性が増加したことによる音響インピーダンスの変化によって初期計測値が順次計測値を超えたときに、ノズルの液滴の吐出異常の原因が乾燥異常であることを特定することができる。
【0015】
第8の発明は、第1又は2の発明において、
前記駆動手段による前記駆動信号の出力回数は、前記分別手段がノズルからの液滴の吐出異常の原因が、乾燥異常によるものか、紙粉異常によるものか、を特定可能な回数に設定されている。
このような構成からなる本発明によれば、予め実験などによりノズルからの液滴の吐出異常の原因を検出するのに必要な回数を決めることができるので、残留振動波形のパルス幅の初期計測値と、その後に計測した順次計測値を比較し、乾燥異常によるものか、紙粉異常によるものか、を特定することができる。
【0016】
第9の発明は、第5乃至8の発明において、
前記分別手段は、前記異常判断手段で異常判断が行われたときに前記駆動手段及び前記残留振動検出手段の駆動を停止する駆動停止手段を備えている。
このような構成からなる本発明によれば、異常判断ができた場合に、速やかに前記駆動手段及び前記残留振動検出手段の駆動を停止することができるので、ノズルの液滴の吐出異常の検出のための無駄な液滴吐出動作を無くすことができる。
【0017】
第10の発明は、第5乃至8の発明において、
前記分別手段は、前記駆動回数が所定回数に達するまでの間に前記異常判断手段での異常判断結果が得られないときに、前記駆動手段及び前記残留振動検出手段の駆動を停止する駆動停止手段を備えている。
このような構成からなる本発明によれば、異常判断ができなかった場合に、速やかに前記駆動手段及び前記残留振動検出手段の駆動を停止することができるので、ノズルの液滴の吐出異常の検出のための無駄な液滴吐出動作を無くすことができる。
【0018】
第11の発明は、
振動板を含むアクチュエータを駆動信号で駆動して前記振動板を振動することにより、キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動板の残留振動を検出し、検出された残留振動波形の初期パターンから、ノズルから吐出される液滴が正常であるか否かを判定する正常判定ステップと、該正常判定ステップで異常と判定されたときに、吐出異常原因が気泡混入であるか否かを判定する気泡判定ステップと、該気泡判定ステップの判定結果が気泡混入ではないときに、ノズルから液体を吐出する動作を所定回数行って前記振動板の初期残留振動とその後の残留振動パターンとを検出し、両者を比較することにより、ノズルからの液滴吐出異常が乾燥異常であるか紙粉異常であるかを分別する分別ステップとを備えている。
【0019】
これにより、第1の発明の液滴吐出装置と同等の効果が得られる。
第12の発明は、
振動板を含むアクチュエータを駆動信号で駆動して前記振動板を振動することにより、キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動板の残留振動を検出し、検出された残留振動波形の初期パターンから、ノズルから吐出される液滴が正常であるか否かを判定する正常判定ステップと、該正常判定ステップで異常と判定されたときに、吐出異常原因が気泡混入であるか否かを判定する気泡判定ステップと、該気泡判定ステップの判定結果が気泡混入ではないときに、ノズルから液体を吐出する動作を所定回数行って前記振動板の初期残留振動とその後の残留振動パターンとを検出し、両者を比較することにより、ノズルからの液滴吐出異常が乾燥異常であるか紙粉異常であるかを分別する分別ステップと、をコンピュータに実行させるためのプログラムである。
【0020】
このような構成であれば、コンピュータによってプログラムが読み取られ、読み取られたプログラムに従ってコンピュータが処理を実行すると、第1の発明の液滴吐出装置と同等の作用及び効果が得られる。
【発明を実施するための最良の形態】
【0021】
以下、図面を参照して本発明の液滴吐出装置、及び液滴吐出ヘッドの吐出異常検出方法の実施形態について説明する。
図1は、本発明の実施形態における液滴吐出装置の一種であるインクジェットプリンタ1の概略構成を示す平面図である。
このインクジェットプリンタ1は、図1に示すように、ヘッドユニット2及びインクカートリッジ3を搭載したキャリッジ4を備え、このキャリッジ4は1組のキャリッジ軸5に案内されて主走査方向に移動できるようになっている。また、キャリッジ4の一部は歯付きベルト9に固定され、かつ歯付きベルト9は、モータ6の回転軸に固定された駆動プーリ7と従動プーリ8との間に掛け渡されている。
【0022】
さらに、キャリッジ4にはエンコーダ10が取り付けられ、キャリッジ4の移動方向に沿ってリニアスケール11が設けられている。これにより、エンコーダ10によりキャリッジ4上のヘッドユニット2の位置を検出するようになっている。
なお、図1において、12は、ヘッドユニット2とシステムコントローラなどと電気的な接続を行うケーブルである。13は、後述のインクジェットヘッドの表面をクリーニングするワイパである。14は、そのインクジェットヘッドのノズル基板(図3参照)のキャッピングを行うキャップである。
【0023】
このような構成からなるインクジェットプリンタ1では、エンコーダ10の検出信号がモータ制御回路(図示せず)に入力されると、そのモータ制御回路によりモータ6の回転動作が次のように制御される。すなわち、加速、一定速度、減速、反転、加速、一定速度、減速、反転・・・というように制御される。
このようなモータ6の動作に伴って、キャリッジ4が主走査方向に往復移動を繰り返し、一定速度の区間が印刷領域に相当するので、その一定速度の際にキャリッジ4に搭載されるヘッドユニット2のノズルから記録紙a上にインク滴が吐出される。この結果、記録紙aには、そのインク滴により所定の文字や画像が記録される。
【0024】
次に、図1に示すヘッドユニット2の具体的な構成について、図2及び図3を参照して説明する。
このヘッドユニット2は、図2に示すように、多数のインクジェットヘッド(液滴吐出ヘッド)20を備え、各インクジェットヘッド20は静電式アクチュエータを用いたものである。
【0025】
インクジェットヘッド20は、図2に示すように、振動板21と、この振動板21を含み振動板21を変位させる静電式アクチュエータ22と、内部に液体であるインクが充填され振動板21の変位により内部の圧力が増減されるキャビティ(圧力室)23と、このキャビティ23に連通しキャビティ23内の圧力の増減によりインクを液滴として吐出するノズル24とを少なくとも備えている。
【0026】
さらに詳述すると、ヘッドユニット2は、中央のシリコン基板25を挟んで、上側にシリコン製のノズル基板26と、下側にガラス基板27とが積層された3層構造からなる。中央のシリコン基板25と上側のノズル基板26との間には、キャビティ23と、これに連通するリザーバ28とが区画形成されている。また、リザーバ28は、ガラス基板27に設けたインク取り入れ口29と連通している。
【0027】
さらに、中央のシリコン基板25により形成されキャビティ23の底板として機能する振動板21と、ガラス基板27上に設けた個別電極30との間には、空隙31が形成されている。そして、振動板21は、共通電極32に接続されている。
従って、静電式アクチュエータ22は、その主要部が振動板21と、個別電極30と、これらの間に形成される空隙31とにより形成され、個別電極30と共通電極32との間に印加される駆動信号により駆動されるようになっている。
【0028】
なお、図2に示すノズル基板26に形成されるインクジェットヘッド20ごとのノズル24は、例えば図3に示すように配列されている。この図3の例では、4色のインク(Y,M,C,K)に適用した場合のノズル24の配列パターンを示している。
このようなインクジェットヘッド20を備えたインクジェットプリンタ1では、インク切れ、気泡の発生(気泡混入異常)、目詰まり(乾燥異常)、紙粉付着(紙粉異常)などの原因によって、ノズル24からインク滴が吐出すべきときに吐出しないというインク滴の吐出異常(不吐出)、いわゆるドット抜け現象を生じることがある。
【0029】
ここで、紙粉とは、木材パルプを原料とする記録紙が紙送りローラなどと摩擦接触した際に発生しやすく、記録紙の一部からなり繊維状またはその集合体のものを意味する。
次に、本発明のインク滴の吐出異常の検出原理について、図2、図4、及び図5を参照して説明する。
図2に示す静電式アクチュエータ22に後述の駆動回路から駆動信号が供給されると、振動板21が個別電極30側に静電吸引力によって吸引され、弾性エネルギーが蓄えられ、駆動信号の供給がとまると弾性エネルギーが解放される。このとき、振動板21は個別電極30側とは反対側へ戻され、キャビティ23内の圧力が増し、さらに減少する。この結果、キャビティ23内を満たすインクの一部が、キャビティ23に連通しているノズル24からインク滴として吐出される。
【0030】
この振動板21の一連の動作により、ノズル24、インク取り入れ口29、またはインクの粘度などによる音響抵抗rと、インクの流路内のインク重量によるイナータンスmと、振動板21のコンプライアンスcによって決定される固有振動周波数で振動板21が自由振動を起こす。以下、この振動板21による自由振動を残留振動という。
図4に、振動板21の残留振動を想定した単振動の計算モデルを示す。この計算モデルに音圧Pを与えたときのステップ応答を体積速度uについて計算すると、次式を得ることができる。
【0031】
【数1】

【0032】
ここで、図2に示すインクジェットヘッド20が正常にインクを吐出し、音響抵抗r、イナータンスm、及びコンプライアンスcに変化がなければ、振動板21の残留振動は常に一定の波形となる。
しかし、インクの吐出が不良でドット抜けが発生する場合には、振動板21の残留振動の波形は正常時とは異なるものとなる。図5に、残留振動の検出波形の実験結果の一例を示す。この実験結果と、単振動の計算モデルから以下のことがわかった。
【0033】
(1)気泡がインクの流路や、ノズルの先端に詰まった気泡混入異常の場合には、気泡が混入した分のインク重量が減ってイナータンスmが減少し、気泡によりノズル径が大きくなった状態と等価となり音響抵抗rが減少し、周波数が高くなるという特徴的な残留振動波形として検出できる(図5の「気泡混入」参照)。
(2)ノズル部のインクが乾燥して吐出しなくなった乾燥異常の場合には、その乾燥によりノズル付近のインクの粘性が増加し、音響抵抗rが増大し、過減衰になる(周波数が低くなる)という特徴的な残留振動波形として検出できる(図5の「乾燥」参照)。
【0034】
(3)紙粉やゴミがノズル面に付着した紙粉異常の場合には、紙粉によりノズルからインクが染み出すことによって、振動板から見たインク重量が増加してイナータンスmが増加する。また、ノズルに付着した紙粉の繊維によって音響抵抗rが増大し、正常吐出の周期と比べて周期が大きくなる(周波数が低くなる)という特徴的な残留振動波形として検出することができる(図5の「紙粉」参照)。
【0035】
本発明は、このような振動板21の残留振動を検出することにより、インクジェットヘッド20のインク滴の吐出異常(ノズルの吐出異常)を検出するようにしたものであり、その残留振動の検出原理について、図6を参照して説明する。
いま、図6に示すように、図2に示す静電式アクチュエータ22を個別電極30と振動板21とを平行な平板とするコンデンサと考えると、振動板21の残留振動によってコンデンサのギャップ(空隙)が変化し、そのコンデンサの静電容量C(x)は(4)式のように変化する。
【0036】
一方、静電式アクチュエータ22と後述の駆動回路とを切り離した直後において、すなわち駆動信号の供給を止めた直後において、コンデンサには電荷Qが残存している。このため、コンデンサの充電電圧Vcは、(5)式に示すようにコンデンサの静電容量Cの変化に応じて変化し、振動板21の機械的な残留振動をその電圧変化として検出することができる。
【0037】
【数2】

【0038】
ここで、Sは振動板21及び個別電極30のそれぞれの面積、gはその両者の間の距離(初期ギャップ)、εは空隙31の誘電率、xは振動板21の残留振動によって生じる振動板21の基準位置からの変位量である。
以上から、振動板21の残留振動の変化によってインク滴不吐出を検出すると共に、目詰まりの原因を特定する事ができるが、(2)の乾燥異常と(3)の紙粉異常の場合は、残留振動波形の変化が共に波形が減衰する傾向となってあらわれるため、これらの区別が困難となっている。
【0039】
本発明は以下のようにして、乾燥異常と紙粉異常を分別するようにしている。
アクチュエータを駆動してノズルから液滴を予備的に吐出する予備吐出によって回復するノズル乾燥の場合、吐出動作を行う事によってノズル周辺で増粘したインクが新しいインクと交じり合う事によって、徐々に適正なインク粘度となり、音響抵抗rが正常値に変化しノズルが回復する傾向を示す。一方、紙粉付着の場合には、ノズルに付着した紙粉にインクが染み出す事によって音響抵抗rとイナータンスmが増加する。この場合、予備吐出を行う事により音響抵抗rとイナータンスmが、さらに増加する傾向を示す。従って、吐出動作を複数回行いノズル周辺の音響インピーダンスを変化させ、残留振動が変化する傾向を知る事で、紙粉と乾燥の分別を行う事ができる。
【0040】
ノズル乾燥と紙粉付着について、液滴吐出回数(以降、Shot数)を変えて予備吐出を行った後に、残留振動波形を検出した実験結果と、これまでと同様に計算波形が一致するように計算モデルの音響抵抗r、イナータンスmを調整し傾向を見た。
図7は乾燥異常の場合のShot数による残留振動波形の変化を示す。4Shot吐出後の残留振動波形は図7(a)に示すように、大きく減衰した波形となっている。この時の、音響抵抗rは正常吐出時の約2倍となった。さらに10Shot吐出後の残留振動波形、図7(b)では、波形の減衰が小さくなり(周波数が高くなり)、音響抵抗rは正常吐出時の約1.4倍となった。続けて、32Shot吐出後の残留振動波形、図7(c)では、波形の減衰がさらに小さくなり、音響抵抗rは正常吐出時の約1.25倍となった。32Shot以上の予備吐出によって、正常時の残留振動波形に近い状態が得られた。
【0041】
従って、ノズル乾燥の場合は、予備吐出のShot数の増加にともない残留振動波形が正常時の波形に近づく(周波数が高くなる)傾向を示す事で分別できる。
図8はShot数と紙粉付着の様子を撮影した写真、及び断面模式図を示す。図9は紙粉異常の場合のShot数による残留振動波形の変化を示す。
図8(a)は紙粉が付着する前のノズルの写真と、断面模式図である。図8(a)の左側の写真の白丸で囲み矢印で示されているのが実験に使用したノズルである。
【0042】
図8(b)は図8(a)のノズルに紙粉が付着した状態で2Shot吐出後のノズルの写真と断面模式図である。図8(b)の左側の写真及び右側の断面模式図に見られるように、ノズルから紙粉を伝わって横方向にインクが染み出しインク溜まりを作っている。この場合ノズルに接するインク染み出し量が少ないため、音響インピーダンスの変化が少なくなる。
【0043】
図8(c)は10Shot吐出後のノズルの写真と断面模式図である。図8(c)の左側の写真及び右側の断面模式図に見られるように、ノズルから紙粉を伝わって横方向へのインクの染み出し量が増加してインク溜まりが大きくなるものの、ノズルに接するインク染み出し量はまだ少ない。
図9(a)は10Shot吐出後の残留振動の計算値による波形と、測定結果の波形、及び正常吐出の場合の測定結果の波形である。図9(a)に見られるように、正常時の残留振動波形より、10Shot吐出後の残留振動の測定結果の波形は少し遅れた波形となっている。この時の、音響抵抗rは正常吐出時の約1.3倍、イナータンスmは約1.2倍となった。
【0044】
図9(b)は32Shot吐出後の残留振動の計算値による波形と、測定結果の波形である。図9(b)に見られるように、波形の減衰が大きくなり音響抵抗rは正常吐出時の約1.7倍、イナータンスmは約1.7倍となった。
図8(d)は256Shot吐出後のノズルの写真と断面模式図である。図8(d)の左側の写真及び右側の断面模式図に見られるように、ノズルに付着した紙粉と横のインク溜まりが結合し、ノズルの周囲に大きなインク溜まりを作っている。
【0045】
図9(c)は256Shot吐出後の残留振動の計算値による波形と、測定結果の波形である。図9(c)に見られるように、波形の減衰がさらに大きくなり(周波数が低くなり)、音響抵抗rは正常吐出時の約2.0倍、イナータンスmは約2.0倍となった。
従って、紙粉付着の場合は乾燥と逆の変化を示し、予備吐出のShot数の増加にともない残留振動波形の減衰が大きくなる(周波数が低くなる)傾向を示す事で分別できる。
【0046】
次に、このような残留振動の検出原理及び分別原理に基づき、インクジェットヘッド20のインク滴の吐出異常(ノズルのドット抜け)の検出が必要なときに、その残留振動の検出と原因の分別を行うようにした本発明の実施形態について、図2及び図10〜図16、図18を参照して説明する。
この実施形態は、図10に示すように、システム全体を制御する制御部102と、この制御部102から出力される駆動指示信号によってアクチュエータ22を駆動する駆動手段としての駆動回路104と、アクチュエータ22の残留振動を検出する残留振動検出手段としての残留振動検出部106と、残留振動検出部106から出力されるパルス幅計測値に基づいて吐出異常を検出する吐出異常検出手段としての吐出異常検出回路110と、吐出異常検出回路110で吐出異常を検出したときにパルス幅計測値に基づいて乾燥異常と紙粉異常を分別する分別手段としての分別回路112と、を少なくとも備えている。
【0047】
アクチュエータ22の1実施例である静電式アクチュエータは、図2に示すように各インクジェットヘッド20毎に設けられ、上記のように主要部が、振動板21と、個別電極30と、これらの間に形成される空隙31とにより形成されるものであり、図6に示すように等価的にコンデンサで表現できる。振動板21は後述する切替えスイッチ116の端子に接続されている。
【0048】
駆動回路104は、システムコントローラである制御部102から出力される駆動指示信号により、アクチュエータ22を駆動する駆動信号(駆動電圧)を出力する回路であり、インク滴による画像形成時には通常の駆動信号を出力し、インク滴の吐出異常の検出時には、後述するような駆動信号(図18(A)参照)を出力するようになっている。
さらに、駆動回路104は、駆動信号がオフになったタイミングから所定時間、休止信号(図18(B)参照)を後述する検出タイミング発生回路114に出力する。
【0049】
残留振動検出部106は、駆動回路104からから出力される駆動信号と、制御部102から出力される検出タイミング設定値に基づいて、アクチュエータ22の残留振動を検出し、残留振動波形を残留振動パルスに変換し、残留振動パルスのパルス幅に対応する時間を計測したパルス幅計測値を出力するようになっている。また、リセット信号と、Load信号L1も出力するようになっている。
【0050】
吐出異常検出回路110は、残留振動検出部106から出力されるパルス幅計測値と、Load信号L1と、制御部102から出力される後述する正常吐出基準値(TR±α)により、正常判定信号と、気泡判定信号と、分別信号(図18(J)参照)を出力するようになっており、これらの出力信号は、残留振動検出部106から出力されるリセット信号と、後述する分別回路112から出力される分別終了信号によって「Lレベル」にリセットされるようになっている。
【0051】
分別回路112は、残留振動検出部106から出力されるパルス幅計測値と、Load信号L1と、吐出異常検出回路110から出力される分別信号により、乾燥判定信号(図18(P)参照)と、紙粉判定信号(図18(O)参照)と、分別終了信号(図18(Q)参照)を出力するようになっている。
さらに、残留振動検出部106は、検出タイミング発生回路114と、切替えスイッチ116と、残留振動検出回路118と、パルス幅計測部としてのパルス幅計測回路120と、を備えている。
【0052】
検出タイミング発生回路114は、駆動回路104から出力される休止信号と、制御部102から出力される検出タイミング設定値により、駆動/検出切替え信号(図18(C)参照)と、Load信号L1(図18(H)参照)と、リセット信号(図18(G)参照)と、を出力するようになっている。
切替えスイッチ116は、可動接点と、常閉接点と、常開接点とを有し、可動接点がアクチュエータ22に、常閉接点が駆動回路104に、常開接点が残留振動検出回路118に、それぞれ接続されている。通常は図10に示すようにその接点が可動接点と、常閉接点とを接続させた状態にあり、インク滴の吐出異常の検出を行う場合に、検出タイミング発生回路114から駆動/検出切替え信号が出力されるので、これにより、その接点が常閉接点から常開接点側に切替わるスイッチである。
【0053】
残留振動検出回路118は、インク滴の吐出異常の検出時に、切替えスイッチ116の切替え接点が常開接点側に切替えられ、アクチュエータ22を形成するコンデンサの充電電圧Vcの変化を検出し、これによりその振動板21の残留振動を検出し、残留振動パルス(図18(E)参照)を出力するようになっている。
すなわち、この実施形態では、アクチュエータ22に残存した電荷と、振動板21の変位によって変化するアクチュエータ22の静電容量とから、アクチュエータ22の充電電圧の変化が誘起される。そこで、残留振動検出回路118は、その誘起されたアクチュエータ22の充電電圧の変化から振動板21の残留振動を検出するようになっている。
【0054】
パルス幅計測回路120は、残留振動検出回路118から出力される残留振動パルスにおける最初のパルスのパルス幅に対応する時間を計測し、パルス幅計測値(図18(F)参照)を出力するようになっている。また、パルス幅計測値は、検出タイミング発生回路114から出力されるリセット信号により、0にリセットされるようになっている。
次に、図10に示す検出タイミング発生回路114の具体的な構成について、図11を参照して説明する。
【0055】
検出タイミング発生回路114は、図11に示すように、カウンタ130と、一致比較器131と、例えばRS型フリップフロップ回路で構成されるラッチ回路132と、2入力AND133と、エッジ検出器(立下り)134と、遅延回路135と、の組み合わせにより構成される。
カウンタ130は、駆動回路104から出力される休止信号の「Lレベル」から「Hレベル」に立上るタイミングをカウントし、カウント値を一致比較器131に出力する。また、後述する遅延回路135から出力されるリセット信号により、カウンタ130のカウント値が0にリセットされるようになっている。
【0056】
一致比較器131は、カウンタ130から出力されるカウント値と、制御部102から出力される検出タイミング設定値とを比較し、一致した場合には「Hレベル」の信号を、一致しない場合には「Lレベル」の信号をラッチ回路132に出力する。
ラッチ回路132は、一致比較器131から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を2入力AND133に出力する。また、後述する遅延回路135から出力されるリセット信号により、ラッチ回路132のラッチ信号が「Lレベル」にリセットされる。
【0057】
2入力AND133は、駆動回路104から出力される休止信号と、ラッチ回路132から出力されるラッチ信号とが入力され、これらがともに「Hレベル」である場合に、「Hレベル」の駆動/検出切替え信号を、それ以外の場合は、「Lレベル」の駆動/検出切替え信号を残留振動検出部106の切替えスイッチ116、エッジ検出器(立下り)134に出力する。
【0058】
エッジ検出器(立下り)134は、2入力AND133から出力される駆動/検出切替え信号が「Hレベル」から「Lレベル」に立下るタイミングを検出し、この検出時点でパルス信号からなるLoad信号L1を吐出異常検出回路110及び分別回路112へ出力する。
遅延回路135は、エッジ検出器(立下り)134から出力されるLoad信号L1のパルス信号を所定時間遅延させてリセット信号として、カウンタ130、ラッチ回路132、パルス幅計測回路120及び吐出異常検出回路110へ出力する。
【0059】
次に、図10に示す残留振動検出回路118の具体的な構成について、図12を参照して説明する。
アクチュエータ22が静電アクチュエータの場合の残留振動検出回路118は、図12の(a)に示すように、CR発信器、LC発信器等のコンデンサを含む発振回路140と、F/V変換器141と、コンデンサ142と増幅器143から構成される交流増幅器145と、波形整形回路144と、の組み合わせにより構成される。
【0060】
静電アクチェータは図6に示すように、振動板21と個別電極30とを平行な平板とするコンデンサと考えられ、振動板21の残留振動によって静電容量が変化する。この静電アクチェータの静電容量を発振回路140に組み込んで発振させ、その発振出力をF/V変換器141によって電圧値に変換し、この電圧値の交流成分を交流増幅器145で増幅することにより残留振動波形を出力し、この残留振動波形を、シュミットトリガ回路等を含む波形整形回路144によって残留振動パルスに整形してパルス幅計測回路120へ出力する。
【0061】
また、アクチュエータ22が圧電アクチュエータの場合の残留振動検出回路118は、図12の(b)に示すように、コンデンサ142と増幅器143から構成される交流増幅器145と、波形整形回路144と、の組み合わせにより構成される。
圧電アクチェータは、振動板の機械的な変化によって圧電素子に起電圧が発生する。この起電圧の交流成分を交流増幅器145で増幅することにより残留振動波形を出力し、波形整形回路144によって残留振動パルスに整形してパルス幅計測回路120へ出力する。
【0062】
次に、図10に示すパルス幅計測回路120の具体的な構成について、図13を参照して説明する。
パルス幅計測回路120は、前述した図7〜図9で説明した分別原理に基づく吐出異常(不吐出)の分別を行うための基礎となる残留振動検出回路118から出力される残留振動パルスの最初のパルス幅を計測するもので、図13に示すように構成されている。
【0063】
このパルス幅計測回路120は、残留振動検出回路118から出力される残留振動パルスとクロック信号発生回路161から出力される所定周波数のクロックパルスとが入力される2入力AND162と、残留振動パルスがインバータ163を介してセット端子Sに、検出タイミング発生回路114から出力されるリセット信号がリセット端子Rに夫々入力されるRS型フリップフロップ164とを有する。また、パルス幅計測回路120は、RS型フリップフロップ164の否定出力端子QBから得られる出力信号と2入力AND162の出力信号とが入力される2入力AND165と、この2入力AND165の出力信号をカウントし、リセット信号によってカウント値がリセットされるカウンタ166とを有する。
【0064】
このパルス幅計測回路120では、残留振動検出回路118から図14(A)に示す残留振動パルスが入力されると、この残留振動パルスが「Hレベル」となると、2入力AND162から図14(B)に示すようにクロック信号が出力される。一方、残留振動パルスがインバータ163で図14(C)に示すように反転されたパルスがRS型フリップフロップ164に供給されるので、このRS型フリップフロップ164の否定出力端子QBから図14(D)に示すように反転パルスが「Hレベル」となる時点で「Lレベル」となる否定出力が出力され、これが2入力AND165に供給されるので、この2入力AND165から図14(E)に示すように、残留振動パルスの最初の「Hレベル」区間に対応するクロック信号が出力され、これがカウンタ166に供給されるので、このカウンタ166のカウント値が図14(F)に示すように残留振動パルスの最初のパルス幅に対応する値となり、このカウント値がパルス幅計測値として吐出異常検出回路110及び分別回路112に出力される。
【0065】
次に、図10に示す吐出異常検出回路110の具体的な構成について、図15を参照して説明する。
吐出異常検出回路110は、図15に示すように、比較器150、151と、インバータ152、153と、3入力AND154と、2入力AND155、156と、例えばRS型フリップフロップ回路で構成されるラッチ回路157、158及び159と、の組み合わせにより構成される。
【0066】
比較器150は、残留振動検出部106のパルス幅計測回路120から出力されるパルス幅計測値Tと、制御部102から出力される後述する正常吐出基準値(TR+α)とを比較し、T>(TR+α)である場合に「Hレベル」を、それ以外の場合は、「Lレベル」をインバータ152と、2入力AND156に出力する。
比較器151は、残留振動検出部106のパルス幅計測回路120から出力されるパルス幅計測値Tと、制御部102から出力される後述する正常吐出基準値(TR−α)とを比較し、T<(TR−α)である場合に「Hレベル」を、それ以外の場合は、「Lレベル」をインバータ153と、2入力AND155に出力する。
【0067】
3入力AND154は、比較器150から出力される出力信号をインバータ152により反転した信号と、比較器151から出力される出力信号をインバータ153により反転した信号とがともに「Hレベル」の場合に、検出タイミング発生回路114から出力されるLoad信号L1の「Hレベル」のパルス信号が入力された時点で「Hレベル」をラッチ回路157へ出力する。
【0068】
ラッチ回路157は、3入力AND154から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を正常判定信号として制御部102へ出力する。このことは、パルス幅計測値Tが正常吐出基準値(TR±α)の範囲にあり、吐出が正常であることを意味する。また、検出タイミング発生回路114から出力されるリセット信号により、ラッチ回路157のラッチ信号が「Lレベル」にリセットされる。
【0069】
2入力AND155は、比較器151から出力される出力信号が「Hレベル」の場合に、検出タイミング発生回路114から出力されるLoad信号L1の「Hレベル」のパルス信号が入力された時点で「Hレベル」をラッチ回路158へ出力する。
ラッチ回路158は、2入力AND155から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を気泡判定信号として制御部102へ出力する。このことは、パルス幅計測値Tが正常吐出基準値の下限(TR−α)未満にあり、吐出異常の原因が気泡混入によるものであることを意味する。また、検出タイミング発生回路114から出力されるリセット信号により、ラッチ回路158のラッチ信号が「Lレベル」にリセットされる。
【0070】
2入力AND156は、比較器150から出力される出力信号が「Hレベル」の場合に、検出タイミング発生回路114から出力されるLoad信号L1の「Hレベル」のパルス信号が入力された時点で「Hレベル」をラッチ回路159へ出力する。
ラッチ回路159は、2入力AND156から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を分別信号として分別回路112へ出力する。このことは、パルス幅計測値Tが正常吐出基準値の上限(TR+α)を超えており、吐出異常の原因が気泡混入以外によるものであり、紙粉異常か乾燥異常かの分別を必要と判断することを意味する。また、分別回路112から出力される分別終了信号により、ラッチ回路158のラッチ信号が「Lレベル」にリセットされる。
【0071】
次に、図10に示す分別回路112の具体的な構成について、図16を参照して説明する。
分別回路112は、図16に示すように、残留振動検出部106のパルス幅計測回路120で計測した初期計測値と順次計測値を記憶する記憶手段である記憶回路部190と、初期計測値と順次計測値を比較する比較手段である比較回路部191と、比較回路部191での比較結果から紙粉異常か乾燥異常かを判断する異常判断手段である判断回路部192と、判断回路部192で異常判断が行われたときに駆動回路104と残留振動検出部106の駆動を停止する駆動停止手段である駆動停止回路部193と、の組み合わせにより構成される。
【0072】
さらに、記憶回路部190は、エッジ検出器(立上り)170と、レジスタ(T)171と、レジスタ(Tn)172と、遅延回路173と、2入力AND174と、を備えている。
さらに、比較回路部191は、比較器175と、比較器176と、を備えている。
さらに、判断回路部192は、2入力AND177、178と、例えばRS型フリップフロップ回路で構成されるラッチ回路179、180と、を備えている。
【0073】
さらに、駆動停止回路部193は、2入力OR181と、遅延回路182と、を備えている。
エッジ検出器(立上り)170は、吐出異常検出回路110から出力される分別信号が「Lレベル」から「Hレベル」に立上るタイミングを検出し、この検出時点でパルス信号からなるLoad信号L0(図18(K)参照)をレジスタ(T)171へ出力する。
【0074】
レジスタ(T)171は、残留振動検出部106のパルス幅計測回路120から出力されるパルス幅計測値の初期計測値Tを、エッジ検出器(立上り)170から出力されるLoad信号L0がセット信号として供給され、これが「Hレベル」となったときにセットされて初期計測値Tを比較器175、比較器176に出力する。
2入力AND174は、吐出異常検出回路110から出力される分別信号が「Hレベル」の場合に、検出タイミング発生回路114から出力されるLoad信号L1のパルス信号をレジスタ(Tn)172及び遅延回路173に出力する。
【0075】
レジスタ(Tn)172は、残留振動検出部106のパルス幅計測回路120から出力されるパルス幅計測値の順次計測値Tnを、2入力AND174から出力されるパルス信号がセット信号として供給され、これが「Hレベル」となったときにセットされて順次計測値Tnを比較器175、比較器176に出力する。
遅延回路173は、2入力AND174から出力されるパルス信号を所定時間遅延させて分別判定信号として2入力AND177、178に出力する。
【0076】
比較器175は、レジスタ(T)171から出力される初期計測値Tと、レジスタ(Tn)172から出力される順次計測値Tnとを比較し、T<Tnである場合に「Hレベル」を、それ以外の場合は、「Lレベル」を2入力AND177に出力する。
比較器176は、レジスタ(T)171から出力される初期計測値Tと、レジスタ(Tn)172から出力される順次計測値Tnとを比較し、T>Tnである場合に「Hレベル」を、それ以外の場合は、「Lレベル」を2入力AND178に出力する。
【0077】
2入力AND177は、比較器175から出力される信号が「Hレベル」の場合に、遅延回路173から出力される分別判定信号の「Hレベル」のパルス信号が入力された時点で「Hレベル」をラッチ回路179へ出力する。
ラッチ回路179は、2入力AND177から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を紙粉判定信号として制御部102、2入力OR181へ出力する。また、駆動停止回路部193から出力される分別終了信号により、ラッチ回路179のラッチ信号が「Lレベル」にリセットされる。
【0078】
2入力AND178は、比較器176から出力される信号が「Hレベル」の場合に、遅延回路173から出力される分別判定信号の「Hレベル」のパルス信号が入力された時点で「Hレベル」をラッチ回路180へ出力する。
ラッチ回路180は、2入力AND178から出力される信号がセット信号として供給され、これが「Hレベル」となったときにセットされて「Hレベル」のラッチ信号を乾燥判定信号として制御部102、2入力OR181へ出力する。また、駆動停止回路部193から出力される分別終了信号により、ラッチ回路180のラッチ信号が「Lレベル」にリセットされる。
【0079】
2入力OR181は、ラッチ回路179から出力される紙粉判定信号、または、ラッチ回路180から出力される乾燥判定信号のどちらかが「Hレベル」になった時点で「Hレベル」を、紙粉判定信号と乾燥判定信号がともに「Lレベル」の場合は「Lレベル」を遅延回路182に出力する。
遅延回路182は、2入力OR181の出力信号を、所定時間遅延させて、分別終了信号としてラッチ回路179、180、吐出異常検出回路110及び制御部102に出力する。
【0080】
次に、制御部102で実行する吐出異常検出処理を、図17に示すフローチャートに基づいて説明する。
なお、この吐出異常検出処理は、電源の投入時、または大量に記録紙に画像形成し所定ページ数の画像形成の終了ごとに行うというように、必要に応じてその都度行うものである。
【0081】
先ず、ステップS100では、吐出異常を検出するノズルを選択してから、ステップS102に移行する。
ステップS102では、検出タイミング設定値(Shot数)を“1”に設定して、ステップS104に移行する。
ステップS104では、駆動指示信号を駆動回路104に出力して、ステップS106に移行する。
【0082】
ステップS106では、吐出異常検出回路110から正常判定信号、気泡判定信号、分別信号のいずれかの信号が「Hレベル」になったか否かを判定し、「Hレベル」になっていないとき(No)には、「Hレベル」になるまで待機し、「Hレベル」になったとき(Yes)には、ステップS108に移行する。
ステップS108では、吐出異常検出回路110から出力される正常判定信号が「Hレベル」であるか否かを判定し、「Hレベル」であると判定したとき(Yes)は、ステップS138に移行し、「Hレベル」でないと判定したとき(No)は、ステップS110に移行する。
【0083】
ステップS138では、すべてのノズルの検出が終了したか否かを判定し、終了したと判定したとき(Yes)は、吐出異常検出処理を終了し、終了していないと判定したとき(No)は、ステップS100に移行する。
ステップS110では、吐出異常検出回路110から出力される気泡判定信号が「Hレベル」であるか否かを判定し、「Hレベル」であると判定したとき(Yes)は、ステップS112に移行し、「Hレベル」でないと判定したとき(No)は、ステップS114に移行する。
【0084】
ステップS112では、気泡回復処理を行い、ステップS138に移行する。
ステップS114では、検出タイミング設定値(Shot数)をnに、処理を最大何回繰り返すかを設定する最大回数をmに設定し、処理回数をカウントする処理回数Mを“1”に設定し、ステップS115に移行する。
ステップS115では、Shot数をカウントするShot数Sを“0”に設定し、ステップS116に移行する。
【0085】
ステップS116では、駆動指示信号を駆動回路104に出力し、ステップS118に移行する。
ステップS118では、Shot数をカウントするShot数Sに“1”を加算し、ステップS120に移行する。
ステップS120では、駆動指示信号を出力後、休止信号が「Hレベル」の期間と駆動信号がオン状態の期間を加算した時間以上経過したか否かを判定し、経過したと判定したとき(Yes)は、ステップS122に移行し、経過していないと判定したとき(No)は、経過するまで待機する。
【0086】
ステップS122では、Shot数S=nか否かを判定し、Shot数S=nであると判定したとき(Yes)は、ステップS124に移行し、Shot数S=nでないと判定したとき(No)は、ステップS116に移行する。
ステップS124では、分別回路112から紙粉判定信号か、乾燥判定信号のいずれかの信号が「Hレベル」になったか否かを判定し、「Hレベル」になっていないとき(No)には、ステップS125に移行し、「Hレベル」になったとき(Yes)には、ステップS126に移行する。
【0087】
ステップS125では、所定時間経過したか否かを判定し、所定時間経過したと判定したとき(Yes)は、ステップS134に移行し、所定時間経過していないと判定したとき(No)は、ステップS124に移行する。
ステップS126では、分別回路112から出力される紙粉判定信号が「Hレベル」であるか否かを判定し、「Hレベル」であると判定したとき(Yes)は、ステップS128に移行し、「Hレベル」でないと判定したとき(No)は、ステップS130に移行する。
【0088】
ステップS128では、紙粉回復処理を行い、ステップS138に移行する。
ステップS130では、分別回路112から出力される乾燥判定信号が「Hレベル」であるか否かを判定し、「Hレベル」であると判定したとき(Yes)は、ステップS132に移行し、「Hレベル」でないと判定したとき(No)は、ステップS134に移行する。
ステップS132では、乾燥回復処理を行い、ステップS138に移行する。
【0089】
ステップS134では、処理回数M=mか否かを判定し、処理回数M=mであると判定したとき(Yes)は、ステップS136に移行し、処理回数M=mでないと判定したとき(No)は、ステップS140に移行する。
ステップS136では、吐出異常の原因が分別不可の場合の処理を行い、ステップS138に移行する。
【0090】
ステップS140では、処理回数をカウントする処理回数Mに“1”を加算し、ステップS115に移行する。
上記実施形態のアクチュエータとして静電式アクチュエータを適用した場合の動作を図18に示すタイミングチャートを伴って説明する。
この図18では、あるノズルに紙粉が付着し、紙粉異常と判定される場合を粗干しており、説明を簡単にするために、制御部102で設定する検出タイミング設定値(Shot数)はn=3に設定され、最大回数はm=5に設定している。
【0091】
今、制御部102で所定タイミング即ちプリンタの電源投入時、印刷開始指令が入力された時、印刷途中で所定枚数の印刷が終了した時等に図17に示す吐出異常検出処理を実行する。
この吐出異常検出処理では、先ず、検出対象となるノズルを選択し(ステップS100)、次いで検出タイミング設定値nを“1”に設定してから駆動指示信号を駆動回路104に出力する。
【0092】
このため、駆動回路104で、図18(A)に示すように、時点t1で、駆動信号が出力される。駆動信号がオンの期間は、図18(B)に示す休止信号が「Lレベル」なので、カウンタ130はカウントすることがないと共に2入力AND133から出力される駆動/検出切替え信号も図18(C)に示すように「Lレベル」を維持する。
したがって、残留振動検出部106の切替えスイッチ116が駆動回路104側に切替えられて駆動回路104とアクチュエータ22とが接続された状態となるので、駆動回路104から出力された駆動信号が静電式アクチュエータ22に印加されて、振動板21が振動されることにより、インク液滴の吐出動作が行われる。
【0093】
その後、時点t2で駆動信号がオフになると、これに応じて休止信号が「Hレベル」となり、これがカウンタ130及び2入力AND133に供給される。このため、カウンタ130がカウントアップされてそのカウント値が“1”となり、このカウント値が“1”に設定された検出タイミング設定値が入力された一致比較器131に供給されるので、この一致比較器131から「Hレベル」の一致信号が出力され、これがラッチ回路132でラッチされて2入力AND133に供給される。このため、2入力AND133から出力される駆動/検出切替え信号が図18(C)に示すように、時点t2で「Hレベル」となり、これが切替スイッチ116に供給されることにより、この切替スイッチ116が残留振動検出回路118側に切替えられて、静電式アクチュエータ22の個別電極30と振動板21とで構成されるコンデンサが残留振動検出回路118の発振回路140に組込まれる。
【0094】
このため、発振回路140から残留振動波形に対応する発振信号が出力され、これがF/V変換器141で電圧信号に変換され、次いで交流増幅器で増幅されて図18(D)に示す残留振動波形となる。
この残留振動波形が波形整形回路144に供給されることにより、この波形整形回路144から図18(E)に示す残留振動波形が所定の閾値を超えた時点t3で「Hレベル」となる残留振動パルスが形成され、これがパルス幅計測回路120に出力する。
【0095】
このため、パルス幅計測回路120では、前述したように、残留振動パルスの最初のパルス幅に対応するクロック信号をカウンタ166でカウントすることにより、図18(F)に示す残留振動パルスの最初のパルス幅区間で増加するパルス幅計測値Tを出力する。
このとき、異常検出対象となるノズルに紙粉異常が発生しているものとすると、残留振動パルスにおける最初のパルスのパルス幅が正常値よりは長くなるので、パルス幅計測値Tは正常吐出範囲の下限値TR−αを時点t4で超え、さらに時点t5で正常吐出範囲の上限値TR+αを超えて残留振動パルスが「Lレベル」となる時点t6で最大値となる。
【0096】
このパルス幅計測値Tが吐出異常検出回路110に供給されるので、この吐出異常検出回路110ではパルス幅計測値Tが正常吐出範囲の下限値TR−α未満であるときに、比較器150が「Lレベル」、比較器151が「Hレベル」となり、その後TR−α≦T≦TR+αである時点t4〜時点t5間で比較器150及び151が共に「Lレベル」となり、パルス幅計測値Tが正常吐出範囲の上限値TR+αを超える時点t5で比較器150の出力が図18(I)に示すように「Hレベル」となり、比較器151は「Lレベル」を維持する。
【0097】
その後、時点t2から所定時間経過後の時点t7で駆動回路104から出力される休止信号が図18(B)に示すように「Lレベル」となると、これに応じて検出タイミング発生回路114の2入力AND133から出力される駆動/検出切替え信号が図18(C)に示すように「Lレベル」となり、これによって切替えスイッチ116が駆動回路104側に切替えられる。これと同時に、検出タイミング発生回路114のエッジ検出器134から図18(H)に示すLoad信号L1が吐出異常検出回路110及び分別回路112に出力される。
【0098】
このため、吐出異常検出回路110では、Load信号L1が3入力AND154と、2入力AND155及び156に供給されるが、この時点t7では、前述したように、比較器150の出力が「Hレベル」、比較器151の出力が「Lレベル」であり、2入力AND156のみに「Hレベル」が入力されているので、この2入力AND156の出力のみが「Hレベル」となり、これがラッチ回路159でラッチされ、このラッチ回路159から図18(J)に示す「Hレベル」となる分別信号が出力され、これが分別回路112に供給される。
【0099】
したがって、分別回路112では、分別信号がエッジ検出器170及び2入力AND174に供給されるので、エッジ検出器170から図18(K)に示す分別信号の立上りで「Hレベル」となり、所定時間経過後に「Lレベル」となるLoad信号L0がレジスタ171に出力される。このため、レジスタ171では、Load信号L0が入力された時点t7で図18(L)に示すようにパルス幅計測値Tを初期パルス幅計測値T0として記憶する。このとき、分別信号とLoad信号L1とが2入力AND174に供給されるので、この2入力AND174の出力が「Hレベル」となり、これがレジスタ172に供給されるので、このレジスタ172にもパルス幅計測値Tが記憶される。
【0100】
しかしながら、レジスタ171及び172に同一値のパルス幅計測値Tが記憶されることにより、比較器175及び176は共に「Lレベル」を維持するので、2入力AND177及び178の出力は「Lレベル」となり、ラッチ回路179及び180のラッチ出力である紙粉判定信号及び乾燥判定信号も図18(O)及び(P)に示すように「Lレベル」を維持する。その後、時点t8で検出タイミング発生回路114の遅延回路135からLoad信号L1を所定時間遅延させたリセット信号が出力され、このリセット信号によって検出タイミング発生回路114のカウンタ130及びラッチ回路132がリセットされると共に、吐出異常回路110のラッチ回路159を除くラッチ回路157及び158がリセットされ、さらにパルス幅計測回路120のRSフリップフロップ164がリセットされる。
【0101】
一方、制御部102では、時点t7で吐出異常検出回路110から分別信号が出力され、これが入力されるので、異常検出対象ノズルが正常ではなく、異常状態であり、しかも気泡異常ではなく乾燥異常及び紙粉異常の何れかが発生したものと判断してステップS108からステップS110を経てステップS114に移行する。
このため、検出タイミング設定値をn=3に設定すると共に、最大回数をm=5に設定してからステップS115を経て、ステップS116に移行して、駆動指示信号を駆動回路104に出力する。
【0102】
このため、駆動回路104から図18(A)に示すように駆動信号が出力され、これが切替えスイッチ116を介して静電式アクチュエータ22に供給されて、インク液滴の吐出動作が行われ、リセット信号が出力された時点t8より遅い時点t9で駆動信号がオフになると休止信号が「Hレベル」となる。
このとき、検出タイミング発生回路114では、休止信号が「Hレベル」となることによりカウンタ130がカウントアップしてカウント値が“1”となるが、一致比較器131には制御部102から“3”に設定された検出タイミング設定値が入力されているので、この一致比較器131の出力は「Lレベル」を維持し、ラッチ回路132は時点t8で出力されたリセット信号によって「Lレベル」にリセットされているので、2入力AND133から出力される駆動/検出切替え信号も図18(C)に示すように「Lレベル」を維持する。
【0103】
このため、残留振動検出回路118、パルス幅計測回路120、吐出異常検出回路110及び分別回路112は動作を停止しており、吐出異常検出回路110の分別信号のみが「Hレベル」を継続する。
その後、時点t7から休止信号が「Hレベル」から「Lレベル」に復帰する時点と等しく設定された所定時間が経過した時点t10で再度制御部102から駆動指示信号が出力される。この場合も時点t7と同様に駆動回路104から駆動信号が静電式アクチュエータ22に供給されることにより、インク液滴が吐出されるが、その後に休止信号が「Hレベル」となったときに検出タイミング発生回路114のカウンタ130がカウントアップされて、そのカウント値が“2”となるが、検出タイミング設定値とは一致しないので、駆動/検出切替え信号が「Lレベル」を維持し、残留振動検出回路118、パルス幅計測回路120、吐出異常検出回路110及び分別回路112は動作を停止しており、分別回路112の判定信号のみが「Hレベル」を継続する。
【0104】
その後、時点t10から前述した所定時間が経過した時点t11で、再度制御部102から駆動指示信号が出力される。この場合も時点t7と同様に駆動回路104から駆動信号が静電式アクチュエータ22に供給されることにより、インク液滴が吐出されるが、その後、時点t12に休止信号が「Hレベル」となったときに検出タイミング発生回路114のカウンタ130がカウントアップされて、そのカウント値が“3”となる。このため、一致比較器131の出力信号が「Hレベル」となって、2入力AND133から図18(C)に示すように、駆動/検出切替え信号が「Hレベル」となり、前述した時点t2と同様に、吐出異常検出回路110、パルス幅計測回路120及び分別回路112が駆動されて、静電式アクチュエータ22の残留振動を検出する。
【0105】
このとき、前回のパルス幅計測時より3回インク液滴吐出動作が行われており、ノズルから吐出されたインク液滴が紙粉を伝わって横方向にインクが染み出し、インク溜まりを形成しているが、ノズルに接するインク染み出し量が極めて少ないものとすると、ノズルの音響インピーダンスの変化が殆どなく、前回の計測時と等しいパルス幅計測値T1が得られている。
【0106】
このため、時点t13で検出タイミング発生回路114から出力されるLoad信号L1が図18(H)に示すように「Hレベル」となると、分別回路112の2入力AND174の出力が「Hレベル」となってレジスタ172にパルス幅計測値T1が順次パルス幅計測値Tnとして記憶される。
この場合にも、レジスタ171に記憶されている初期パルス幅計測値T0と今回レジスタ172に記憶された順次パルス幅計測値Tnとが等しいので、比較器175及び176の比較出力は「Lレベル」を維持し、ラッチ回路179及び180から出力される紙粉判定信号及び乾燥判定信号も共に「Lレベル」を維持する。
【0107】
このため、処理部102では、駆動信号を3回出力した時点でステップS122からステップS124に移行して、紙粉判定信号及び乾燥判定信号を読込んだときに、これらが共に「Lレベル」であるので、ステップS125に移行し、所定時間経過するまでステップS124が繰り返される。
その後、所定時間が経過しても紙粉判定信号及び乾燥判定信号が共に「Lレベル」を継続するので、ステップS134に移行し、処理回数M=1なので、ステップS140に移行し、処理回数Mが“2”となり、ステップS115を経て、ステップS116に戻り、前述した時点t7と同様に駆動指示信号を出力する。また、カウンタ130は0にリセットされる。
【0108】
時点t13から、3回の駆動指示信号が出された後、時点t14でカウンタ130のカウント値が“3”になり、一致比較器131の出力信号が「Hレベル」となって、2入力AND133から出力される駆動/検出切替え信号が図18(C)に示すように「Hレベル」となり、前述した時点t2と同様に、吐出異常検出回路110、パルス幅計測回路120及び分別回路112が駆動されて、静電式アクチュエータ22の残留振動を検出する。
【0109】
このとき、前回のパルス幅計測時より3回インク液滴吐出動作が行われており、ノズルから吐出されたインク液滴が紙粉を伝わって横方向にインクが染み出し、インク溜まりを形成し、ノズルに接するインク染み出し量が増加したとすると、ノズルの音響インピーダンスに変化が起こり、前回の計測時よりも大きいパルス幅計測値T2が得られる。
このため、時点t15で検出タイミング発生回路114から出力されるLoad信号L1が図18(H)に示すように「Hレベル」となると、分別回路112の2入力AND174の出力が「Hレベル」となってレジスタ172にパルス幅計測値T2が順次パルス幅計測値Tnとして記憶される。
【0110】
この場合、レジスタ171に記憶されている初期パルス幅計測値T0よりも今回レジスタ172に記憶された順次パルス幅計測値Tnの方が大きいので、比較器175の出力は図18(M)に示すように「Hレベル」になる。時点t16で図18(N)に示すように分別判定信号が「Hレベル」となると、2入力AND177の出力は「Hレベル」となり、これがラッチ回路179でラッチされ、紙粉判定信号が「Hレベル」となる。また、比較器176の比較出力は「Lレベル」を維持し、2入力AND178の出力も「Lレベル」を維持し、ラッチ180から出力される乾燥判定信号も「Lレベル」を維持する。
【0111】
このため、処理部102では、駆動信号を3回出力した時点でステップS122からステップS124に移行して、判定入力があったものと判定され、ステップS126に移行し、紙粉判定信号が「Hレベル」あると判定され、ステップ128に移行し、紙粉回復処理が実行される。
ここで、紙粉付着の状態における回復処理として適切な処理であるワイピング処理の具体的な構成と方法について、図22を参照して説明する。
【0112】
ここで、ワイピング処理とは、インクジェットヘッド20のノズル基板26(ノズル面)に付着した紙粉などの異物をワイパ13により拭き取る処理のことをいう。
図22は、図1に示すワイパ13とヘッドユニット2との位置関係を示す図である。この図22において、ヘッドユニット2とワイパ13は、図1に示すインクジェットプリンタ1の図中下側から上側を見た場合の側面図の一部として示される。ワイパ13は、図22(a)に示すように、ヘッドユニット2のノズル面、すなわち、インクジェットヘッド20のノズル基板26と当接可能なように、上下移動可能に配置される。
【0113】
ここで、ワイパ13を利用する回復処理であるワイピング処理について説明する。ワイピング処理を行う際、図22(a)に示すように、ノズル面(ノズル基板26)よりもワイパ13の先端が上側に位置するように図示しない駆動装置によってワイパ13は上方に移動される。この場合において、モータ6を駆動して図中左方向(矢印の方向)にヘッドユニット2を移動させると、ワイピング部材35がノズル基板26(ノズル面)に当接することになる。
【0114】
なお、ワイピング部材35は可撓性のゴム部材等から構成されるので、図22(b)に示すように、ワイピング部材35のノズル基板26と当接する先端部分は撓み、その先端部によってノズル基板26(ノズル面)の表面をクリーニング(拭き掃除)する。これにより、ノズル基板26(ノズル面)に付着した紙粉などの異物(例えば、紙粉、空気中に浮遊するごみ、ゴムの切れ端など)を除去することができる。また、このような異物の付着状態に応じて(異物が多く付着している場合には)、ヘッドユニット2にワイパ13の上方を往復移動させることによって、ワイピング処理を複数回実施することもできる。
【0115】
時点t16で、分別回路112の2入力OR回路181は紙粉判定信号の「Hレベル」の信号により「Hレベル」を出力し、遅延回路182により所定時間経過後、図18(Q)に示すように分別終了信号が「Hレベル」で出力され、ラッチ回路179、180の値を「Lレベル」にし、吐出異常検出回路110のラッチ回路159の値を「Lレベル」にし、さらに、制御部102に入力され、このノズルに対する吐出異常検出処理を終了し、ステップ138に移行し、すべてのノズルの検出が終了したか判定し、終了していないと判定されたときは、ステップS100に移行し、別のノズルに対して同様の処理が繰り返される。
【0116】
以上説明したように、紙粉異常の場合は、図18(C)の駆動/検出切替え信号の時点t6に静電式アクチュエータ22から出力された残留振動波形のパルス幅計測値T0が正常吐出基準値の上限値TR+αを超えていることから、気泡混入以外の原因であることが吐出異常検出回路110により判定され、3回の吐出動作毎に計測された時点t10の期間のパルス幅計測値T1と、次の時点t13のパルス幅計測値T2が、T0<T2と増加傾向にあり、分別回路112により、紙粉異常と判定された。
【0117】
次に、乾燥異常と判定される場合についての動作を、図19を参照して簡単に説明する。上記紙粉異常の場合の説明と同様に、検出タイミング設定値(Shot数)はn=3、最大回数はm=5に設定されているものとする。
時点t1で、図19(A)の駆動信号が出力され、時点t2で駆動信号がオフとなると同時に図19(B)の休止信号が「Hレベル」になり、図19(C)の駆動/検出切替え信号が「Hレベル」となり、図19(D)の残留振動波形が検出される。残留振動検出回路118により、図19(E)の残留振動パルスが出力され、パルス幅計測回路120により、図19(F)のパルス幅計測値が出力される。パルス幅計測値は時点t3から計測が始まり、時点t4で正常吐出基準値の下限値TR−αの値を上回り、時点t5で上限値TR+αを上回り、時点t6で図19(E)の残留振動パルスが「Lレベル」となるので、計測が終了し、パルス幅計測値がT0と計測された。時点t5で図19(I)の比較器150の出力は「Hレベル」となり、比較器151の出力は「Lレベル」なので、図19(B)の休止信号が「Lレベル」となる時点t7で図19(H)のLoad信号L1が「Hレベル」の信号を出力し、図19(J)の分別信号が「Hレベル」となる。図19(K)のLoad信号L0も「Hレベル」となり、レジスタ171に初期計測値TとしてT0が設定される。
【0118】
分別信号が「Hレベル」となったので、ステップS114に移行し、時点t7から図19(A)の3回の駆動信号が出力され、時点t12で図19(C)の駆動/検出切替え信号が「Hレベル」となり、図19(D)の残留振動波形が計測され、図19(F)のパルス幅計測値がT1と計測され、レジスタ172に順次計測値TnとしてT1が設定された。初期計測値T0と順次計測値T1は値が等しく、比較器175、176はともに「Lレベル」なので、紙粉判定信号、乾燥判定信号はともに「Lレベル」を維持し、ステップS134、S140を経て、ステップS115に移行する。
【0119】
時点t13から図19(A)の3回の駆動信号が出力され、時点t14で図19(C)の駆動/検出切替え信号が「Hレベル」となり、図19(D)の残留振動波形が計測され、図19(F)のパルス幅計測値がT2と計測され、レジスタ172に順次計測値TnとしてT2が設定された。時点t7から6回の駆動信号により液滴吐出動作が行われたことにより、ノズル付近のインクの粘性が下がり、初期計測値T0に対し順次計測値T2が減少する傾向が現れ、図19(M)の比較器176の出力が時点t15「Hレベル」となった。時点t16で図19(N)の分別判定信号が「Hレベル」となり、図19(Q)の乾燥判定信号が「Hレベル」となる。
【0120】
このため、処理部102では、駆動信号を3回出力した時点でステップS122からステップS124に移行して、判定入力があったものと判定され、ステップS126を経てステップ130に移行し、乾燥判定信号が「Hレベル」あると判定され、ステップ132に移行し、乾燥回復処理が実行される。
ここで、ノズルの乾燥による吐出異常を回復するために適切な処理であるポンピング処理(ポンプ吸引処理)の具体的な構成と方法について、図23及び図24を参照して説明する。
【0121】
図23及び図24(a)は、ポンプ吸引処理時における、ヘッドユニット2と、キャップ14及びチューブポンプ40との関係を示す図である。チューブ42は、ポンピング処理(ポンプ吸引処理)におけるインク排出路を形成するものであり、その一端は、上述のように、キャップ14の底部に接続され、他端は、チューブポンプ40を介して排インクカートリッジ47に接続されている。
【0122】
キャップ14の内部底面には、インク吸収体41が配置されている。このインク吸収体41は、ポンプ吸引処理やフラッシング処理においてインクジェットヘッド20のノズル24から吐出されるインクを吸収して、一時貯蔵する。なお、インク吸収体41によって、キャップ14内へのフラッシング動作時に、吐出された液滴が跳ね返ってノズル基板26を汚すことを防止することができる。
【0123】
図24(b)は、図23に示すチューブポンプ40の構成を示す概略図である。この図24(b)に示すように、チューブポンプ40は、回転式ポンプであり、回転体43と、その回転体43の円周部に配置された4つのローラ44と、ガイド部材45とを備えている。なお、ローラ44は、回転体43により支持されており、ガイド部材45のガイド46に沿って円弧状に載置された可撓性のチューブ42を加圧するものである。
【0124】
このチューブポンプ40は、軸43aを中心にして回転体43を図24(b)に示す矢印X方向に回転させることにより、チューブ42に当接している1つ又は2つのローラ44が、Y方向に回転しながら、ガイド部材45の円弧状のガイド46に載置されたチューブ42を順次加圧する。これにより、チューブ42が変形し、このチューブ42内に発生した負圧により、各インクジェットヘッド20のキャビティ23内のインク(液状材料)がキャップ14を介して吸引され、気泡が混入し、あるいは乾燥により増粘した不要なインクがノズル24を介して、インク吸収体41に排出され、このインク吸収体41に吸収された排インクがチューブポンプ40を介して排インクカートリッジ47(図23参照)に排出される。
【0125】
なお、このチューブポンプ40は、図示しないパルスモータなどのモータにより駆動される。パルスモータは、制御部102により制御される。チューブポンプ40の回転制御に対する駆動情報、例えば、回転速度、回転数が記述されたルックアップテーブル、シーケンス制御が記述された制御プログラムなどは、制御部102のROM126などに格納されており、これらの駆動情報に基づいて、制御部102のCPU124によってチューブポンプ40の制御が行われている。
【0126】
次に、正常と判定される場合についての動作を、図20を参照して簡単に説明する。
時点t1で、図20(A)の駆動信号が出力され、時点t2で駆動信号がオフとなると同時に図20(B)の休止信号が「Hレベル」になり、図20(C)の駆動/検出切替え信号が「Hレベル」となり、図20(D)の残留振動波形が検出される。残留振動検出回路118により、図20(E)の残留振動パルスが出力され、パルス幅計測回路120により、図20(F)のパルス幅計測値が出力される。パルス幅計測値は時点t3から計測が始まり、時点t4で正常吐出基準値の下限値TR−αの値を上回り、時点t5で図20(E)の残留振動パルスが「Lレベル」となるので、計測が終了し、パルス幅計測値がT0と計測された。時点t5で、図20(I)の比較器150の出力は「Lレベル」となり、図20(J)の比較器151の出力は「Lレベル」なので、図20(B)の休止信号が「Lレベル」となる時点t7で図20(H)のLoad信号L1が「Hレベル」の信号を出力し、図20(R)の正常判定信号が「Hレベル」となる。
【0127】
制御部102は、正常判定信号が「Hレベル」であると判定し(ステップS108)、ステップ138に移行する。
次に、気泡異常と判定される場合についての動作を、図21を参照して簡単に説明する。
時点t1で、図21(A)の駆動信号が出力され、時点t2で駆動信号がオフとなると同時に図21(B)の休止信号が「Hレベル」になり、図21(C)の駆動/検出切替え信号が「Hレベル」となり、図21(D)の残留振動波形が検出される。残留振動検出回路118により、図21(E)の残留振動パルスが出力され、パルス幅計測回路120により、図21(F)のパルス幅計測値が出力される。パルス幅計測値は時点t3から計測が始まり、時点t4で図21(E)の残留振動パルスが「Lレベル」となるので、計測が終了し、パルス幅計測値がT0と計測された。図21(F)のようにパルス幅計測値T0は正常吐出基準値の下限値TR−αの値を下回っている。時点t4で図21(I)の比較器150の出力は「Lレベル」であり、図21(J)の比較器151の出力は「Hレベル」なので、図21(B)の休止信号が「Lレベル」となる時点t7で図21(H)のLoad信号L1が「Hレベル」の信号を出力し、図21(S)の気泡判定信号が「Hレベル」となる。
【0128】
制御部102は、気泡判定信号が「Hレベル」であると判定し(ステップS110)、気泡回復処理が実行される(ステップS112)。気泡回復処理では、ポンピング処理(ポンプ吸引処理)が行われる。
次に、分別不可と判定される場合についての動作を、図18を参照して簡単に説明する。上記紙粉異常の場合の説明と同様に、検出タイミング設定値(Shot数)はn=3、最大回数はm=5に設定されているものとする。
【0129】
分別不可と判定されるのは、時点t7で計測された図18(F)のパルス幅計測値T0に対し、図18(J)の分別信号が時点t7で「Hレベル」になった後、3回の駆動信号が出力された後に計測される時点t13のパルス幅計測値Tnが変化せず、紙粉判定信号、乾燥判定信号がともに「Lレベル」を維持する状態が、5回処理しても変わらず、制御部102は、処理回数M=5と判定し(ステップS134)、分別不可処理が実行される(ステップS136)。
【0130】
分別不可処理では、ワイピング処理とポンピング処理(ポンプ吸引処理)を行い、それでも回復しない場合は、ヘッドユニットの故障として扱う。
なお、本発明では、残留振動を検出するために切替えスイッチ116により、駆動回路104から残留振動検出回路118への切替えを行い、紙粉異常か乾燥異常かの分別処理が実行されると、分別が終了するまで、または、最大処理回数まで、切替えが行われるので、この切替えの回数を考えると、検出タイミング設定値(Shot数)は多く設定した方がよい。
【0131】
また、1つのノズルで紙粉異常を検出したら後述するワイピング処理を行うので、他のノズルで紙粉異常が発生していても同時に払拭することができるので、他の紙粉異常は正常と判断される確率が高い。乾燥の場合も後述する吸引処理ですべてのノズルを吸引するので、同様のことが言え、全体の処理時間は短くなる。
また、本実施形態での説明では、検出タイミング設定値(Shot数)を3に設定したが、例えば検出タイミング設定値(Shot数)を1に設定すれば、毎回の吐出動作後に吐出異常検出を行うことができ、吐出異常が判定できた時点で、吐出異常検出作業を終了できるので、インク滴の吐出を無駄に行うことがなくなり、インクの消費を抑えることができる。また、1つのノズルに対する処理時間も節約できるので、すべてのノズルに対する吐出異常検出作業の処理時間を短くすることができる。
【0132】
次に、本発明を、制御部102のROM126の所定領域に格納したプログラムに基づいてCPU124が処理を行う場合の実施形態について、図29〜図33を参照して説明する。
この実施形態は、図29に示すように、システム全体を制御する制御部102と、この制御部102から出力される駆動指示信号によってアクチュエータ22を駆動する駆動手段としての駆動回路104と、アクチュエータ22の残留振動を検出する残留振動検出手段としての残留振動検出部106と、を少なくとも備えている。
【0133】
また、残留振動検出部106は、切替えスイッチ116と、残留振動検出回路118と、を備えている。
また、制御部102は、制御プログラムに基づいて演算及びシステム全体を制御するCPU124と、所定領域に予めCPUの制御プログラム等を格納しているROM126と、ROM等から読み出したデータやCPUの演算過程で必要な演算結果を格納するためのRAM128から構成されている。
【0134】
CPU124は、マイクロプロセッシングユニット(MPU)等からなり、ROM126の所定の領域に格納されている所定のプログラムを起動させ、そのプログラムに従って、図30のフローチャートに示す吐出異常検出処理を実行するようになっている。
次に、制御部102で実行する吐出異常検出処理を、図30に示すフローチャートに基づいて説明する。
【0135】
先ず、ステップS200では、吐出異常を検出するノズルを選択してから、ステップS202に移行する。
ステップS202では、駆動指示信号を駆動回路104に出力して、ステップS204に移行する。
ステップS204では、駆動回路104から出力される休止信号をチェックし、休止信号が「Lレベル」から「Hレベル」に立上ったか否かを判定し、立上っていないとき(No)には、立上るまで待機し、立下ったとき(Yes)には、ステップS206に移行する。
【0136】
ステップS206では、図31に示すパルス幅計測処理を実行してから、ステップS208に移行する。
ステップS208では、図32に示す吐出異常判定処理を実行してから、ステップS210に移行する。
ステップS210では、吐出異常判定処理によりRAM128に保持された正常判定フラグの値が“1”に設定されているか否かを判定し、“1”に設定されていると判定したとき(Yes)は、ステップS212に移行し、“1”に設定されていないと判定したとき(No)は、ステップS214に移行する。
【0137】
ステップS212では、すべてのノズルの検出が終了したか否かを判定し、終了したと判定したとき(Yes)は、吐出異常検出処理を終了し、終了していないと判定したとき(No)は、ステップS200に移行する。
ステップS214では、吐出異常判定処理によりRAM128に保持された気泡判定フラグの値が“1”に設定されているか否かを判定し、“1”に設定されていると判定したとき(Yes)は、ステップS216に移行し、“1”に設定されていないと判定したとき(No)は、ステップS218に移行する。
【0138】
ステップS216では、気泡回復処理を行い、ステップS212に移行する。
ステップS218では、図33に示す紙粉・乾燥分別処理を実行してから、ステップS212に移行する。
次に、ステップ206のパルス幅計測処理は、図31に示すように、先ず、ステップS230では、駆動/検出切替え信号を「Hレベル」に切替え、切替えスイッチ116に出力し、ステップS232に移行する。
【0139】
ステップS232では、パルス幅計測値Tの値を“0”にセットし、ステップS234に移行する。
ステップS234では、残留振動検出回路118から出力される残留振動パルスをチェックし、残留振動パルスが「Lレベル」から「Hレベル」に立上ったか否かを判定し、立上っていないとき(No)には、立下るまで待機し、立上ったとき(Yes)には、ステップS236に移行する。
【0140】
ステップS236では、現在の時刻を開始時刻としてTsに設定し、ステップS238に移行する。
ステップS238では、残留振動検出回路118から出力される残留振動パルスをチェックし、残留振動パルスが「Hレベル」から「Lレベル」に立下ったか否かを判定し、立下ったとき(Yes)には、ステップS240に移行し、立下っていないとき(No)には、ステップS239に移行する。
【0141】
ステップS239では、駆動回路104から出力される休止信号をチェックし、休止信号が「Hレベル」から「Lレベル」に立下ったか否かを判定し、立下ったとき(Yes)には、ステップS240に移行し、立下っていないとき(No)には、ステップS238に移行する。
ステップS240では、現在の時刻を終了時刻としてTeに設定し、ステップS242に移行する。
【0142】
ステップS242では、パルス幅計測値Tに(Te−Ts)の値を設定し、RAM128に保持し、ステップS244に移行する。
ステップS244では、駆動/検出切替え信号を「Lレベル」に切替え、切替えスイッチ116に出力し、パルス幅計測処理を終了する。
次に、ステップ208の吐出異常判定処理は、図32に示すように、先ず、ステップS250では、正常判定フラグ、気泡判定フラグ、分別判定フラグの値を“0”にリセットし、ステップS252に移行する。
【0143】
ステップS252では、RAM128に保持したパルス幅計測値Tの値と、ROM126に記憶された正常吐出基準値の上限値TR+αを比較し、T>TR+αであると判定されたとき(Yes)には、ステップS254に移行し、T>TR+αではないと判定されたとき(No)には、ステップS256に移行する。
ステップS254では、分別判定フラグの値を“1”に設定し、RAM128に保持して、吐出異常判定処理を終了する。
【0144】
ステップS256では、RAM128に保持したパルス幅計測値Tの値と、ROM126に記憶された正常吐出基準値の下限値TR−αを比較し、T<TR−αであると判定されたとき(Yes)には、ステップS258に移行し、T<TR−αではないと判定されたとき(No)には、ステップS260に移行する。
ステップS258では、気泡判定フラグの値を“1”に設定し、RAM128に保持して、吐出異常判定処理を終了する。
【0145】
ステップS260では、正常判定フラグの値を“1”に設定し、RAM128に保持して、吐出異常判定処理を終了する。
次に、ステップS218の紙粉・乾燥分別処理を、図33に示すフローチャートに基づいて説明する。
なお、以下の説明で、パルス幅計測値の初期計測値と順次計測値の差の許容幅としてΔTの値が、ROM126に記憶されている。
【0146】
先ず、ステップS270では、nにROM126に記憶された検出タイミング設定値(Shot数)を設定して、mにROM126に記憶された最大処理回数を設定して、ステップS272に移行する。
ステップS272では、初期計測値T0にパルス幅計測処理で計測しRAM128に保持したパルス幅計測値Tの値を設定して、ステップS274に移行する。
【0147】
ステップS274では、現在の処理回数をカウントするためのMに“1”を設定して、ステップS276に移行する。
ステップS276では、現在のShot数をカウントするためのSに“0”を設定して、ステップS278に移行する。
ステップS278では、現在のShot数Sの値に“1”を加算して、ステップS280に移行する。
【0148】
ステップS280では、駆動指示信号を駆動回路104に出力して、ステップS282に移行する。
ステップS282では、現在のShot数Sの値と、検出タイミング設定値(Shot数)nの値を比較し、S=nであると判定されたとき(Yes)には、ステップS286に移行し、S=nではないと判定されたとき(No)には、ステップS284に移行する。
【0149】
ステップS284では、所定時間(休止信号が「Hレベル」の期間と駆動信号がオン状態の期間を加算した時間以上)経過するまで待機し、ステップS278に移行する。
ステップS286では、駆動回路104から出力される休止信号をチェックし、休止信号が「Lレベル」から「Hレベル」に立上ったか否かを判定し、立上っていないとき(No)には、立上るまで待機し、立上ったとき(Yes)には、ステップS288に移行する。
【0150】
ステップS288では、パルス幅計測処理が実行され、ステップS290に移行する。
ステップS290では、順次計測値Tnにパルス幅計測処理で計測しRAM128に保持したパルス幅計測値Tの値を設定して、ステップS292に移行する。
ステップS292では、初期計測値T0の値と、順次計測値Tnの値を比較し、ΔT<Tn−T0であると判定されたとき(Yes)には、ステップS294に移行し、ΔT<Tn−T0ではないと判定されたとき(No)には、ステップS296に移行する。
【0151】
ステップS294では、紙粉回復処理を行い、紙粉・乾燥分別処理を終了する。
ステップS296では、初期計測値T0の値と、順次計測値Tnの値を比較し、ΔT<T0−Tnであると判定されたとき(Yes)には、ステップS298に移行し、ΔT<T0−Tnではないと判定されたとき(No)には、ステップS300に移行する。
ステップS298では、乾燥回復処理を行い、紙粉・乾燥分別処理を終了する。
【0152】
ステップS300では、最大処理回数mの値と、現在の処理回数Mの値を比較し、M=mであると判定されたとき(Yes)には、ステップS302に移行し、M=mではないと判定されたとき(No)には、ステップS304に移行する。
ステップS302では、分別不可処理を行い、紙粉・乾燥分別処理を終了する。
ステップS304では、現在の処理回数Mの値に“1”を加算して、ステップS276に移行する。
【0153】
なお、本実施形態において、駆動回路104は駆動手段に対応し、残留振動検出部106は残留振動検出手段に対応し、図32の吐出異常判定処理は吐出異常検出手段に対応し、図33の紙粉・乾燥分別処理は分別手段に対応する。
また、ステップS216の気泡回復処理と、ステップS294の紙粉回復処理と、ステップS298の乾燥回復処理と、ステップS302の分別不可処理とが、回復処理手段に対応する。
【0154】
また、図31のパルス幅計測処理はパルス幅計測部に対応し、ステップS252とステップS256の処理は、比較手段に対応する。
また、ステップS252で(No)と判定され、ステップS256で(No)と判定される一連の判定は、第1の判定手段に対応する。
また、ステップS252で(No)と判定され、ステップS256で(Yes)と判定される一連の判定は、第2の判定手段に対応する。
【0155】
また、ステップS272の処理は第1の記憶部に対応し、ステップS290の処理は第2の記憶部に対応し、RAM128は記憶手段に対応する。
また、ステップS292とステップS296の処理が、異常判断手段に対応する。
次に、本実施形態において紙粉異常と判定される場合についてのプログラムの動作を、図18と、図29〜図33を参照して簡単に説明する。
【0156】
この図18では、あるノズルに紙粉が付着し、紙粉異常と判定される場合を粗干しており、説明を簡単にするために、制御部102で設定する検出タイミング設定値(Shot数)はn=3に設定され、最大回数はm=5に設定している。
今、制御部102で所定タイミング即ちプリンタの電源投入時、印刷開始指令が入力された時、印刷途中で所定枚数の印刷が終了した時等に図30に示す吐出異常検出処理を実行する。
【0157】
まず、検出対象となるノズルを選択し(ステップS200)、時点t1に駆動指示信号を駆動回路104に出力する(ステップS202)。図18(A)の駆動信号が駆動回路からアクチュエータ22に出力され、時点t12で駆動信号がオフとなり、図18(B)に示す「Hレベル」の休止信号が駆動回路104から制御部102に出力されると、パルス幅計測処理に移行する(ステップS206)。
【0158】
時点t2で、図18(C)の駆動/検出切替え信号が「Hレベル」で切替えスイッチ116に出力され(ステップS230)、残留振動検出回路118側に切替わる。アクチュエータ22の図18(D)の残留振動波形を残留振動検出回路118が検出し、図18(E)の残留振動パルスを制御部102に出力する。
この残留振動パルスが時点t3で「Hレベル」となると、制御部102に内蔵されている時計から時点t3の時刻をTsに設定する。(ステップS236)
その後、時点t6で、残留振動パルスが「Lレベル」となるので、時点t6の時刻をTeに設定し(ステップS240)、パルス幅計測値Tに(Te−Ts)の値を設定し、RAM128に保持し(ステップS242)、駆動/検出切替え信号を「Lレベル」に設定し、切替えスイッチ116に出力する(ステップS244)。
【0159】
次に、吐出異常判定処理に移行し(ステップS208)、正常判定フラグ、気泡判定フラグ、分別判定フラグの値を“0”にリセットする(ステップS250)。
そしてRAM128に保持されたパルス幅計測値Tの値と、ROM126に記憶された正常吐出基準値の上限値TR+αを比較する(ステップS252)。図18(F)に示すように、時点t6のパルス幅計測値TはTR+αを上回っているので、T>TR+αであると判定され、分別判定フラグに“1”を設定し(ステップS254)、RAM128に保持し、ステップS210に移行する。
【0160】
ここで正常判定フラグが“0”なので正常ではないと判定され(ステップ210)、気泡判定フラグも“0”なので正常ではないと判定され(ステップS214)、ステップS218の紙粉・乾燥分別処理に移行する。
紙粉・乾燥分別処理はまず、Shot数nに“3”、最大処理回数mに“5”を設定し(ステップ270)、パルス幅計測処理で計測しRAM128に保持されたパルス幅計測値Tの値を初期計測値としてT0に設定し(ステップS272)、処理回数Mに“1”を設定する。
【0161】
次に、Shot数Sを“0”にリセットする(ステップS276)。
次に、Shot数に設定した回数の駆動指示信号の出力を行う。まず、Shot数Sに“1”を加算し(ステップS278)、Shot数Sの値が“1”になり、時点t7に駆動指示信号を駆動回路104に出力し(ステップS280)、Shot数Sが“1”なので(ステップS282)、所定時間待機後(ステップS284)、ステップS278に戻る。
【0162】
時点t10と時点t11に、駆動指示信号を駆動回路104に出力し(ステップS280)、Shot数Sの値が“3”になったので、駆動指示信号の出力を終了する。
時点t12で、図18(B)に示すように休止信号が「Hレベル」になり、パルス幅計測処理に移行し(ステップS288)、パルス幅計測処理で計測しRAM128に保持されたパルス幅計測値Tの値を順次計測値としてTnに設定する(ステップS290)。時点t13のパルス幅計測値T1は、初期計測値T0と等しいので、紙粉異常ではないと判定され(ステップS292)、さらに乾燥異常ではないと判定され(ステップS296)、ステップS276に戻る。
【0163】
同様に、駆動指示信号の出力が3回行われ、時点t14で休止信号が「Hレベル」となるので(ステップS286)、パルス幅計測処理に移行し(ステップS288)、パルス幅計測処理で計測しRAM128に保持されたパルス幅計測値Tの値を順次計測値としてTnに設定する(ステップS290)。
時点t15のパルス幅計測値T2は、初期計測値T0の値を上回り、紙粉異常であると判定され(ステップS292)、紙粉回復処理が行われる(ステップS294)。
【0164】
以上の説明のように、残留振動波形のパルス幅に基づいて紙粉異常が判定され、紙粉異常処理が行われる。
乾燥異常と判定される場合は、図19に示すように、時点t15のパルス幅計測値T2が初期計測値T0を下回るので、乾燥異常であると判定され(ステップS296)、乾燥回復処理が行われる(ステップS298)。
【0165】
正常と判定される場合は、図20に示すように、時点t5のパルス幅計測値T0が、TR−αを上回り(ステップS256)、TR+αを下回っている(ステップS252)ので、正常判定フラグに“1”が設定され(ステップS260)、正常であると判定される(ステップS210)。
気泡異常と判定される場合は、図21に示すように、時点t4のパルス幅計測値T0が、TR−αを下回っている(ステップS256)ので、気泡判定フラグに“1”が設定され(ステップS258)、気泡異常であると判定され(ステップS214)、気泡回復処理(ステップS216)が行われる。
【0166】
分別不可と判定される場合は、最大処理回数実行しても(ステップS300)、初期計測値T0と順次計測値Tnの値の差が許容値ΔT未満のため、紙粉異常とも、乾燥異常とも判定されず、分別不可処理(ステップS302)が行われる。
次に、本発明におけるインクジェットヘッドの他の構成例について説明する。図25〜図28は、それぞれ、インクジェットヘッド20の他の構成例の概略を示す断面図である。以下、これらの図に基づいて説明するが、前述した実施形態と相違する点を中心に説明し、同様の事項についてはその説明を省略する。
【0167】
図25に示すインクジェットヘッド20Aは、圧電素子200の駆動により振動板21が振動し、キャビティ23内のインク(液体)がノズル24から吐出するものである。ノズル(孔)24が形成されたステンレス鋼製のノズル基板26には、ステンレス鋼製の金属基板204が接着フィルム205を介して接合されており、さらにその上に同様のステンレス鋼製の金属基板204が接着フィルム205を介して接合されている。そして、その上には、連通口形成基板206及びキャビティ基板207が順次接合されている。
【0168】
ノズル基板26、金属基板204、接着フィルム205、連通口形成基板206及びキャビティ基板207は、それぞれ所定の形状(凹部が形成されるような形状)に成形され、これらを重ねることにより、キャビティ23及びリザーバ28が形成される。キャビティ23とリザーバ28とは、インク供給口210を介して連通している。また、リザーバ28は、インク取り入れ口29に連通している。
【0169】
キャビティ基板207の上面開口部には、振動板21が設置され、この振動板21には、下部電極213を介して圧電素子(ピエゾ素子)200が接合されている。また、圧電素子200の下部電極213と反対側には、上部電極214が接合されている。ヘッドドライブ215は、駆動電圧波形を生成する駆動回路を備え、上部電極214と下部電極213との間に駆動電圧波形を印加(供給)することにより、圧電素子200が振動し、それに接合された振動板21が振動する。この振動板21の振動によりキャビティ23の容積(キャビティ内の圧力)が変化し、キャビティ23内に充填されたインク(液体)がノズル24より液滴として吐出する。
【0170】
液滴の吐出によりキャビティ23内で減少した液量は、リザーバ28からインクが供給されて補給される。また、リザーバ28へは、インク取り入れ口29からインクが供給される。
図26に示すインクジェットヘッド20Bも前記と同様に、圧電素子200の駆動によりキャビティ23内のインク(液体)がノズルから吐出するものである。このインクジェットヘッド20Bは、一対の対向する基板220を有し、両基板220間に、複数の圧電素子200が所定間隔をおいて間欠的に設置されている。
【0171】
隣接する圧電素子200同士の間には、キャビティ23が形成されている。キャビティ23の図26中前方にはプレート(図示せず)、後方にはノズル基板26が設置され、ノズル基板26の各キャビティ23に対応する位置には、ノズル(孔)24が形成されている。
各圧電素子200の一方の面及び他方の面には、それぞれ、一対の電極224が設置されている。すなわち、1つの圧電素子200に対し、4つの電極224が接合されている。これらの電極224のうち所定の電極間に所定の駆動電圧波形を印加することにより、圧電素子200がシェアモード変形して振動し(図26において矢印で示す)、この振動によりキャビティ23の容積(キャビティ内の圧力)が変化し、キャビティ23内に充填されたインク(液体)がノズル24より液滴として吐出する。すなわち、インクジェットヘッド20Bでは、圧電素子200自体が振動板として機能する。
【0172】
図27に示すインクジェットヘッド20Cも前記と同様に、圧電素子200の駆動によりキャビティ23内のインク(液体)がノズル24から吐出するものである。このインクジェットヘッド20Cは、ノズル24が形成されたノズル基板26と、スペーサ232と、圧電素子200とを備えている。圧電素子200は、ノズル基板26に対しスペーサ232を介して所定距離に離して設置されており、ノズル基板26と圧電素子200とスペーサ232とで囲まれる空間にキャビティ23が形成されている。
【0173】
圧電素子200の図27中上面には、複数の電極が接合されている。すなわち、圧電素子200のほぼ中央部には、第1電極234が接合され、その両側部には、それぞれ第2の電極235が接合されている。第1電極234と第2電極235との間に所定の駆動電圧波形を印加することにより、圧電素子200がシェアモード変形して振動し(図27において矢印で示す)、この振動によりキャビティ23の容積(キャビティ内の圧力)が変化し、キャビティ23内に充填されたインク(液体)がノズル24より液滴として吐出する。すなわち、インクジェットヘッド20Cでは、圧電素子200自体が振動板として機能する。
【0174】
図28に示すインクジェットヘッド20Dも前記と同様に、圧電素子200の駆動によりキャビティ23内のインク(液体)がノズル24から吐出するものである。このインクジェットヘッド20Dは、ノズル24が形成されたノズル基板26と、キャビティ基板242と、振動板21と、複数の圧電素子200を積層してなる積層圧電素子201とを備えている。
【0175】
キャビティ基板242は、所定の形状(凹部が形成されるような形状)に成形され、これにより、キャビティ23及びリザーバ28が形成される。キャビティ23とリザーバ28とは、インク供給口247を介して連通している。また、リザーバ28は、インク供給チューブ311を介してインクカートリッジ3と連通している。
積層圧電素子201の図28中下端は、中間層244を介して振動板21と接合されている。積層圧電素子201には、複数の外部電極248及び内部電極249が接合されている。すなわち、積層圧電素子201の外表面には、外部電極248が接合され、積層圧電素子201を構成する各圧電素子200同士の間(又は各圧電素子の内部)には、内部電極249が設置されている。この場合、外部電極248と内部電極249の一部が、交互に、圧電素子200の厚さ方向に重なるように配置される。
【0176】
そして、外部電極248と内部電極249との間にヘッドドライブ215より駆動電圧波形を印加することにより、積層圧電素子201が図28中の矢印で示すように変形して(図28中上下方向に伸縮して)振動し、この振動により振動板21が振動する。この振動板21の振動によりキャビティ23の容積(キャビティ内の圧力)が変化し、キャビティ23内に充填されたインク(液体)がノズル24より液滴として吐出する。
【0177】
液滴の吐出によりキャビティ23内で減少した液量は、リザーバ28からインクが供給されて補給される。また、リザーバ28へは、インクカートリッジ3からインク供給チューブ311を介してインクが供給される。
以上のような圧電素子を備えるインクジェットヘッド20A〜20Dにおいても、前述した静電容量方式のインクジェットヘッド20と同様にして、振動板又は振動板として機能する圧電素子の残留振動に基づき、液滴吐出の異常を検出しあるいはその異常の原因を特定することができる。なお、インクジェットヘッド20B及び20Cにおいては、キャビティに面した位置にセンサとしての振動板(残留振動検出用の振動板)を設け、この振動板の残留振動を検出するような構成とすることもできる。
【0178】
以上のように、本発明の液滴吐出装置、液滴吐出ヘッドの吐出異常検出方法及びプログラムは、静電アクチュエータ又は圧電アクチュエータの駆動により、液滴吐出ヘッドから液体を液滴として吐出する動作を行った際に、このアクチュエータによって変位させられた振動板の残留振動を検出し、その振動板の残留振動パターンに基づいて、液滴が正常に吐出されたか、あるいは吐出されなかったか(吐出異常)を検出することとした。
【0179】
また、本発明は、吐出異常と判定された場合、上記振動板の残留振動の残留振動波形から計測したパルス幅計測値に基づいて、液滴の吐出異常の原因が気泡混入によるものか否かを判定することとした。さらに、液滴の吐出異常の原因が気泡混入以外と判定された場合に、上記振動板の残留振動の残留振動波形から計測したパルス幅計測値の初期状態における初期計測値と、前記初期状態の後に液滴吐出動作を所定回数駆動する毎にパルス幅計測値の順次計測値を比較し、液滴吐出動作の駆動回数の増加に応じて初期計測値が順次計測値が大きくなった場合には紙粉異常と判定し、逆に小さくなる場合には乾燥異常と判断するようにした。
【0180】
したがって、本発明によって、従来の吐出異常検出方法を備える液滴吐出装置に比べ、ノズルの液滴の吐出異常の原因を正確に特定し、原因に応じた最適な回復処理を実現することができる。これにより、回復処理のために無駄なインクを吐出することなく、回復処理時間も短縮できる。
以上、本発明の液滴吐出装置、及び、液滴吐出ヘッドの吐出異常検出方法を図示の各実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、液滴吐出ヘッドあるいは液滴吐出装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、本発明の液滴吐出ヘッドあるいは液滴吐出装置に、他の任意の構成物が付加されていてもよい。
【0181】
なお、本発明の液滴吐出装置の液滴吐出ヘッド(上述の実施形態では、インクジェットヘッド20)から吐出する吐出対象液(液滴)としては、特に限定されず、例えば以下のような各種の材料を含む液体(サスペンション、エマルション等の分散液を含む)とすることができる。すなわち、カラーフィルタのフィルタ材料を含むインク、有機EL(Electro Luminescence)装置におけるEL発光層を形成するための発光材料、電子放出装置における電極上に蛍光体を形成するための蛍光材料、PDP(Plasma Display Panel)装置における蛍光体を形成するための蛍光材料、電気泳動表示装置における泳動体を形成する泳動体材料、基板Wの表面にバンクを形成するためのバンク材料、各種コーティング材料、電極を形成するための液状電極材料、2枚の基板間に微小なセルギャップを構成するためのスペーサを構成する粒子材料、金属配線を形成するための液状金属材料、マイクロレンズを形成するためのレンズ材料、レジスト材料、光拡散体を形成するための光拡散材料などである。
【0182】
また、本発明では、液滴を吐出する対象となる液滴受容物は、記録用紙のような紙に限らず、フィルム、織布、不織布等の他のメディアや、ガラス基板、シリコン基板等の各種基板のようなワークであってもよい。
【図面の簡単な説明】
【0183】
【図1】本発明の実施形態における液滴吐出装置の一種であるインクジェットプリンタの概略構成を示す平面図である。
【図2】図1に示すインクジェットプリンタのヘッドユニットの構成を示す断面図である。
【図3】図2に示すヘッドユニットのノズル基板の構成を示す平面図である。
【図4】図2に示す振動板の残留振動を想定した単振動の計算モデルを示す回路図である。
【図5】図2に示す振動板の残留振動の検出波形の実験結果の一例を示す図であり、正常の場合と異常の場合についてそれぞれ示す。
【図6】本発明に係る振動板の残留振動の検出原理を説明する図である。
【図7】乾燥異常の場合のShot数による残留振動波形の変化を示すグラフである。
【図8】紙粉異常の場合のShot数と紙粉付着の様子を撮影した写真、及び断面模式図である。
【図9】紙粉異常の場合のShot数による残留振動波形の変化を示すグラフである。
【図10】本発明の吐出異常検出を行うための構成図である。
【図11】本発明の検出タイミング発生回路の構成図である。
【図12】本発明の残留振動検出回路の回路図である。
【図13】本発明のパルス幅計測回路の構成図である。
【図14】本発明のパルス幅計測回路のタイミングチャートである。
【図15】本発明の吐出異常検出回路の構成図である。
【図16】本発明の分別回路の構成図である。
【図17】本発明の制御部のフローチャートである。
【図18】本発明の分別処理の紙粉異常の場合のタイミングチャートである。
【図19】本発明の分別処理の乾燥異常の場合のタイミングチャートである。
【図20】本発明の吐出異常検出処理の正常の場合のタイミングチャートである。
【図21】本発明の吐出異常検出処理の気泡異常の場合のタイミングチャートである。
【図22】図1に示すワイパとヘッドユニットとの位置関係を示す図である。
【図23】ポンプ吸引処理時における、インクジェットヘッドと、キャップ及びポンプとの関係を示す図である。
【図24】図23に示すチューブポンプの構成を示す概略図である。
【図25】本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
【図26】本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
【図27】本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
【図28】本発明におけるインクジェットヘッドの他の構成例の概略を示す断面図である。
【図29】本発明の吐出異常検出をプログラムで行う場合の構成図である。
【図30】本発明の吐出異常検出をプログラムで行う場合のフローチャートである。
【図31】本発明のパルス幅計測処理のフローチャートである。
【図32】本発明の吐出異常判定処理のフローチャートである。
【図33】本発明の紙粉・乾燥分別処理のフローチャートである。
【符号の説明】
【0184】
1・・・インクジェットプリンタ、2・・・ヘッドユニット、3・・・インクカートリッジ、4・・・キャリッジ、5・・・キャリッジ軸、6・・・モータ、20・・・インクジェットヘッド、13・・・ワイパ、14・・・キャップ、21・・・振動板、22・・・静電式アクチュエータ、23・・・キャビティ(圧力室)、24・・・ノズル、26・・・ノズル基板、28・・・リザーバ、29・・・インク取り入れ口、30・・・個別電極、31・・・空隙、32・・・共通電極、102・・・制御部、 104・・・駆動回路、 106・・・残留振動検出部、 110・・・吐出異常検出回路、 112・・・分別回路、 114・・・検出タイミング発生回路、 116・・・駆動/検出切替えスイッチ、 118・・・残留振動検出回路、 120・・・パルス幅計測回路

【特許請求の範囲】
【請求項1】
振動板と、該振動板を変位させるアクチュエータと、内部に液滴が充填され前記振動板の変位により内部の圧力が増減されるキャビティと、該キャビティに連通し当該キャビティ内部の圧力の増減により液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、
前記アクチュエータを駆動する所定の駆動信号を出力する駆動手段と、
前記振動板の残留振動を検出する残留振動検出手段と、
該残留振動検出手段で検出された前記振動板の残留振動パターンに基づいて液滴の吐出の異常を検出する吐出異常検出手段と、
該吐出異常検出手段で吐出異常を検出したときに、前記駆動手段でノズル周辺の音響インピーダンスが変化するように前記駆動信号を所定回数出力させた後の前記残留振動検出手段で検出した残留振動パターンに基づいて前記ノズルの吐出異常原因を分別する分別手段と、を備えたことを特徴とする液滴吐出装置。
【請求項2】
振動板と、該振動板を変位させるアクチュエータと、内部に液滴が充填され前記振動板の変位により内部の圧力が増減されるキャビティと、該キャビティに連通し当該キャビティ内部の圧力の増減により液体を液滴として吐出するノズルとを有する液滴吐出ヘッドと、
前記アクチュエータを駆動する所定の駆動信号を出力する駆動手段と、
前記振動板の残留振動を検出する残留振動検出手段と、
該残留振動検出手段で検出された前記振動板の残留振動パターンに基づいて液滴の吐出の異常を検出する吐出異常検出手段と、
該吐出異常検出手段で吐出異常を検出したときに、前記駆動手段でノズル周辺の音響インピーダンスが変化するように前記駆動信号を所定回数出力させた後の前記残留振動検出手段で検出した残留振動パターンに基づいて前記ノズルの吐出異常原因を分別する分別手段と、
前記吐出異常検出手段と、前記分別手段の分別結果に応じた回復処理を行う回復処理手段と、を備えたことを特徴とする液滴吐出装置。
【請求項3】
前記吐出異常検出手段は、前記振動板の残留振動波形のパルス幅を計測するパルス幅計測部と、該パルス幅計測部の計測値と前記振動板の残留振動波形におけるパルス幅の正常範囲を示す正常吐出基準値とを比較する比較手段と、該比較手段の比較結果に基づいてノズルから吐出される液滴が正常であるか否かを判定する第1の判定手段と、該第1の判定手段の判定結果がノズルから吐出される液滴が異常であるときに、ノズルからの液滴吐出異常原因が気泡混入であるか否かを判定する第2の判定手段を備え、該第2の判定手段の判定結果が気泡混入ではないときに、このことを表す分別信号と前記パルス幅計測部の計測値とを前記分別手段に出力するように構成されていることを特徴とする請求項1又は2に記載の液滴吐出装置。
【請求項4】
前記第2の判定手段は、前記パルス幅計測部の計測値が正常範囲の下限値を示す正常吐出基準値未満であるときに気泡混入異常であると判定し、前記パルス幅計測部の計測値が正常範囲の上限値を示す正常吐出基準値を超えているときに気泡混入以外の異常であると判定することを特徴とする請求項3に記載の液滴吐出装置。
【請求項5】
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、該比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値未満になったときに紙粉異常であると判断する異常判断手段とを備えていることを特徴とする請求項3又は4に記載の液滴吐出装置。
【請求項6】
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、前記比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値を超えたときに乾燥異常であると判断する異常判断手段とを備えていることを特徴とする請求項3又は4に記載の液滴吐出装置。
【請求項7】
前記分別手段は、前記吐出異常検出手段から入力される分別信号に基づいて初期状態における前記パルス幅計測部の初期計測値を記憶する第1の記憶部と、前記初期状態の後に前記駆動手段が所定回数駆動される毎に前記パルス幅計測部の順次計測値を記憶する第2の記憶部とを備えた記憶手段と、該記憶手段の第1の記憶部に記憶されている初期計測値と第2の記憶部に記憶されている順次計測値とを比較する順次比較手段と、該比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値未満になったときに紙粉異常であると判断し、前記比較手段の比較結果が前記駆動手段の駆動回数の増加に応じて前記初期計測値が前記順次計測値を超えたときに乾燥異常であると判断する異常判断手段とを備えていることを特徴とする請求項3又は4に記載の液滴吐出装置。
【請求項8】
前記駆動手段による前記駆動信号の出力回数は、前記分別手段がノズルからの液滴の吐出異常の原因が、乾燥異常によるものか、紙粉異常によるものか、を特定可能な回数に設定されていることを特徴とする請求項1又は2に記載の液滴吐出装置。
【請求項9】
前記分別手段は、前記異常判断手段で異常判断が行われたときに前記駆動手段及び前記残留振動検出手段の駆動を停止する駆動停止手段を備えていることを特徴とする請求項5乃至8の何れか1つに記載の液滴吐出装置。
【請求項10】
前記分別手段は、前記駆動回数が所定回数に達するまでの間に前記異常判断手段での異常判断結果が得られないときに、前記駆動手段及び前記残留振動検出手段の駆動を停止する駆動停止手段を備えていることを特徴とする請求項5乃至8の何れか1つに記載の液滴吐出装置。
【請求項11】
振動板を含むアクチュエータを駆動信号で駆動して前記振動板を振動することにより、キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動板の残留振動を検出し、検出された残留振動波形の初期パターンから、ノズルから吐出される液滴が正常であるか否かを判定する正常判定ステップと、該正常判定ステップで異常と判定されたときに、吐出異常原因が気泡混入であるか否かを判定する気泡判定ステップと、該気泡判定ステップの判定結果が気泡混入ではないときに、ノズルから液体を吐出する動作を所定回数行って前記振動板の初期残留振動とその後の残留振動パターンとを検出し、両者を比較することにより、ノズルからの液滴吐出異常が乾燥異常であるか紙粉異常であるかを分別する分別ステップとを備えていることを特徴とする液滴吐出ヘッドの吐出異常検出方法。
【請求項12】
振動板を含むアクチュエータを駆動信号で駆動して前記振動板を振動することにより、キャビティ内の液体を液滴としてノズルから吐出する動作を行った後、前記振動板の残留振動を検出し、検出された残留振動波形の初期パターンから、ノズルから吐出される液滴が正常であるか否かを判定する正常判定ステップと、該正常判定ステップで異常と判定されたときに、吐出異常原因が気泡混入であるか否かを判定する気泡判定ステップと、該気泡判定ステップの判定結果が気泡混入ではないときに、ノズルから液体を吐出する動作を所定回数行って前記振動板の初期残留振動とその後の残留振動パターンとを検出し、両者を比較することにより、ノズルからの液滴吐出異常が乾燥異常であるか紙粉異常であるかを分別する分別ステップと、
をコンピュータに実行させることを特徴とする液滴吐出ヘッドの吐出異常検出プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate


【公開番号】特開2006−1174(P2006−1174A)
【公開日】平成18年1月5日(2006.1.5)
【国際特許分類】
【出願番号】特願2004−181054(P2004−181054)
【出願日】平成16年6月18日(2004.6.18)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】