説明

移動体装置及び露光装置、並びにデバイス製造方法

【課題】ウエハステージを精密駆動する。
【解決手段】 ウエハステージWSTは、粗動ステージ82と、微動ステージ83と、微動ステージ83のX軸方向の一側と他側のそれぞれに設けられた一対のボイスコイルモータMbと、微動ステージ83のX軸及びY軸のそれぞれに交差する軸Lc,Lcにそれぞれ平行な方向の一側と他側に設けられた二対のEIコアMc、Mc、Mc、Mcとを備えている。これにより、ウエハWを保持するウエハテーブルWTBを精密に駆動することが可能となるとともに、ボイスコイルモータ及びEIコアを粗動ステージ82内にコンパクトに配置することが可能になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、移動体装置及び露光装置、並びにデバイス製造方法に係り、特に粗微動構造の移動体を備える移動体装置及び該移動体装置に露光対象の物体が載置される露光装置、並びに該露光装置を用いるデバイス製造方法に関する。
【背景技術】
【0002】
半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
【0003】
例えば、半導体製造用の露光装置では、露光対象のウエハが載置されるウエハステージ装置として、粗動ステージと微動ステージとを備えた粗微動タイプのステージ装置が比較的多く用いられている。通常、微動ステージは電磁アクチュエータによって少なくとも水平面内で駆動される。微動ステージを駆動するアクチュエータとしてリニアモータ又はボイスコイルモータ(以下、適宜、VCMと略記する)が多く用いられる。
【0004】
通常、VCMは高精度だが比較的低効率であると特徴付けられるので、ウエハステージ装置のなかには、微動ステージを必要とする走査のうち高精度な等速駆動区間には磁気剛性の低い比較的小さい力を発生するVCMを利用し、走査のうち精度の低い加速及び減速区間には、精度は落ちるが比較的大きな力を発生するより効率的なアクチュエータを利用するものが知られている(例えば、特許文献1参照)。特許文献1に開示されるウエハステージ装置では、効率的なアクチュエータとして、比較的熱を発生しない電磁アクチュエータ、例えば、EIコア・アクチュエータが用いられる。
【0005】
一方、生産性向上の要求からウエハは次第に大型化し、次世代の450ミリウエハ用のウエハステージの駆動源としては、平面モータが主流になるのではないかと言われている。粗動ステージ駆動の駆動源として平面モータを用い、微動ステージ駆動源としてそれ以外の電磁アクチュエータ(たとえばVCMやEIコア・アクチュエータ)を用いる場合、微動ステージは可能な限り軽量かつ小型であることが求められる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許出願公開第2006/0061218号明細書
【発明の概要】
【課題を解決するための手段】
【0007】
本発明の第1の態様によれば、ベース部材と、互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる少なくとも一対の第2アクチュエータと、を備える第1の移動体装置が、提供される。
【0008】
これによれば、移動体がベース部材上を移動するとき、第1方向及び第2方向に沿った駆動力を第1移動部材と第2移動部材との間に作用させる第1アクチュエータと、第3方向に沿った駆動力を第1移動部材と第2移動部材との間に作用させる少なくとも一対の第2アクチュエータとによって、第2移動部材が第1移動部材に対して駆動される。これにより、第2移動部材をベースに対して精密に駆動することが可能となるとともに、第1及び第2アクチュエータを第1移動部材上(移動体の内部)にコンパクトに配置して移動体の軽量化及び小型化を図ることが可能となる。
【0009】
本発明の第2の態様によれば、エネルギビームを照射して物体を露光する露光装置であって、前記物体が前記第2移動部材上に保持される上記第1の移動体装置と、前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える第1の露光装置が、提供される。
【0010】
これによれば、物体上にパターンを精度良く形成することが可能となる。
【0011】
上記第1の露光装置では、前記移動体の前記第2方向への走査駆動と前記第1方向へのステップ駆動とを繰り返して、前記第2部材上に保持された前記物体上の複数の区画領域のそれぞれに前記パターンを形成することとすることができる。ここで、走査駆動とは、実質的に第2方向(走査方向)のみに速度成分を有する移動体の駆動を意味し、ステップ駆動とは、第1方向(ステップ方向)に速度成分を有する移動体の駆動を意味する。本明細書では、かかる意味で、走査駆動及びステップ駆動なる用語が用いられている。
【0012】
本発明の第3の態様によれば、ベース部材と、互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、前記ベース部材に対して前記移動体を6自由度で駆動する第1駆動装置と、前記第2移動部材を前記第1移動部材に対して6自由度で駆動する第2駆動装置とを備え、前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する際、前記第1駆動装置によって前記第1移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動するとともに、前記第2駆動装置によって前記第2移動部材を前記第1部材に対して前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する第2の移動体装置が、提供される。
【0013】
これによれば、第1及び第2移動部材の相対姿勢を常に所望の状態に維持することができ、これにより、例えば第2駆動装置の制御性能の低下を防止することが可能になる。
【0014】
本発明の第4の態様によれば、エネルギビームを照射して物体を露光する露光装置であって、前記物体が前記第2移動部材上に保持される上記第2の移動体装置と、前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える第2の露光装置が、提供される。
【0015】
これによれば、物体上にパターンを精度良く形成することが可能となる。
【0016】
本発明の第5の態様によれば、上記第1及び第2の露光装置のいずれかを用いて物体を露光し、該物体上にパターンを形成することと、パターンが形成された前記物体を現像することと、を含むデバイス製造方法が、提供される。
【図面の簡単な説明】
【0017】
【図1】一実施形態に係る露光装置の構成を概略的に示す図である。
【図2】図2(A)、図2(B)、及び図2(C)は、それぞれ、ウエハステージを示す平面図、正面図、及び側面図である。
【図3】ウエハステージを示す斜視図である。
【図4】ウエハステージからウエハテーブルを取り去ったステージ本体81を示す斜視図である。
【図5】ステージ本体から微動ステージを取り外した粗動ステージを示す斜視図である。
【図6】図6(A)及び図6(B)は、図4及び図5の斜視図にそれぞれ対応する平面図である。
【図7】図7(A)は微動ステージの内部構造を一部断面して示す図、図7(B)は微動ステージを駆動するボイスコイルモータの内部構造を示す平面図である。
【図8】微動ステージを駆動するEIコアの内部構造を示す平面図である。
【図9】微動ステージ及びこの上面に固定されたウエハテーブルを裏面側から見た斜視図が示されている。
【図10】干渉計システムを説明するための図である。
【図11】ステージ装置及びセンサユニットの配置を示す平面図である。
【図12】エンコーダヘッド(Xヘッド、Yヘッド)とアライメント系の配置を示す平面図である。
【図13】Zヘッドと多点AF系の配置を示す平面図である。
【図14】一実施形態に係る露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。
【図15】図14の制御系の構成各部のうち、ステージ装置の構成各部の詳細構成例を示す図である。
【図16】ステップ・アンド・スキャン方式の露光におけるウエハステージの移動経路に対応する露光中心のウエハ上の移動経路を表す図である。
【発明を実施するための形態】
【0018】
以下、一実施形態について、図1〜図16に基づいて説明する。
【0019】
図1には、一実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、すなわちいわゆるスキャナである。後述するように、本実施形態では投影光学系PLが設けられている。以下においては、投影光学系PLの光軸AXと平行な方向をZ軸方向(Z方向)、これに直交する面内でレチクルRとウエハWとが相対走査される走査方向をY軸方向(Y方向)、Z軸及びY軸に直交する方向をX軸方向(X方向)とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
【0020】
露光装置100は、照明系10、レチクルステージRST、投影ユニットPU、ウエハステージWST及び計測ステージMSTを有するステージ装置50、及びこれらの制御系等を備えている。図1において、レチクルステージRST上にはレチクルRが載置され、ウエハステージWST上にはウエハWが載置されている。
【0021】
照明系10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、オプティカルインテグレータを有する照度均一化光学系、及びレチクルブラインド(いずれも不図示)を有する照明光学系と、を含む。照明系10は、レチクルブラインド(マスキングシステム)で設定(制限)されたレチクルR上のスリット状の照明領域IARを照明光(露光光)ILによりほぼ均一な照度で照明する。ここで、照明光ILとして、例えばArFエキシマレーザ光(波長193nm)が用いられている。
【0022】
レチクルステージRST上には、パターン面(図1における下面)に回路パターンなどが形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では不図示、図14参照)によって、XY平面内で微小駆動可能であるとともに、走査方向(図1における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。
【0023】
レチクルステージRSTのXY平面内の位置情報(θz方向の位置(回転)情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」と略記する)116によって、移動鏡15(実際には、Y軸方向に直交する反射面を有するY移動鏡(あるいは、レトロリフレクタ)とX軸方向に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計116の計測情報は、主制御装置20(図1では不図示、図14参照)に送られる。なお、移動鏡15に代えて、レチクルステージRSTの端面に鏡面加工により形成された反射面を用いても良い。
【0024】
投影ユニットPUは、レチクルステージRSTの図1における下方に配置されている。投影ユニットPUは、鏡筒40と、鏡筒40内に保持された投影光学系PLと、を含む。投影光学系PLとしては、例えば、Z軸と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4、1/5又は1/8など)を有する。このため、照明系10によってレチクルR上の照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介して照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLの第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系10、及び投影光学系PLによってウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
【0025】
本実施形態の露光装置100には、液浸方式の露光を行うために、局所液浸装置8が設けられている。局所液浸装置8は、例えば液体供給装置5、液体回収装置6(いずれも図1では不図示、図14参照)、液体供給管31A、液体回収管31B、及びノズルユニット32等を含む。ノズルユニット32は、図1に示されるように、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子、ここではレンズ(以下、「先端レンズ」ともいう)191を保持する鏡筒40の下端部周囲を取り囲むように、投影ユニットPUを保持する不図示のメインフレームに吊り下げ支持されている。本実施形態では、ノズルユニット32は、図1に示されるように、その下端面が先端レンズ191の下端面とほぼ同一面に設定されている。また、ノズルユニット32は、液体Lqの供給口及び回収口と、液体供給管31A及び液体回収管31Bにそれぞれ接続される供給流路及び回収流路とを備え、前記回収口が設けられた下面にウエハWが対向して配置される。
【0026】
液体供給管31A及び液体回収管31Bは、それぞれ液体供給装置5及び液体回収装置6(図1ではいずれも不図示、図14参照)に接続されている。ここで、液体供給装置5には、液体を貯蔵するタンク、加圧ポンプ、温度制御装置、液体の流量を制御するためのバルブ等が備えられている。液体回収装置6には、回収した液体を貯蔵するタンク、吸引ポンプ、液体の流量を制御するためのバルブ等が備えられている。
【0027】
主制御装置20(図14参照)は、液体供給装置5を制御して、液体供給管31Aを介して先端レンズ191とウエハWとの間に液体Lqを供給するとともに、液体回収装置6を制御して、液体回収管31Bを介して先端レンズ191とウエハWとの間から液体Lqを回収する。このとき、主制御装置20は、供給される液体Lqの量と回収される液体Lqの量とが常に等しくなるように、液体供給装置5と液体回収装置6とを制御する。従って、先端レンズ191とウエハWとの間には、一定量の液体Lq(図1参照)が常に入れ替わって保持され、これにより液浸領域14(図10、図11等参照)が形成される。なお、投影ユニットPUの下方に後述する計測ステージMSTが位置する場合にも、同様に先端レンズ191と計測テーブルとの間に液浸領域14を形成することができる。
【0028】
本実施形態では、上記の液体として、ArFエキシマレーザ光(波長193nmの光)が透過する純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものとする。なお、ArFエキシマレーザ光に対する水の屈折率nは、ほぼ1.44であり、水の中では、照明光ILの波長は、193nm×1/n=約134nmに短波長化される。
【0029】
ステージ装置50は、図1に示されるように、床面上に複数(例えば3つ又は4つ)の防振機構(図示省略)によってほぼ水平に支持されたベース盤12、ベース盤12上に配置されたステージベース13、ステージベース13上に配置されたウエハステージWST及び計測ステージMST、ウエハステージWST及び計測ステージMSTを駆動するステージ駆動系124(図14参照)、及びウエハステージWST及び計測ステージMSTの位置情報を計測するステージ位置計測系200を含む計測システム300(図14参照)等を備えている。ステージ位置計測系200は、図14に示されるように、干渉計システム118、エンコーダシステム150及び面位置計測システム180などを含む。
【0030】
ベース盤12は平板状部材からなり、上面にはステージベース13をXY平面内で移動可能に支持する支持面が形成されている。
【0031】
ステージベース13は、平板状部材から成り、上述のベース盤12上に不図示のエアベアリング(又は転がり軸受)を介して支持されている。ステージベース13は、ウエハステージWST及び計測ステージMSTの駆動の際に、その駆動力の反力を受けて運動量保存則に従って移動し、その反力をキャンセルする反力キャンセル装置の一種であるカウンタマスとして機能する。ステージベース13のXY平面内の位置情報(前述したメインフレームを基準とする位置情報)は、例えばエンコーダあるいは干渉計から構成されるステージベース位置計測系169(図14参照)によって計測される。ステージベース位置計測系169の一例は、例えば米国特許出願第2009/0316133号明細書に開示されている。
【0032】
主制御装置20は、ステージベース13の基準位置からの移動量が所定範囲に収まるように、ステージベース位置計測系169による計測情報に基づいて、ステージベース駆動系160(図14参照)を介してステージベース13を駆動する。すなわち、ステージベース駆動系160は、トリムモータとして使用される。
【0033】
ステージベース13は、図2(B)及び図2(C)に示されるように、上面側にコイルユニットCUaが埋めこまれた平面視矩形の板状の部材である。コイルユニットCUaは、XY平面内で二次元配列された複数のコイルを含む。ステージベース13の上面には、コイルユニットCUaを覆うように、非磁性体から成る不図示の保護プレートが固定されている。保護プレートは、ウエハステージWST及び計測ステージMSTとコイルユニットCUaとの直接的な接触を防止する。
【0034】
ウエハステージWSTは、図1等に示されるように、ステージ本体81と、ステージ本体81の上に配置されたウエハテーブルWTBとを有している。
【0035】
図2(A)、図2(B)及び図2(C)には、それぞれ、ウエハステージWSTを上方から見た図(平面図)、ウエハステージWSTを−Y方向から見た図(正面図)、及びウエハステージWSTを+X方向から見た図(側面図)が、示されている。ステージ本体81は、図2(B)及び図2(C)等に示されるように、粗動ステージ82と、該粗動ステージ82上に支持される微動ステージ83とを有する。微動ステージ83上に、ウエハテーブルWTBが搭載されて一体的に固定されている。
【0036】
図3には、ウエハステージWSTの斜視図が、図4には、図3のウエハステージWSTからウエハテーブルWTBを取り去ったステージ本体81の斜視図が、図5には、図4のステージ本体81から微動ステージ83を取り外した粗動ステージ82の斜視図が、それぞれ示されている。また、図6(A)及び図6(B)には、図4及び図5の斜視図に対応する平面図がそれぞれ示されている。図7(A)には、微動ステージの内部構造を示す断面図が示され、図7(B)には、微動ステージを駆動するボイスコイルモータの内部構造を示す平面図が示されている。また、図8には、微動ステージを駆動するEIコアの内部構造を示す平面図が示されている。また、図9には、微動ステージ83及びこの上面に固定されたウエハテーブルWTBを裏面側から見た斜視図が示されている。
【0037】
ここで、図1〜図9に基づいて、ウエハステージWSTについて説明する。
【0038】
粗動ステージ82は、図5及び図6(B)などに示されるように、平面視(+Z方向から見て)矩形の板状のスライダ部82aと、スライダ部82a上面にそれぞれ固定され、スライダ部82aの外枠にほぼ沿って配置された二重の八角形状の第1リブ82bと、後述する3つのZ・チルト駆動機構28のそれぞれの底部近傍を囲む3つの第1部分とそれら3つの第1部分を互いに連結する第2部分とを有する第2リブ82cと、第1リブ82bと第2リブ82cとを4箇所で連結する第3リブ82dと、を有している。粗動ステージ82は、このように軽量で且つ高い剛性を有する構造になっている。
【0039】
スライダ部82aは、図2(B)及び図2(C)に示されるように、XY二次元方向を行方向及び列方向としてマトリックス状に配置された複数の磁石から成る磁石ユニットMUaを有している。磁石ユニットMUaと、ステージベース13内に埋めこまれた前述のコイルユニットCUaとによって、例えば米国特許出願公開第2003/0085676号明細書などに開示される磁気浮上型のローレンツ力(電磁力)駆動方式の平面モータMaが構成されている。コイルユニットCUaを構成する各コイルに供給される電流の大きさ及び方向は、主制御装置20によって制御される(図15参照)。平面モータMaによって、粗動ステージ82(ウエハステージWST)は、ステージベース13に対して6自由度方向(X軸、Y軸、Z軸、θx、θy、及びθzの各方向)に駆動される。この場合、粗動ステージ82(ウエハステージWST)は、X軸方向及びY軸方向に関しては長ストロークで駆動され、残りの方向については、微小駆動される。
【0040】
スライダ部82a上面のX軸方向の両端部に位置する部分の第1リブ82b上には、図5及び図6(B)に示されるように、一対の支持部87のそれぞれを介して一対の固定子部85aが設けられている。また、スライダ部82aの4つの角部のそれぞれに対応する部分の第1リブ82b上には、支持部84をそれぞれ介して4つの電磁石TUcが設けられている。4つの電磁石TUcのそれぞれは、ハウジングに収容されている。
【0041】
各固定子部85aは、図5に示されるように、XY平面に平行な板状部材から成り、その内部に、図7(A)及び図7(B)に示されるように、コイルユニットCUbが収容されている。
【0042】
微動ステージ83は、図4及び図6(A)などに示されるように、平面視で八角形の板状部材から成る本体部83aと、本体部83aのX軸方向の一側と他側の端部それぞれに固定された一対の可動子部83bと、本体部83aの八角形の斜辺部(X軸及びY軸にほぼ直交する4つの辺以外の4つの辺)のそれぞれに各1つ固定された合計4つの磁性体部材MUcと、を有する。
【0043】
可動子部83bは、図7(A)に示されるように、XZ断面がU字状の部材から成り、その上下の対向部(上下に位置する一対の板状部分)のそれぞれに、後述する磁石ユニットMUbが収容されている。微動ステージ83が粗動ステージ82に組み込まれた図4の状態では、可動子部83bの上下の対向部間に、前述の固定子部85aが非接触で挿入されている。
【0044】
磁性体部材MUcとしては、後述する電磁石TUcのコイルによって生成される力場に応答可能な磁気的に透過性のある物質であれば、種々の素材を用いることができる。
【0045】
本実施形態では、前述の一対の固定子部85aのそれぞれに収容されたコイルユニットCUbと、これに対応して可動子部83bに収容された各一対の磁石ユニットMUbとによって、一対のボイスコイルモータMbが構成されている(図7(A)参照)。以下、ボイスコイルモータMbについて説明する。
【0046】
本体部83aの+X側と−X側のボイスコイルモータMbは、同じ構成を有しているので、以下では、−X側のボイスコイルモータMbについて説明する。
【0047】
コイルユニットCUbは、図7(B)に示されるように、固定子部85a(の筐体)の内部における中央部に配置されたY軸方向を長手方向とする平面視矩形状の1つのXコイル(以下、適宜「コイル」と呼ぶ)56aと、コイル56aのY軸方向の一側と他側にそれぞれ配置されたX軸方向を長手方向とする平面視矩形状の2つのYコイル(以下、適宜「コイル」と呼ぶ)55a,57aとを含む。
【0048】
磁石ユニットMUbは、図7(B)に示されるように、可動子部83bの上下対向部のそれぞれの内部における中央部にX軸方向に並べて配置されたY軸方向を長手方向とする平面視長方形の一対の永久磁石56bと、これらの永久磁石56bのY軸方向の一側と他側にそれぞれY軸方向に並べて配置された各一対のX軸方向を長手方向とする平面視長方形の永久磁石55b,57bとを含む。図7(B)に示されるように、各一対の永久磁石55b,57bが、それぞれコイル55a、57aと対向し、一対の永久磁石56bがコイル56aと対向し得るように、各コイルと各永久磁石との位置関係が定められている。
【0049】
なお、図7(B)には、可動子部83bの上下の対向部のうち、上側の対向部に収容された磁石ユニットMUbのみが示されているが、下側の対向部に収容された磁石ユニットMUbも同様に構成されている。各一対の永久磁石55b,56b,57bは、それぞれ一方と他方との磁極の向きが互いに逆になるように配列されている。そして、各一対の永久磁石55b,57b,56bのそれぞれは、コイルユニットCUbを構成するコイル55a,57a,56aの+Z側又は−Z側の面に対向している。すなわち、可動子部83bの上下対向部内の一対の磁石ユニットMUbに含まれる、各一対の永久磁石55b,56b,57bにより、固定子部85a内のコイルユニットCUbに含まれるコイル55a,56a,57aがZ軸方向にそれぞれ挟まれている。
【0050】
上述の構成の固定子部85aと可動子部83bとにより、−X側のボイスコイルモータMbが構成される。この場合、厳密に言うと、上下一対の永久磁石55b,56b,57bのそれぞれと、コイル55a,56a,57aのそれぞれとによって、3つのボイスコイルモータが構成されるが、説明の便宜上、その3つのボイスコイルモータの全体を1つのボイスコイルモータMbとみなしている。
【0051】
上述のようにして本体部83aの+X側及び−X側のボイスコイルモータMbが構成されている。各ボイスコイルモータMbは、Yコイル55a,57aに電流が流されることにより、粗動ステージ82に対して微動ステージ83をY軸方向に微小駆動し、Xコイル56aに電流が流されることにより、粗動ステージ82に対して微動ステージ83をX軸方向に微小駆動する。
【0052】
一対のボイスコイルモータMb、すなわち本体部83aの+X側のボイスコイルモータMb及び本体部83aの−X側のボイスコイルモータMbのそれぞれで互いに異なる強さのY軸方向の駆動力を発生することにより、粗動ステージ82に対して微動ステージ83をθz方向に駆動(回転)することができる。
【0053】
一対のボイスコイルモータMbは、主制御装置20によって、それぞれのコイルユニットCUbを構成する各コイルに供給される電流の大きさ及び方向が制御されることによりそれぞれで発生するX軸方向及びY軸方向の駆動力が制御される(図15参照)。なお、各ボイスコイルモータMbに代えて、例えば米国特許出願公開第2010/0073653号明細書に開示される微動ステージ駆動系と同様の2段(あるいは多段)構成のボイスコイルモータ(又はリニアモータ)を採用することも可能である。
【0054】
本実施形態では、図6(A)に示されるように、スライダ部82aの4つの角部のそれぞれに設けられた4つの電磁石TUcと、各電磁石TUcに対向して本体部83aの八角形の4つの斜辺部のそれぞれに固定された4つの磁性体部材MUcとによって、4つのEIコア・アクチュエータMc,Mc、Mc、Mcが、構成されている。以下、EIコア・アクチュエータ(以下、EIコアと略記する)について説明する。
【0055】
4つのEIコアMc,Mc、Mc、Mcのそれぞれは、同様に構成されているので、ここでは、そのうちの1つを取り上げて説明する。図8には、図6(A)中の破線の四角Sqで囲まれた1つのEIコアMc、すなわちステージ本体81の+X側かつ−Y側端部の角部に位置するEIコアMcが、拡大して示されている。
【0056】
図8に示されるように、電磁石TUcは、Eコア(又はEエレメント)と呼ばれるE字状のコアTUcと、コアTUcの3つの凸部にそれぞれ巻回されたコイルTUcと、を含む。EコアTUcは、3つの凸部がXY平面内でX軸及びY軸のそれぞれに交差する軸LC1に平行に、かつその3つの凸部の先端面が軸LC1に直交する平面に平行になるように、配置されている。本実施形態では、軸LC1は、例えばX軸及びY軸に対して、45度以外の角度で交差している。例えば、軸LC1は、X軸に対して約40度の角度を成している。コアTUcは、磁気的に透過性のある部材であれば、鉄その他の素材を用いることができる。また、コアTUcとしては、Eコアに限らず、C状のコア又は複数叉コアでも良い。電磁石TUcとして、コアTUcの3つの凸部のうちの中央の凸部のみにコイルTUcが巻回されたものを用いることもできる。
【0057】
磁性体部材MUcは、微動ステージ83の本体部83aの斜辺部に固定され、ギャップGを挟んで電磁石TUcのコアTUc(3つの凸部)の先端面に対向して配置されている。電磁石TUcの先端面と対向する磁性体部材MUcの対向面は、軸LC1に直交している。
【0058】
その他のEIコアも上記EIコアMcと同様に構成されている。すなわち、図6(A)に示されるように、微動ステージ83の本体部83aの中心に関して上記EIコアMcと対称な配置で、別のEIコアMcが設けられている。すなわち、本体部83aを挟んでEIコアMcと軸Lcと平行な方向の反対側(ステージ本体81の−X側かつ+Y側の角部側)には、EIコアMcを構成する電磁石TUcと磁性体部材MUcとが上記と同様にして設けられている。
【0059】
上述した2つ(一対)のEIコアMc、Mcのそれぞれは、電磁石TUcのコイルTUcに電流が流されることにより、磁性体部材MUcとコアTUcとの間に軸Lcに平行な方向の吸引力(駆動力)を発生する。例えば、前述のEIコアMcは、図8中に黒塗り矢印で示される方向の吸引力を発生する。EIコアMcは、これと逆向きの吸引力を発生する。2つ(一対)のEIコアMc、Mcは、上記吸引力を駆動力として、微動ステージ83を、粗動ステージ82に対して軸Lcに平行な方向に微小駆動する。
【0060】
残りの一対のEIコアMc、Mcは、上述の一対のEIコアMc、Mcと同様に、ただし、図6(A)に示されるように、微動ステージ83の本体部83aの中心を通るY軸に関して、一対のEIコアMc、Mcと対称な配置で構成されている。一対のEIコアMc、Mcのそれぞれは、電磁石TUcのコイルTUcに電流が流されることにより、磁性体部材MUcをコアTUc側に引きつける、Y軸に関して軸Lcと対称な軸Lcに平行な方向の吸引力(駆動力)を発生する。一対のEIコアMc、Mcは、微動ステージ83を、粗動ステージ82に対して軸Lcに平行な方向に微小駆動する。
【0061】
前述の説明から明らかなように、軸Lc、LcはX軸に対して、それぞれ、約40度及び−40度の角度を成すように定められている。これらの方向は、後述するステップ・アンド・スキャン方式の露光動作におけるウエハ(ウエハステージWST)のショット間ステッピング動作時において、ウエハステージWSTに作用する最大加速度の方向に対応している。すなわち、この最大加速度の方向を考慮して、4つのEIコアMc,Mc、Mc、Mcのそれぞれによる吸引力の方向(すなわち、それぞれのEIコアの取り付け方向)が設定されている。
【0062】
また、軸Lc、Lcの方向は、露光動作中におけるウエハステージWSTの移動範囲(移動経路)に応じて決定してもかまわない。すなわち、走査方向であるY軸方向の移動範囲がX軸方向の移動範囲よりも広い場合、本実施形態のように軸Lc、LcをX軸に対して45度よりも小さい角度とすることで、ウエハステージWSTのY軸方向の大きさを縮小することができる。これにより、ウエハステージWSTの移動範囲を変更せずに露光装置による占有面積の増加を抑えることが可能になる。なお、ウエハステージWSTの移動範囲(移動経路)に応じ、軸Lc、LcをX軸に対して45度よりも大きな角度としても良い。
【0063】
4つのEIコアMc,Mc、Mc、Mcのそれぞれは、主制御装置20によって制御される(図15参照)。主制御装置20は、4つのEIコアMc,Mc、Mc、Mcのそれぞれが有する電磁石TUcを構成するコイルTUcに供給される電流の大きさを制御することで、EIコアMc,Mcのそれぞれの吸引力(駆動力)の発生及び停止、並びに駆動力の大きさを制御する。なお、上記EIコアMc,Mc、Mc、Mcの少なくとも1つに代えて、上記と反対に、スライダ部82a側(支持部84側)に磁性体部材MUcが設けられ、本体部83a側に電磁石TUcが配置されるタイプのアクチュエータを用いることも可能である。
【0064】
微動ステージ83は、図5及び図6(B)に示されるZ・チルト駆動機構28と、自重キャンセラ29とによって粗動ステージ82に対して非接触で支持されている(図7(A)参照)。自重キャンセラ29は、粗動ステージ82のスライダ部82a上面の中心に配置されている。Z・チルト駆動機構28は、スライダ部82a上面の中心にその重心が一致する正三角形の各頂点の位置に配置され、微動ステージ83(本体部83a)をそれぞれ支持するとともに、その支持点で独立してZ軸方向に駆動する3つのアクチュエータ28a、28b、及び28c(例えばボイスコイルモータ)を含む。アクチュエータ28a〜28cの固定子は、粗動ステージ82に固定され、可動子は、微動ステージ83に固定されている。Z・チルト駆動機構28(3つのアクチュエータ28a〜28c)により、微動ステージ83は、粗動ステージ82に対してZ軸方向、θx方向、及びθy方向の3自由度方向に微小駆動される。
【0065】
自重キャンセラ29は、一例としてパッド部材29a、ピストン部材29b及びシリンダ部材29cを含む(図7(A)参照)。パッド部材29aは、微動ステージ83の下面に近接した状態とされ、その上面が平面で、その下面が曲面(球面)とされた略半球状の形状を有している。このパッド部材29a上面の中央部からはZ軸方向に貫通する貫通孔(不図示)が形成されている。ピストン部材29bは、XY断面円形で、かつ所定深さの凹部を有する部材から成り、前記パッド部材29aの下側(−Z側)に設けられている。このピストン部材29bの上面は、パッド部材29aの下面に対応して曲面加工(球面加工)されており、その中央部からは、Z軸方向に貫通する貫通孔(不図示)が形成されている。シリンダ部材29cは、スライダ部82aの上面に固定されている。シリンダ部材29cは、略円筒状の部材から成り、その周壁は、断面逆U字状で内側の足部分が外側の足部分よりも短く設定された形状を有している。シリンダ部材29cの内部空間に挿入されたピストン部材29bは、Z軸方向に摺動自在とされている。
【0066】
スライダ部82aと、シリンダ部材29cと、ピストン部材29bとによって、囲まれた空間がほぼ密閉された空間(空気室)とされている。従って、この空気室内に、気体供給装置(不図示)から気体が供給されることにより、空気室内がその外部より高圧に設定される。
【0067】
ここで、空気室内の気体は、ピストン部材29bの貫通孔を通ってピストン部材29bの上面とパッド部材29aの下面との間に供給される。このため、ピストン部材29bの上面とパッド部材29aの下面との間に入り込んだ気体の静圧によりピストン部材29bとパッド部材29aとの間に微小な隙間が形成されるようになっている。さらに、ピストン部材29bの貫通孔を通った気体の一部は、パッド部材29aに形成された貫通孔を通って、パッド部材29aの上面と微動ステージ83の下面との間に供給される。これにより、パッド部材29aの上面と微動ステージ83の下面との間に入り込んだ気体の静圧により、パッド部材29aと微動ステージ83との間に微小な隙間が形成されるようになっている。
【0068】
自重キャンセラ29によると、空気室内の気体により微動ステージ83の自重が支持される。また、Z・チルト駆動機構28の3つのアクチュエータ28a〜28cが発生する駆動力を同一にすることで、微動ステージ83を粗動ステージ82に対してZ軸方向に駆動することが可能であるとともに、3つのアクチュエータ28a〜28cのそれぞれで発生する駆動力を異ならせることにより、微動ステージ83をX軸回りの回転方向(θx)及びY軸回りの回転方向(θy)に駆動することが可能となっている。
【0069】
また、空気室内の気圧により、パッド部材29aの上面と微動ステージ83の下面、パッド部材29aの下面とピストン部材29bの上面とが非接触に維持されているので、微動ステージ83のXY平面内の微小移動及びXY平面に対する傾斜方向への傾きを許容した状態でその自重を支持することが可能である。
【0070】
なお、上記の自重キャンセラの構成は一例に過ぎず、例えば上述のシリンダ部材29c及びピストン部材29bに代えて、ベローズを用いても良い。また、自重キャンセラにより、コロなどを介して微動ステージ83を支持しても良い。
【0071】
なお、各ボイスコイルモータMbに代えて、前述の米国特許出願公開第2010/0073653号明細書に開示される微動ステージ駆動系と同様の2段(あるいは多段)構成のボイスコイルモータ(又はリニアモータ)を採用する場合には、Z・チルト駆動機構28を設けること無く、そのボイスコイルモータにより、微動ステージ83を粗動ステージ82に対して6自由度方向に微小駆動することができる。
【0072】
これまでに説明した一対のボイスコイルモータMb、4つのEIコアMc〜Mc、及びZ・チルト駆動機構28を含んで、微動ステージ駆動系34が構成されている(図15参照)。また、平面モータMaによって、粗動ステージ駆動系が構成されている。そして、微動ステージ駆動系34と粗動ステージ駆動系(平面モータMa)とによって、微動ステージ83及びこれに搭載されているウエハテーブルWTB(ウエハW)を、ステージベース13に対して6自由度方向へ駆動するウエハステージ駆動系36が構成されている(図15参照)。
【0073】
なお、平面モータMaとボイスコイルモータMbとしてムービングマグネット式のモータを採用したが、ムービングコイル式のモータを採用することもできる。また、Z・チルト機構28が3つのアクチュエータを含む構成を例として説明したが、4つ以上のアクチュエータを含む構成とすることもできる。この場合、自由度に対して冗長なアクチュエータを有することになるので、微動ステージ83をより高度に制御することが可能となる。
【0074】
ステージ本体81の中央には、図5及び図6(B)に示されるように、自重キャンセラ29を取り囲む矩形枠状部と、該矩形枠状部の+Y辺の中央と−Y辺の両端のそれぞれから外側に延びる3本の直線部とを有する支持部材88が設けられている。この支持部材の3本の直線部のそれぞれの先端には、+Z方向に伸びるピン88aが固定されている。支持部材88及び3本のピン88aは、駆動装置89(図14参照)によってZ軸方向に駆動される。ウエハ交換時などに、駆動装置89により支持部材88をZ軸方向に駆動して、ピン88aを微動ステージ83(本体部83a)の3つの開口(図6(A)参照)及びウエハホルダ(不図示)の開口を介して上下動することにより、3本のピン88aによってウエハWを支持したり、あるいはそのウエハWを上下動させたりする。
【0075】
ウエハステージWST(粗動ステージ82)には、例えば図6(A)及び図6(B)等に示されるように、+Y端側の端面に板状部材Tbが固定され、該板状部材Tbに2つのチューブTbのそれぞれの一端が、2つの固定部材Tbによって固定されている。2つのチューブTbを介して、ウエハステージWSTの外部から、ウエハステージWST上の各種センサ類、モータなどの電源電力(電流)、モータを冷却するための冷却媒体、エアベアリング用の加圧気体等が、ウエハステージWSTに供給される。また、各種センサ類からの出力信号及びモータ等への制御信号を転送するための配線も、チューブTbに含まれる。
【0076】
2つのチューブTbそれぞれの他端は、計測ステージMSTに固定部材Tbを介して固定され(図1参照)、計測ステージMSTを介してステージ装置50外部に配置され、計測ステージMSTとともにY軸方向に移動するチューブキャリア(不図示)に接続されている。本実施形態では、計測ステージMSTは、ウエハ交換、アライメント、露光の一連の動作中、ウエハステージWSTから一定範囲内の距離を保って移動する。このため、計測ステージMSTは、ウエハステージWSTに対するチューブキャリアとしても機能する。
【0077】
ウエハテーブルWTBの上面の中央には、ウエハWを真空吸着等によって保持するウエハホルダ(図6には不図示、図3参照)が設けられている。ウエハホルダ(ウエハの載置領域)の外側には、図2(A)に示されるように、ウエハホルダよりも一回り大きな円形の開口が中央に形成され、かつ矩形状の外形(輪郭)を有するプレート(撥液板)27が設けられている。このプレート27の表面は、液体Lqに対して撥液化処理されている。なお、プレート27は、その表面の全部(あるいは一部)がウエハWの表面と略同一面となるように設置されている。
【0078】
プレート27は、ウエハテーブルWTBのX軸方向の中央に位置し、中央に上述の円形の開口が形成された矩形の外形(輪郭)を有する第1撥液領域27aと、第1撥液領域27aをX軸方向に挟んでウエハテーブルWTBの+X側端部、−X側端部に位置する長方形の一対の第2撥液領域27bと、を有している。なお、本実施形態では、前述の如く液体Lqとして水を用いるので、以下では第1及び第2撥液領域27a,27bをそれぞれ第1及び第2撥水板27a,27bとも呼ぶ。
【0079】
第1撥水板27aの+Y側の端部近傍には、計測プレート30が設けられている。この計測プレート30には、中央に基準マーク(不図示)が形成され、基準マークのX軸方向の両側に一対の空間像計測スリットパターン(スリット状の計測用パターン)SLが、形成されている。計測プレート30の表面は、ウエハWの表面とほぼ同一面に設定されている。各空間像計測スリットパターンSLに対応して、これらを透過する照明光ILを、ウエハステージWST外部、具体的には、計測ステージMSTに設けられる受光系(不図示)に導く一対の送光系30a(図6(A)参照)が、ウエハステージWSTに設けられている。
【0080】
一対の第2撥水板27bには、後述するエンコーダシステムで用いられるスケールが形成されている。詳述すると、一対の第2撥水板27bには、それぞれ、スケール391,392が形成されている。スケール391,392はそれぞれ、例えばY軸方向を周期方向とする回折格子とX軸方向を周期方向とする回折格子とが組み合わされた、反射型の二次元回折格子によって構成されている。二次元回折格子の格子線のピッチは、Y軸方向及びX軸方向のいずれの方向についても、例えば1μmと設定されている。なお、図2(A)では、図示の便宜のため、格子のピッチは、実際のピッチよりも大きく図示されている。図11においても同様である。
【0081】
また、回折格子を保護するために、撥水性を備えた、例えば低熱膨張率のガラス板でカバーしても良い。ここで、ガラス板としては、例えば厚さ1mmのものを用いることができ、そのガラス板の表面がウエハ面と同じ高さ(同一面)になるよう、ウエハテーブルWTB上面に設置される。
【0082】
なお、各第2撥水板27bのスケールの端付近には、後述するエンコーダヘッドとスケール間の相対位置を決めるための、不図示の位置出しパターンがそれぞれ設けられている。この位置出しパターンは例えばスケールとは反射率の異なる格子線によって構成することができる。
【0083】
図2(A)〜図2(C)等に示されるように、ウエハテーブルWTBの−Y端面,−X端面には、後述する干渉計システムで用いられる反射面17a,17bが形成されている。また、ウエハテーブルWTBの−Y端部の下部には、干渉計システムで用いられる反射面17cが形成されている。
【0084】
ウエハテーブルWTBは、図3及び図9からわかるように、矩形板状の天板部33aと、該天板部33aの下面の外周に沿った矩形枠状部33bと、矩形枠状部33bの内部に配置され、天板部33aの下面から突設された複数のリブ部33cとを有している。この複数のリブ部33cの1つとして、微動ステージ83の本体部83aと同形状の八角形枠状のリブ部33cが設けられており、該リブ部33cを介してウエハテーブルWTBは、微動ステージ83に一体的に固定されている。
【0085】
また、粗動ステージ82上に固定された4つの支持部84及びこれらに固定された4つの電磁石TUcの上部が、ウエハテーブルWTBの上述の複数のリブ部33cのうちの一部と矩形枠状部33bとで区画される空間内に収まる状態で、粗動ステージ82に対して微動ステージ83及びウエハテーブルWTBが取り付けられている。これによって、ウエハステージWSTの全高を低くしている。
【0086】
図1に戻り、計測ステージMSTは、ステージ本体92とステージ本体92上に搭載された計測テーブルMTBとを有している。ステージ本体92の底部にはXY平面内でXY二次元配列された複数の磁石から成る磁石ユニット(不図示)が含まれ、ステージベース13内のコイルユニットCUaとともにローレンツ力(電磁力)駆動方式の平面モータMd(図15参照)が構成される。この平面モータMdによって、計測ステージMSTは、ステージベース13に対し、ウエハステージWSTとは独立に、少なくとも3自由度方向(X、Y、θz)に駆動可能である。なお、図14では、ウエハステージWSTを駆動するウエハステージ駆動系36と計測ステージMSTを駆動する駆動系(平面モータMd)とを含んで、ステージ駆動系124として示されている。
【0087】
計測テーブルMTB(及びステージ本体92)には、各種計測用部材が設けられている。この計測用部材としては、例えば、図11に示されるように、照度むらセンサ94、空間像計測器96、波面収差計測器98などが設けられている。更に照度モニタ(不図示)を設けても良い。また、ステージ本体92には、前述の一対の送光系30aに対向する配置で、一対の受光系(不図示)が設けられている。本実施形態では、ウエハステージWSTと計測ステージMSTとがY軸方向に関して所定距離以内に近接した状態(接触状態を含む)において、ウエハステージWST上の計測プレート30の各空間像計測スリットパターンSLを透過した照明光ILを各送光系(不図示)で案内し、計測ステージMST内の各受光系(不図示)の受光素子で受光する、一対の空間像計測装置45A,45B(図14参照)が構成される。空間像計測装置45A,45Bのそれぞれは、例えば、米国特許出願公開第2002/0041377号明細書に開示される装置と同様に構成されている。空間像計測装置45A,45Bの計測結果(受光素子の出力信号)は、信号処理装置(不図示)を介して主制御装置20に送られる(図14参照)。
【0088】
計測テーブルMTBの−Y側端面には、図11に示されるように、フィデューシャルバー(以下、「FDバー」と略述する)46がX軸方向に延設されている。FDバー46は、計測ステージMST上にキネマティックに支持されている。FDバー46は、原器(計測基準)となるため、低熱膨張率の光学ガラスセラミックス、例えば、ショット社のゼロデュア(商品名)などがその素材として採用されている。FDバー46の長手方向の一側と他側の端部近傍には、そのセンターラインに関して対称な配置で、Y軸方向を周期方向とする基準格子(例えば回折格子)52がそれぞれ形成されている。また、FDバー46の上面には、複数の基準マークMが形成されている。各基準マークMとしては、後述するプライマリアライメント系、セカンダリアライメント系によって検出可能な寸法の2次元マークが用いられている。なお、FDバー46の表面及び計測テーブルMTBの表面も撥液膜(撥水膜)で覆われている。
【0089】
計測テーブルMTBの+Y側の端面及び−X側端面には、ウエハテーブルWTBと同様の反射面19a及び反射面19bが形成されている(図11参照)。
【0090】
本実施形態に係る露光装置100では、図11及び図12に示されるように、投影光学系PLの光軸AXを通る平行な直線(以下、基準軸と呼ぶ)LV上で、光軸AXから−Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が設けられている。プライマリアライメント系AL1は、不図示のメインフレームの下面に固定されている。図12に示されるように、プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。セカンダリアライメント系AL21〜AL24は、不図示の可動式の支持部材を介してメインフレーム(不図示)の下面に固定されており、駆動機構601〜604(図14参照)により、X軸方向に関してこれらの検出領域の相対位置が調整可能となっている。なお、図11等に示されるプライマリアライメント系AL1の検出中心を通るX軸に平行な直線(以下、基準軸と呼ぶ)LAは、後述するX干渉計16Xからの測長ビームBX2の光軸に一致している。
【0091】
本実施形態では、アライメント系AL1,AL21〜AL24のそれぞれとして、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。アライメント系AL1,AL21〜AL24のそれぞれからの撮像信号は、不図示の信号処理系を介して主制御装置20に供給される。
【0092】
次に、ウエハステージWST及び計測ステージMSTの位置情報を計測する干渉計システム118(図14参照)の構成等について説明する。
【0093】
干渉計システム118は、図10及び図15に示されるように、ウエハステージWSTの位置計測用のY干渉計16Y、X干渉計16X,16X,16X、及びZ干渉計16Z、並びに計測ステージMSTの位置計測用のY干渉計18Y及びX干渉計18X等を含む。
【0094】
Y干渉計16Yは、図10に示されるように、基準軸LVに関して対称な一対の測長ビームBY1,BY2を含むY軸に平行な少なくとも3本の測長ビームを、ウエハテーブルWTBの反射面17aに照射する。そして、Y干渉計16Yは、それぞれの測長ビームの反射光を受光して、ウエハテーブルWTB(ウエハステージWST)のY軸方向、θz方向、及びθx方向の位置情報を計測する。
【0095】
X干渉計16Xは、投影光学系PLの光軸AX(本実施形態では前述の露光領域IAの中心とも一致)を通りかつX軸と平行な直線(以下、基準軸と呼ぶ)LH(図11等参照)に関して対称な一対の測長ビームBX11,BX12を含むX軸に平行な少なくとも3本の測長ビームを、反射面17bに照射する。そして、X干渉計16Xは、ウエハテーブルWTB(ウエハステージWST)のX軸方向、θz方向、及びθy方向の位置情報を計測する。
【0096】
X干渉計16X、16Xは、それぞれ、測長ビームBX2、BX3を含むX軸に平行な少なくとも各1本の測長ビームを、反射面17bに照射し、それぞれの反射光を受光してウエハテーブルWTB(ウエハステージWST)のX軸方向の位置情報を計測する。
【0097】
Z干渉計16Zは、反射面17cに2本の測長ビームBZ1,BZ2を照射し、それぞれの反射光を受光してウエハテーブルWTB(ウエハステージWST)のZ位置を計測する。
【0098】
Y干渉計18Y、及びX干渉計18Xは、図10に示されるように、それぞれ、計測テーブルMTBの反射面19a,19bに測長ビームを照射して、それぞれの反射光を受光することにより、計測ステージMSTの少なくともXY平面内の3自由度方向に関する位置情報を計測する。
【0099】
干渉計システム118の上記各干渉計の計測情報は、主制御装置20に供給されている(図15参照)。なお、干渉計システム118の構成の詳細は、例えば米国特許出願公開第2008/0088843号明細書などに開示されている。
【0100】
本実施形態に係る露光装置100では、ウエハステージWSTの位置制御に用いられるウエハテーブルWTBのXY平面内の位置情報(θz方向の回転情報を含む)は、主として、後述するエンコーダシステムを用いて計測される。干渉計システム118で計測されるウエハテーブルWTBのXY平面内の位置情報は、ウエハステージWSTがエンコーダシステムの計測領域外(例えば、図11に示されるアンローディングポジションUP又はローディングポジションLP付近)に位置する際に、ウエハステージWSTの位置制御に用いられる。また、干渉計システム118で計測されるウエハテーブルWTBのXY平面内の位置情報は、エンコーダシステムの計測情報(計測結果)の長期的変動(例えばスケールの経時的な変形などによる)を補正(較正)する場合、あるいはエンコーダシステムの出力異常時のバックアップ用などとして補助的に使用される。勿論、干渉計システム118とエンコーダシステムとを併用して、ウエハステージWST(ウエハテーブルWTB)の位置を制御することとしても良い。
【0101】
次に、ウエハステージWSTのXY平面内の位置情報(θz方向の回転情報を含む)を計測するエンコーダシステム150(図14及び図15参照)の構成等について説明する。
【0102】
露光装置100では、図11に示されるように、投影ユニットPU(ノズルユニット32)の+X側、−X側に、一対のヘッド部62A、62Cが、それぞれ配置されている。また、ヘッド部62C、62Aそれぞれの−Y側でかつアライメント系AL1、AL21〜AL24とほぼ同一のY位置に、ヘッド部62E、62Fが、それぞれ配置されている。ヘッド部62A,62C,62E及び62Fは、後述するように、それぞれ複数のヘッドを含み、これらのヘッドが、支持部材を介して、メインフレーム(不図示)に吊り下げ状態で固定されている。なお、図11において、符号UPは、ウエハステージWST上にあるウエハのアンロードが行われるアンローディングポジションを示し、符号LPは、ウエハステージWST上へのウエハのロードが行われるローディングポジションを示す。
【0103】
ヘッド部62A、62Cは、図12に示されるように、各4つの2軸ヘッド651〜654,641〜644を備えている。2軸ヘッド651〜654の筐体の内部には、X軸方向を計測方向とするXヘッド65X1〜65X4と、Y軸方向を計測方向とするYヘッド65Y1〜65Y4とが収容されている。同様に、2軸ヘッド641〜644の筐体の内部には、Xヘッド64X1〜64X4と、Yヘッド64Y1〜64Y4とが収容されている。Xヘッド65X1〜65X4,64X1〜64X4(より正確には、Xヘッド65X1〜65X4,64X1〜64X4が発する計測ビームのスケール391、392上の照射点)は、基準軸LH上に、所定間隔WD(図11参照)で配置されている。また、Yヘッド65Y1〜65Y4,64Y1〜64Y4(より正確には、Yヘッド65Y1〜65Y4,64Y1〜64Y4が発する計測ビームのスケール391、392上の照射点)は、基準軸LHに平行であり且つ基準軸LHから−Y側に所定距離離間する直線LH上に、対応するXヘッド65X1〜65X4,64X1〜64X4と同じX位置に、配置されている。以下では、必要に応じて、Xヘッド65X1〜65X4,64X1〜64X4、及びYヘッド65Y1〜65Y4,64Y1〜64Y4を、それぞれ、Xヘッド65X,64X、及びYヘッド65Y,64Yとも表記する。
【0104】
ここで、Xヘッド65X,64X、及びYヘッド65Y,64Yのそれぞれとして、一例として、米国特許出願公開第2008/0088843号明細書などに開示されている回折干渉型のエンコーダヘッドが用いられている。この種のエンコーダヘッドでは、2つの計測ビームを対応するスケール391又は392に照射し、その2つの計測ビームのスケール(2次元グレーティング)からの戻り光(回折光)を1つの干渉光に合成して受光し、この干渉光の強度を光検出器で検出し、その干渉光の強度変化に基づいて、スケールの計測方向(回折格子の周期方向)の変位を計測する。
【0105】
ヘッド部62A,62Cは、スケール391,392を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する多眼(ここでは4眼)のXリニアエンコーダ70Ax,70Cx、及びY軸方向の位置(Y位置)を計測する多眼(ここでは4眼)のYリニアエンコーダ70Ay,70Cy(図15参照)を構成する。そして、Xリニアエンコーダ70AxとYリニアエンコーダ70Ayとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Aが構成されている(図15参照)。同様に、Xリニアエンコーダ70CxとYリニアエンコーダ70Cyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Cが構成されている(図15参照)。
【0106】
なお、以下では、Xリニアエンコーダを、適宜、「エンコーダ」と略称する。同様に、Yリニアエンコーダを、適宜、「Yエンコーダ」又は「エンコーダ」と略称する。同様に、2Dエンコーダを、適宜、エンコーダと略称する。
【0107】
ここで、ヘッド部62A,62Cがそれぞれ備える4つのXヘッド65X,64X(より正確には、Xヘッド65X,64Xが発する計測ビームのスケール上の照射点)及び4つのYヘッド65Y,64Y(より正確には、Yヘッド65Y,64Yが発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、スケール391,392のX軸方向の幅より狭く設定されている。従って、露光の際などには、それぞれ4つのXヘッド65X,64X,Yヘッド65Y,64Yのうち、少なくとも各1つのヘッドが、常に、対応するスケール391,392に対向する(計測ビームを照射する)。ここで、スケールの幅とは、回折格子(又はこの形成領域)の幅、より正確にはヘッドによる位置計測が可能な範囲を指す。
【0108】
ヘッド部62F、62Eは、図12に示されるように、各3つの2軸ヘッド681〜683,671〜673を備えている。2軸ヘッド681〜683の筐体の内部には、2軸ヘッド651〜654等と同様に、Xヘッド68X1〜68X3と、Yヘッド68Y1〜68Y3とが収容されている。同様に、2軸ヘッド671〜673の筐体の内部には、Xヘッド67X1〜67X3と、Yヘッド67Y1〜67Y3とが収容されている。
【0109】
Xヘッド68X1〜68X3,67X1〜67X3(より正確には、68X1〜68X3,67X1〜67X3が発する計測ビームのスケール391、392上の照射点)は、基準軸LAに沿って所定間隔WD(図11参照)で配置されている。Yヘッド68Y1〜68Y3,67Y1〜67Y3(より正確には、68Y1〜68Y3,67Y1〜67Y3が発する計測ビームのスケール391、392上の照射点)は、基準軸LAに平行であり且つ基準軸LAから−Y側に離間する直線LA上に、対応するXヘッド68X1〜68X3,67X1〜67X3と同じX位置に、配置されている。以下では、必要に応じて、2軸ヘッド681〜683,671〜673、Xヘッド68X1〜68X3,67X1〜67X3、及びYヘッド68Y1〜68Y3,67Y1〜67Y3を、それぞれ、2軸ヘッド68,67、Xヘッド68X,67X、及びYヘッド68Y,67Yとも表記する。ここで、Xヘッド68X,67X、及びYヘッド68Y,67Yのそれぞれとしても、一例として前述の米国特許出願公開第2008/0088843号明細書などに開示されている回折干渉型のエンコーダヘッドが用いられる。
【0110】
ヘッド部62F、62Eは、スケール391,392を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する多眼(ここでは3眼)のXリニアエンコーダ70Fx,70Ex、及びY軸方向の位置(Y位置)を計測する多眼(ここでは3眼)のYリニアエンコーダ70Fy,70Ey(図15参照)を構成する。そして、Xリニアエンコーダ70FxとYリニアエンコーダ70Fyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Fが構成される(図15参照)。同様に、Xリニアエンコーダ70ExとYリニアエンコーダ70Eyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Eが構成される(図15参照)。
【0111】
ここで、ヘッド部62F、62Eがそれぞれ備える3つのXヘッド68X,67X(より正確には、Xヘッド68X,67Xが発する計測ビームのスケール上の照射点)及び3つのYヘッド68Y,67Y(より正確には、Yヘッド68Y,67Yが発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、スケール391,392のX軸方向の幅より僅かに狭く設定されている。従って、アライメント計測の際などには、それぞれ3つのXヘッド68X,67X,Yヘッド68Y,67Yのうち、少なくとも1つのヘッドが対応するスケール391,392に対向する(計測ビームを照射する)。
【0112】
例えば、露光時などには、上述のエンコーダ70Ax,70Ay,70Cx,70Cyによる計測情報(エンコーダ70A,70Cによって計測されたウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報)が、主制御装置20に供給される。主制御装置20は、これらの位置情報(計測結果)のうち、例えばエンコーダ70A,70Cのいずれかで計測されたX位置の情報と、エンコーダ70A,70Cでそれぞれ計測されたY位置の情報とを用いて、例えば米国特許出願公開第2011/0051108号明細書などに開示されるような演算を行ってウエハステージWSTのXY平面内の位置(X,Y,θz)を算出する。
【0113】
また、ウエハアライメント時などには、エンコーダ70Ex,70Ey,70Fx,70Fyによる計測情報(エンコーダ70E,70Fによって計測されたウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報)が、主制御装置20に供給される。主制御装置20は、これらの位置情報(計測結果)を用いて、上記と同様にウエハステージWSTのXY平面内での位置(X,Y,θz)を算出する。
【0114】
また、本実施形態では、セカンダリアライメント系のベースライン計測時などに、セカンダリアライメント系AL21、AL24にX軸方向で隣接する2軸ヘッド673、681のYヘッド67Y3,68Y1が、FDバー46の一対の基準格子52とそれぞれ対向し、この一対の基準格子52と対向するYヘッド67Y3,68Y1によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向するYヘッド67Y3,68Y1によって構成されるエンコーダをYリニアエンコーダ(適宜、「Yエンコーダ」又は「エンコーダ」とも略述する)70G,70H(図15参照)と呼ぶ。なお、Yエンコーダ70G,70Hは、エンコーダ70F、70Eを構成する一部のYヘッド67Y3,68Y1が、一対の基準格子52に対向することで、Yリニアエンコーダが構成されることから、このように呼んでいるものである。以下においても、便宜上、XYエンコーダ70F,70Eの他に、Yエンコーダ70G,70Hが存在するものとして説明を行う。
【0115】
上述した各エンコーダによる計測情報は、主制御装置20に供給される。主制御装置20は、エンコーダ70A及び70C、又は70E及び70Fによる計測情報に基づいて、ウエハテーブルWTBのXY平面内の位置(θz方向の回転(ヨーイング)を含む)を制御するとともに、Yエンコーダ70G及び70Hの計測値に基づいて、FDバー46(計測ステージMST)のθz方向の位置(ヨーイング)を制御する。
【0116】
また、図示は省略されているが、主制御装置20は、ウエハステージWSTをX軸方向に駆動する際、ウエハステージWSTの位置情報を計測するXヘッド65X、64X及びYヘッド65Y、64Yを、隣のXヘッド65X、64X及びYヘッド65Y、64Yに順次切り換える。すなわち、このXヘッド及びYヘッドの切り換え(つなぎ)を円滑に行うために、前述の如く、ヘッド部62A,62Cに含まれる隣接するXヘッド及びYヘッドの間隔WDが、スケール391,392のX軸方向の幅よりも狭く設定されている。
【0117】
さらに、本実施形態の露光装置100では、図11及び図13に示されるように、照射系90a及び受光系90bから成る多点焦点位置検出系(以下、「多点AF系」と略述する)が設けられている。多点AF系としては、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成(斜入射方式)が採用されている。本実施形態では、一例として、前述のヘッド部62Eの−X端部の+Y側に照射系90aが配置され、これに対峙する状態で、前述のヘッド部62Fの+X端部の+Y側に受光系90bが配置されている。なお、多点AF系(90a,90b)は、メインフレーム(不図示)の下面に固定されている。
【0118】
図11及び図13では、それぞれ検出ビームが照射される複数の検出点が、個別に図示されず、照射系90a及び受光系90bの間でX軸方向に延びる細長い検出領域(ビーム領域)AFとして示されている。検出領域AFは、X軸方向の長さがウエハWの直径と同程度に設定されているので、ウエハWをY軸方向に1回スキャンするだけで、ウエハWのほぼ全面でZ軸方向の位置情報(面位置情報)を計測できる。
【0119】
図13に示されるように、多点AF系(90a,90b)の検出領域AFの両端部近傍に、基準軸LVに関して対称な配置で、面位置計測システム180(図14参照)の一部を構成する各一対のZ位置計測センサのヘッド(以下、「Zヘッド」と略述する)72a,72b、及び72c,72dが設けられている。これらのZヘッド72a〜72dは、不図示のメインフレームの下面に固定されている。
【0120】
さらに、前述のヘッド部62A、62Cは、図13に示されるように、各4つのZヘッド761〜764,741〜744を備えている。ここで、Zヘッド761〜764,741〜744は、基準軸LHに平行であり且つ基準軸LHから+Y側に離間する直線LH上に、対応するXヘッド65X1〜65X4,64X1〜64X4と同じX位置に、配置されている。以下では、必要に応じて、Zヘッド761〜764,741〜744を、Zヘッド76,74とも表記する。
【0121】
Zヘッド72a〜72d、及びZヘッド761〜764,741〜744のそれぞれとしては、例えば、CDドライブ装置などで用いられる光ピックアップと同様の光学式変位センサのヘッドが用いられる。Zヘッド72a〜72d、及びZヘッド761〜764,741〜744のそれぞれは、ウエハテーブルWTBに対し上方から計測ビームを照射し、この反射光を受光して、照射点におけるウエハテーブルWTBの面位置を計測する。なお、本実施形態では、Zヘッドの計測ビームは、前述のスケール391,392を構成する反射型回折格子によって反射される構成を採用している。
【0122】
Zヘッド72a〜72d,741〜744,761〜764は、図15に示されるように、信号処理・選択装置170を介して主制御装置20に接続されており、主制御装置20は、信号処理・選択装置170を介してZヘッド72a〜72d,741〜744,761〜764の中から任意のZヘッドを選択して作動状態とし、この作動状態としたZヘッドで検出した面位置情報を選択装置170を介して受け取る。本実施形態では、Zヘッド72a〜72d,741〜744,761〜764と、信号処理・選択装置170とを含んでウエハステージWSTのZ軸方向及びXY平面に対する傾斜方向の位置情報を計測する面位置計測システム180が構成されている。
【0123】
本実施形態では、主制御装置20は、面位置計測システム180(図14参照)を用いて、ウエハステージWSTの有効ストローク領域、すなわち露光及びアライメント計測のためにウエハステージWSTが移動する領域において、その2自由度方向(Z軸方向及びθy方向)に関する位置情報を計測する。
【0124】
主制御装置20は、露光時には、少なくとも各1つのZヘッド76j,74i(j,iは1〜4のいずれか)の計測値を用いて、ウエハテーブルWTBの表面上の基準点(例えばウエハテーブルWTBの上面と投影光学系PLの光軸AXとの交点)における、ウエハステージWSTの高さZとローリングθyを、例えば米国特許出願第2011/0051108号明細書などに開示される演算により算出する。ただし、θx方向に関する位置情報(ピッチング量)θxは、別のセンサシステム(本実施形態では干渉計システム118)の計測結果を用いる。
【0125】
主制御装置20は、ウエハW表面のZ軸方向に関する位置情報(面位置情報)の検出(以下、フォーカスマッピングと呼ぶ)時には、スケール391,392に対向する4つのZヘッド72a〜72dの計測値を用いて、多点AF系(90a,90b)の複数の検出点の中心におけるウエハテーブルWTBの高さZとローリングθyを、例えば米国特許出願第2011/0051108号明細書などに開示される演算により算出する。なお、先と同様に、θx方向に関する位置情報(ピッチング量)θxは、別のセンサシステム(本実施形態では干渉計システム118)の計測結果を用いる。
【0126】
ところで、EIコアは、コアと磁性体部材とのギャップに応じて、その発生する吸引力が変動する。従って、本実施形態では、微動ステージ83と粗動ステージ82との相対位置(相対姿勢を含む)の変動によって、二対のEIコアMc,Mcのそれぞれが発生する吸引力が変動することになる。そのため、EIコアが発生する吸引力(駆動力)を高精度に制御するためには、コアと磁性体部材とのギャップを直接的または間接的に計測する必要がある。そこで、本実施形態に係る露光装置100には、粗動ステージ82と微動ステージ83との相対位置を計測する相対位置計測系210(図14及び図15参照)が設けられている。また、相対位置計測系210と、ステージ位置計測系200とによって、計測システム300が構成されている(図14及び図15参照)。
【0127】
相対位置計測系210は、前述の4つのEIコアMc,Mc、Mc、Mcのうち、EIコアMc,MCの少なくとも一方に設けられたギャップセンサ212と、EIコアMc,MCの少なくとも一方に設けられたギャップセンサ212と、3つのZ・チルト駆動機構28のそれぞれに設けられたセンサ214とを含む(図15参照)。本実施形態では、相対位置計測系210は、一対のボイスコイルモータMbのそれぞれに設けられた粗動ステージ82と微動ステージ83との相対位置を計測する一対のセンサ216をもさらに含む。
【0128】
ギャップセンサ212,212としては、例えば、静電容量センサが用いられる。EIコアMc、MCの少なくとも一方に設けられたギャップセンサ212により、EIコアMc、MCの少なくとも一方を構成するコアTUcと磁性体部材MUcとの間の軸LC1に平行な方向に関するギャップが計測される。一方、EIコアMc、MCの少なくとも一方に設けられたギャップセンサ212により、EIコアMc、MCの少なくとも一方を構成するコアTUcと磁性体部材MUcとの間の軸LC2に平行な方向に関するギャップが計測される。これらの計測結果は主制御装置20に供給され(図15参照)、主制御装置20によって、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するX軸方向及びY軸方向に関する相対位置が求められる。
【0129】
ここで、ギャップセンサ212,212の少なくとも一方に代えて、コアTUcと磁性体部材MUcとの間の上記ギャップ(離間距離)に関連する物理量を計測することで、そのギャップを間接的に計測する各種のセンサを用いても良い。例えば、EIコアMc(n=1,2,3,4)で発生した磁気吸引力を計測する磁気センサなどを用いることができる。
【0130】
3つのセンサ214として、例えば、エンコーダが用いられる。3つのセンサ214は、それぞれが設けられたZ・チルト駆動機構28の3つのアクチュエータ28a〜28cの固定子と可動子との相対位置を計測する。前述の通り、アクチュエータ28a〜28cの固定子は粗動ステージ82に、可動子は微動ステージ83に固定されているので、センサ214の計測結果により粗動ステージ82と微動ステージ83との位置関係を知ることができる。これらの計測結果は主制御装置20に供給され(図14参照)、主制御装置20によって、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するZ軸方向、θx方向、及びθy方向に関する相対位置が求められる。この場合も、センサ214に代えて、粗動ステージ82と微動ステージ83とのギャップ(離間距離)を直接計測するギャップセンサを用いても良い。
【0131】
センサ216としては、エンコーダを用いることができる。エンコーダは、一対のボイスコイルモータMbのそれぞれを構成する固定子部85aと可動子部83bと間のY軸方向の相対位置を計測する。この一対のエンコーダの計測結果は主制御装置20に供給され(図15参照)、主制御装置20により、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するθz方向に関する相対位置が求められる。センサ216として、エンコーダに加えて、ギャップセンサを設けても良い。この場合、ギャップセンサは、一対のボイスコイルモータMbのそれぞれを構成する固定子部85aと可動子部83bとの間のX軸方向のギャップを計測する。この場合も、ギャップセンサに代えて、上記ギャップ(離間距離)に関連する物理量を計測するセンサを用いても良い。
【0132】
図14には、露光装置100の制御系を中心的に構成し、構成各部を統括制御する主制御装置20の入出力関係を示すブロック図が示されている。主制御装置20は、ワークステーション(又はマイクロコンピュータ)等を含み、露光装置100の構成各部を統括制御する。なお、図14においては、前述した照度むらセンサ94、空間像計測器96及び波面収差計測器98など、計測ステージMSTに設けられた各種センサが、纏めてセンサ群99として示されている。また、図15には、図14の構成部分のうち、ステージ装置50の構成各部の詳細構成例が示されている。
【0133】
上述のようにして構成された本実施形態に係る露光装置では、例えば米国特許出願公開第2009/0268178号明細書の第2の実施形態に開示される露光装置と同様に、大略以下の手順に従って、ウエハステージWSTを用いた通常のシーケンスの処理が、主制御装置20によって実行される。
【0134】
具体的には、ステップ・アンド・スキャン方式のウエハWの露光終了後、ウエハステージWSTのアンローディングポジションUPに向けての移動が開始される。この移動の途中で、露光中は互いに離れていたウエハステージWSTと計測ステージMSTとが、接触あるいは例えば300μm程度の離間距離を挟んで近接する状態に移行する。ここで、計測テーブルMTB上のFDバー46の−Y側の端面とウエハテーブルWTBの+Y側の端面とが接触あるいは近接する。ウエハステージWSTと計測ステージMSTとが、接触あるいは近接した状態で、ともに−Y方向に移動することにより、投影ユニットPUの下に形成されていた液浸領域14が、計測ステージMST上に移動する。その後、ウエハステージWSTは、計測ステージMSTとの接触あるいは近接した状態を解除し、アンローディングポジションUPに向かって移動する。
【0135】
ウエハステージWSTのアンローディングポジションUPに向けての移動の途中で、エンコーダシステム150の計測結果に基づくウエハステージWSTの駆動(位置制御)が不可能になる直前に、主制御装置20は、干渉計システム118の計測結果に基づくウエハステージWSTの駆動(位置制御)に切り換える。ここで、ウエハステージWSTのX軸方向に関する位置計測には、X干渉計16Xが使用される。
【0136】
ウエハステージWSTのアンローディングポジションUPに移動後、ウエハテーブルWTB上のウエハWのアンロードが行われる。そして、ウエハステージWSTのローディングポジションLPへの移動及びウエハテーブルWTB上への次のウエハWをロードが行われる。
【0137】
上記のウエハテーブルWTB上のウエハ交換動作と並行して、計測ステージMSTに支持されたFDバー46のXY平面内での位置調整と、4つのセカンダリアライメント系AL21〜AL24のベースライン計測とが行われる。ここで、FDバー46のθz方向の位置(回転)情報を計測するために、前述のYエンコーダ70G,70Hが使用される。
【0138】
次に、ウエハステージWSTが駆動され、計測プレート30上の基準マークFMがプライマリアライメント系AL1の検出視野内に位置決めされ、プライマリアライメント系AL1のベースライン計測の前半の処理が行われる。このとき、2つのXヘッド及び2つのYヘッドが、それぞれスケール391,392に対向し、ウエハステージWSTの駆動(位置制御)に用いられる計測系が、干渉計システム118からエンコーダシステム150(エンコーダ70E,70F)に切り換えられる。
【0139】
その後、プライマリアライメント系AL1とセカンダリアライメント系AL21〜AL24を用いたウエハアライメント(EGA)が実行される。
【0140】
本実施形態では、ウエハアライメントを開始するまでに、ウエハステージWSTと計測ステージMSTとは接触又は近接した状態へ移行している。ウエハステージWSTと計測ステージMSTとは接触又は近接した状態で、+Y方向への移動が開始され、その移動の途中で、液浸領域14の液体Lqは、計測テーブルMTB上からウエハテーブルWTB上に移動する。
【0141】
上述のウエハアライメント(EGA)と並行して、フォーカスマッピングが行われる。また、ウエハアライメント及びフォーカスマッピングの進行に伴い、ウエハステージWSTが所定の位置に来たとき、空間像計測装置45A、45Bを用いてウエハテーブルWTBのXY位置に対するレチクル上マークの投影像の強度分布を計測する処理(すなわち、プライマリアライメント系AL1のベースライン計測の後半の処理)が行われる。この結果と、前述のプライマリアライメント系AL1のベースライン計測の前半の処理の結果とに基づいて、プライマリアライメント系AL1のベースラインが求められる。
【0142】
以上の作業が終了後、ウエハステージWSTと計測ステージMSTとは接触又は近接した状態が解除され、ステップ・アンド・スキャン方式の露光が行われ、ウエハW上にレチクルパターンが転写される。以降、同様の動作が繰り返し実行される。
【0143】
上記のステップ・アンド・スキャン方式の露光は、前述のウエハアライメント(例えばEGA)等の結果に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTを移動するショット間ステッピングと、各ショット領域に対してレチクルRに形成されたパターンを走査露光方式で転写する前述の走査露光と、を繰り返すことにより行われる。
【0144】
本実施形態では、主制御装置20は、ステップ・アンド・スキャン方式でウエハWを露光する際に、エンコーダシステム150を構成する複数のXヘッド65X、64X及びYヘッド65Y、64Yのうち、ウエハステージWSTの移動に伴って、スケール391,392に対向するXヘッド、Yヘッド、及び面位置計測システム180を構成する複数のZヘッド76、74のうち、ウエハステージWSTの移動に伴って、スケール391,392に対向するZヘッド(及びZ干渉計16Z)を用いて、前述の如く、ウエハテーブルWTBの5自由度方向(X軸、Y軸、θz、Z軸及びθyの各方向)に関する位置情報を計測する。また、主制御装置20は、前述のY干渉計16を用いて、ウエハテーブル(ウエハステージWST)のθx方向の位置情報(ピッチング量)を計測する。主制御装置20は、上記のウエハテーブルWTBの6自由度方向の位置情報(計測結果)に基づいて、ウエハテーブルWTBを6自由度方向に駆動する。その際、主制御装置20は、事前にフォーカスマッピングで得られた情報、すなわちウエハWの多点AF系(90a,90b)の各検出点における面位置情報を、左計測点(Zヘッド72a、72bの計測点の中心点)の面位置と右計測点(Zヘッド72c、72dの計測点の中心点)の面位置とを結ぶ直線を基準とする面位置データに換算した換算データと、上記のスケール391,392に対向するZヘッド76、74で計測されるウエハテーブルWTBのZ位置とXY平面に対する傾斜(主としてθy回転)とに基づいて、露光中、投影光学系PLの焦点深度の範囲内にウエハW表面の照明光ILが照射される部分(露光領域IAに対応する領域部分)を一致させるためのウエハテーブルWTBのZ軸方向、θy方向(及びθx方向)の位置の制御(ウエハWのフォーカス・レベリング制御)を行う。
【0145】
本実施形態では、ステップ・アンド・スキャン方式の露光におけるウエハステージWSTの移動経路は、ウエハWのショットマップ(ショット領域のサイズ及び配置)に応じて一意に定められている。図16には、一例として、26個のショット領域S(m=1〜26)を有するウエハWに対する上記露光におけるウエハステージWSTの移動経路が示されている。この移動経路は、露光中心(露光領域IAの中心)の開始位置Bから終了位置Eまでの移動経路(以下、移動経路BEと呼ぶ)である。ステップ・アンド・スキャン方式の露光において、露光中心は、開始位置Bから、移動経路BEに沿って、終了位置Eまで、停止することなく、ウエハWに対して移動する。なお、実際には、露光中心が固定で、ウエハWが、移動経路BEとは、逆の経路に沿って移動するが、ここでは、説明を分かり易くする等のため、露光中心が移動経路BEに沿ってウエハW上を移動するものとしている。
【0146】
図16中に実線で示されるY軸に平行な直線区間では、それぞれのショット領域を走査露光するために、ウエハステージWSTは等速で駆動(走査駆動)される。また、直線区間を繋ぐ破線で示される曲線区間では、あるショット領域Sに対する走査露光が終了し、次のショット領域Sm+1に対する走査露光を開始するために、ウエハステージWSTは非走査方向(X軸方向)にステッピング(ステップ駆動)される。このステッピングと並行して、ウエハステージWSTは、走査方向に関して速度ゼロまで減速され、さらに逆向きに加速される。
【0147】
ステップ・アンド・スキャン方式の露光動作に際し、主制御装置20は、平面モータMaを用いて粗動ステージ82を駆動するとともに、レチクルステージRSTと同期駆動するために高い制御性能が必要となる走査露光時には、一対のボイスコイルモータMbを用いて微動ステージ83を微小駆動する。一方、微動ステージ83の高い制御性能は必要としないが、高い(大きな)駆動力を必要とするステッピング時には、EIコアMc、Mc、Mc、Mcの少なくとも1つを用いて、微動ステージ83を微小駆動する。本実施例において、前述の軸Lc1,Lc2の方向は、ステッピング時におけるウエハステージWSTの最大加速度方向に応じて設定されているので、大きな駆動力を発生することができるEIコアを用いて効率的に微動ステージ83を駆動することができる。これにより、レチクルステージRSTとの高い同期精度を維持しつつ、ウエハステージWSTの高速ステッピングが可能となる。
【0148】
上記のウエハWのフォーカス・レベリング制御を行う際、各ショット領域の走査露光の開始に先立って、そのフォーカス・レベリング制御開始の制御遅れを回避するため、ステッピング中にウエハテーブルWTBがZ軸方向及び/又は傾斜方向に駆動されることがある。この場合、特にθy方向又はθx方向に駆動されると、微動ステージ83の駆動(位置制御)に用いられるEIコア(EIコアMc、Mc、Mc、Mcの少なくとも1つ)のコアTUcと磁性体部材MUcとのギャップが不均一(例えば、コアTUcの上端と下端とで異なる)となる。このような場合、EIコアが発生する吸引力を正確に予測しウエハテーブルWTBを要求される精度で駆動することが困難になる。同様の状況は、微動ステージ83と粗動ステージ82との相対的なθz方向の回転によっても生じる。そこで、主制御装置20は、例えば干渉計システム118によって計測されるウエハテーブルWTBのθx方向、θy方向およびθz方向に関する位置情報と、前述の相対位置計測系210によって計測される微動ステージ83と粗動ステージ82との相対位置情報とに基づいて、微動ステージ83の駆動に用いられるEIコアMc(EIコアMc、Mc、Mc、Mcの少なくとも1つ)、及び平面モータMaをそれぞれ介して微動ステージ83及び粗動ステージ82を、一緒に傾斜方向、すなわちθy方向、θx方向およびθz方向の少なくとも一方向に駆動する。これにより、微動ステージ83と粗動ステージ82とが相対的に傾斜することなく、制御に用いられるEIコアMcのコアTUcと磁性体部材とのギャップを所定の位置関係(例えばコアの全面に対してほぼ均一)に維持することができる。ここで、所定の位置関係とは、EIコアMcの制御が担保できる範囲を意味する。すなわち、EIコアが発生する吸引力を正確に予測できる範囲のギャップに維持することができれば良く、常に完全な均一性を維持する必要はない。
【0149】
なお、ウエハWのフォーカス・レベリング制御におけるθy方向、θx方向の駆動、およびθz方向の駆動量が、EIコアMcの制御を担保できる範囲内で収まる場合には、必ずしも微動ステージ83と粗動ステージ82とを同期させて傾斜させなくても良い。
【0150】
主制御装置20は、ウエハステージWSTをステップ駆動する際に、EIコアMcとともに一対のボイスコイルモータMbを用いて微動ステージ83を駆動しても良い。この場合、主制御装置20は、ウエハステージWSTのステップ駆動が終了するのに先立って、EIコアMcによる駆動力(吸引力)の発生を停止しても良い。このようにすると、EIコアMcによる残存駆動力が、走査露光に悪影響を与えることを回避することが可能になる。ステップ駆動中に、EIコアMcと一対のボイスコイルモータMbを併用する場合、EIコアMcによる駆動力の発生が停止されるまでの期間ではその大部分でEIコアMcが、一対のボイスコイルモータMbよりも大きな駆動力を発生するのが好ましい。
【0151】
前述の通り、EIコアが発生する吸引力を高精度に制御するためには、コアと磁性体部材とのギャップを計測し、計測されたギャップに応じて各電磁石TUcのコイルに流れる電流量を制御する必要がある。本実施形態において、主制御装置20は、前述の相対位置計測系210のギャップセンサ212、212及びセンサ214等の計測結果に基づいて、各電磁石TUcのコイルに流れる電流量を制御する。これにより、電磁石TUcと磁性体部材MUcとの間のギャップに応じて駆動力(吸引力)を制御して、微動ステージ83(ウエハテーブルWTB)を精密駆動することが可能になる。EIコアMcのキャップ制御については、例えば米国特許出願公開第2005/0162802号明細書に開示されている。この米国特許出願公開明細書には、1つのIコアを挟んで両側に配置された一対のEコアを有するE−I−Eコア・アセンブリを例としてギャップ制御について開示されている。また、この明細書には、「EコアとIコアとの間の相対位置を操作することによってオフセット・ギャップ制御は機能すること」、及び「租動ステージに取り付けられたアクチュエータ又は複数のアクチュエータは、位置操作を行うために使用しても良い。」ことなどが開示されている。また、この明細書には、「第1Eコア、第2Eコア、及びIコア等の位置を計測するためのセンサ(干渉計でも、キャップセンサでも、光学センサでも良い)は、これらのエレメントを制御するために位置情報をコントローラに送っても良く、ひいては、これらのセンサは相対ギャップ距離の操作に用いても良い。」ことなども開示されている。上記米国特許出願公開第2005/0162802号明細書に開示されているE−I−Eコア・アセンブリについてのギャップ制御の方法は、本実施形態に係るEIコアのギャップ制御にも適用することができる。
【0152】
主制御装置20は、微動ステージ83(ウエハテーブルWTB)を走査駆動する際にも、走査駆動中の少なくとも一部で、一対のボイスコイルモータMbとともに、EIコアMcを用いても良い。この場合、両者の併用期間中の大部分で一対のボイスコイルモータMbがEIコアMcよりも大きな駆動力を発生するように、主制御装置20は、両者の駆動力を制御する。これにより、EIコアの制御性能の低さが微動ステージ83(ウエハテーブルWTB)の制御性に影響を与えることをほぼ確実に防止することができるとともに、補助的な駆動力を加えることで高速での走査駆動が可能になる。
【0153】
以上説明したように、本実施形態に係る露光装置100及び該露光装置100が備えるステージ装置50によると、平面モータMaによりウエハステージWSTを構成する粗動ステージ82がステージベース13に対して駆動され、粗動ステージ82のX軸方向の一側と他側のそれぞれに設けられた一対のボイスコイルモータMbと、X軸及びY軸にそれぞれに交差する軸Lc1,Lc2のそれぞれの一側と他側に設けられた二対のEIコアMc、Mc、Mc、Mcとにより、微動ステージ83(ウエハテーブルWTB)が粗動ステージ82に対して駆動される。これにより、ウエハWを保持するウエハテーブルWTBをステージベース13に対して精密に駆動することが可能となるとともに、ボイスコイルモータMb及びEIコアMc、Mc、Mc、Mcを粗動ステージ82のスライダ部82aの上面にその外部にはみ出すこと無くコンパクトに配置することができ、ウエハステージの軽量化及び小型化を図ることが可能となる。
【0154】
また、本実施形態に係る露光装置100によると、粗動ステージ82の駆動源として平面モータMaを採用し、これに併せて微動ステージ83の駆動源として一対のボイスコイルモータMb及びEIコアMc、Mc、Mc、Mcを併用することした。そして、EIコアMc、Mc、Mc、Mcが発生する駆動力(吸引力)の方向(軸Lc,Lcに平行な方向)が、ステッピング時におけるウエハステージWSTの最大加速度方向に応じて設定されている。これにより、主にステッピング時に必要となるX軸及びY軸それぞれに交差する方向の駆動力を効率的に発生することができ、ひいてはEIコアを軽量化することができる。更に、パターンの高い重ね合わせ精度を維持しつつ、ウエハステージWSTの高速ステッピングが可能となる。
【0155】
また、本実施形態の露光装置100では、例えばウエハステージWSTのステップ駆動時に、主制御装置20は、ステージ位置計測系200によって計測されるウエハテーブルWTB(微動ステージ83)の投影光学系PL及びこれを保持するメインフレームを基準とする位置情報に基づいて、微動ステージ駆動系34を介してウエハテーブルWTBを例えばθx及びθy方向のうちの少なくとも一方向に微小駆動する際、これと並行して、ウエハテーブルWTB(微動ステージ83)と粗動ステージ82との所定の位置関係が維持されるように、相対位置計測系210によって計測されるウエハテーブルWTB(微動ステージ83)と粗動ステージ82との相対位置情報に基づいて、平面モータMaを介して粗動ステージ82が、上記少なくとも一方向に微小駆動する。これにより、粗動ステージ82と微動ステージ83との間の相対姿勢の変化によるEIコアMc、Mc、Mc、Mcの駆動性能(制御性能)の低下を招くことなく、ウエハを保持する微動ステージ83(ウエハテーブルWTB)をステージベース13に対して精密に駆動することが可能となる。
【0156】
また、本実施形態に係る露光装置100によると、上述のウエハWを保持する微動ステージ83(ウエハテーブルWTB)の駆動により、高い重ね合わせ精度及び高いスループットでウエハW上の各ショット領域に、レチクルRのパターンを高精度に形成することが可能となる。また、露光装置100によると、液浸露光により高解像度の露光が行われる。
【0157】
なお、上記実施形態では、ウエハステージWSTが、微動ステージ83の本体部83aの中心に関し軸Lcに平行な方向の一側と他側に配置された一対のEIコアMc、MCと、微動ステージ83の中心に関し軸Lcに平行な方向の一側と他側に配置された一対のEIコアMc、Mcとを備える場合について説明した。しかし、これに限らず、一対のEIコアMc、MC及び一対のEIコアMc、Mcの一方のみが設けられていても良い。また、上記実施形態では、粗動ステージ82と微動ステージ83(より正確には本体部83a)との間にX軸及びY軸方向の直交2軸方向の駆動力を作用させるボイスコイルモータMbが、微動ステージ83(より正確には本体部83a)を挟んでX軸方向の一側と他側に各1つ配置される場合について説明したが、これに限らず、ボイスコイルモータMbは、本体部83aを挟んでX軸方向の一側と他側にそれぞれ複数配置されていても良いし、本体部83aに1つのみ設けられていても良い。後者の場合には、微動ステージ83が粗動ステージ82に対してθz方向に不必要に回転するのを防止するための装置を設け、微動ステージ83のθz方向の回転は、平面モータMaによって行っても良い。
【0158】
また、上記実施形態では、X軸方向及びY軸方向に沿った駆動力を粗動ステージ82と微動ステージ83との間に作用させる第1アクチュエータとしてローレンツ力(電磁力)駆動方式のボイスコイルモータMbが用いられ、X軸方向及びY軸方向のそれぞれに交差しXY平面に平行な軸Lc、Lcに平行な方向に沿った駆動力を粗動ステージ82と微動ステージ83との間に作用させる第2アクチュエータとしてEIコアが用いられる場合について説明した。しかし、これに限らず、第1アクチュエータは第2アクチュエータよりも高精度であり、かつ第2アクチュエータは第1アクチュエータよりも高効率であれば、その他のアクチュエータの組み合わせであっても良い。例えば、第1アクチュエータはローレンツ力駆動方式以外の2次元リニアアクチュエータであっても良いし、第2アクチュエータは、磁気力以外の吸引力又は斥力を発生する1次元アクチュエータであっても良い。
【0159】
また、上記実施形態では、ウエハテーブルWTB(及び計測ステージMST)の位置を計測するステージ位置計測系200の他、粗動ステージ82と微動ステージ83との相対位置を計測する相対位置計測系210が設けられた場合について説明した。しかし、これに限らず、相対位置計測系に代えて、粗動ステージ82の6自由度方向の位置を投影光学系PL又はこれを保持するメインフレームを基準として計測する粗動ステージ位置計測系を設けても良い。このようにすると、主制御装置20は、ステージ位置計測系200によって計測されるウエハテーブルWTBの6自由度方向の位置の計測結果と粗動ステージ位置計測系によって計測される粗動ステージ82の6自由度方向の位置の計測結果とに基づいて、EIコアのコアと磁性体部材とのギャップを間接的に計測することができ、また、平面モータMaを介して粗動ステージ82を一緒に同方向に駆動することもできる。この場合、ギャップセンサ212、212を省略することができる。
【0160】
なお、上記実施形態において、EIコアMc、Mc、Mc、Mcのそれぞれのコアと磁性体部材とのギャップを、必要とされるギャップより、意識的に広めに設定しておいても良い。かかる場合、主制御装置20は、例えばウエハステージWSTのステップ駆動時に、EIコアMcとボイスコイルモータMbとを併用するとともに、ステップ駆動の終了に先立って、一対のボイスコイルモータMbを用いて微動ステージ83を中立位置に移動することとしても良い。この場合、EIコアによる駆動力の発生を、その中立位置への移動終了後又はステップ駆動の終了後に停止しても良い。
【0161】
なお、上記実施形態では、X軸方向、Y軸方向及びZ軸方向をそれぞれ計測方向とする3種の1次元ヘッド、すなわちXヘッド、Yヘッド、及びZヘッドを組み合わせて使用する場合について説明した。しかし、これら3種の1次元ヘッドに代えて、例えば、X軸方向、Y軸方向、及びZ軸方向の全てを計測方向とする3次元ヘッドを用いても良い。この3次元ヘッドを用いる場合、上述したXヘッド65X,64Xに代えてこの3次元ヘッドを基準軸LH上に配置すれば良い。
【0162】
また、上記実施形態で説明したXヘッドとYヘッドとを1つの筐体に収容した2Dヘッド(2軸ヘッド)に代えて、同一の照射点にX方向計測用とY方向計測用の計測ビームを照射し、X軸方向及びY軸方向を計測方向とする2次元ヘッドを用いることもできる。この種の2次元ヘッドとしては、例えば米国特許出願公開第2009/0268178号明細書などに開示されている3格子回折干渉型の2Dヘッドを用いることができる。上述したXヘッド65X,64Xに代えてこの2Dヘッドを基準軸LH上に配置すれば良い。この場合、Yヘッドは設けなくても良い。
【0163】
また、上記実施形態におけるXヘッドとZヘッドとに代えて、X軸方向及びZ軸方向を計測方向とする2次元ヘッドを用いても良い。この種の2次元ヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドを用いることができる。上述したXヘッド65X,64Xに代えてこの2次元ヘッドを基準軸LH上に配置すれば良い。
【0164】
また、上記実施形態においては干渉計システムとエンコーダシステムとを併用した計測システムを説明したが、これに限られず、例えば前述の干渉計システム118を省略し、メインフレームを基準とするウエハテーブルWTBの6自由度方向の位置情報を、そのエンコーダシステムのみによって計測することとしても良い。あるいは、計測システムを干渉計システムのみによって構成することも可能である。
【0165】
また、上記実施形態で説明したエンコーダシステムなどの各計測装置の構成は一例に過ぎないことは勿論である。例えば、上記実施形態では、ウエハテーブル(ウエハステージ)上に格子部を設け、これに対向してXヘッド、Yヘッドをウエハステージの外部に配置する構成のエンコーダシステムを採用した場合について例示したが、これに限らず、例えば米国特許出願公開第2006/0227309号明細書などに開示されているように、ウエハステージにエンコーダヘッドを設け、これに対向してウエハステージの外部に格子部(例えば2次元格子又は2次元に配置された1次元の格子部)を配置する構成のエンコーダシステムを採用しても良い。この場合において、面位置計測システムのZヘッドもウエハステージに設け、この格子部の面を、Zヘッドの計測ビームが照射される反射面としても良いし、あるいは上述の2Dヘッド又は3次元ヘッドを用いても良い。テーブル上にヘッドを配置するタイプであって、上述の3次元ヘッド又はZ軸方向を計測方向として含む上記2次元ヘッドを含むエンコーダシステム用いる場合、前述の干渉計システム118に代えて、メインフレームを基準とするウエハテーブルWTBの6自由度方向の位置情報を、そのエンコーダシステムによって計測することとしても良い。
【0166】
なお、例えば欧州特許出願公開第1,420,298号明細書、米国特許第6,952,253号明細書、あるいは米国特許出願公開第2008/0088843号明細書などに開示される液浸露光装置にも、上記実施形態は適用することができる。また、これに限らず、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に、上記実施形態を適用しても良い。
【0167】
また、上記実施形態では、露光装置が、ステップ・アンド・スキャン方式の走査型露光装置である場合について説明したが、これに限らず、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも上記実施形態を適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。また、例えば国際公開第2005/074014号などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも上記実施形態は適用が可能である。
【0168】
また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、この投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はこの形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
【0169】
なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
【0170】
また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、SORやプラズマレーザを光源として、軟X線領域(例えば5〜15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させる光源を用いたEUV露光装置にも上記実施形態を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
【0171】
また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
【0172】
また、例えば干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。
【0173】
さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
【0174】
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
【0175】
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。
【0176】
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態に係る露光装置(パターン形成装置)によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、及び検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態に係る露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
【符号の説明】
【0177】
10…照明系、13…ステージベース、20…主制御装置、28…Z・チルト駆動機構、29…自重キャンセラ、50…ステージ装置、55a,57a…Yコイル、56a…Xコイル、55b,56b,57b…永久磁石、82…粗動ステージ、83…微動ステージ、83b…可動子部、85a…固定子部、100…露光装置、118…干渉計システム、200…ステージ位置計測系、210…相対位置計測系、212,212…ギャップセンサ、214…センサ、216…センサ、300…計測システム、WST…ウエハステージ、WTB…ウエハテーブル、Mb…ボイスコイルモータ、Mc,Mc,Mc,Mc…EIコア、MUc…磁性体部材、TUc…電磁石、MUb…磁石ユニット、CUb…コイルユニット、Ma…平面モータ、CUa…コイルユニット、MUa…磁石ユニット、IL…照明光、W…ウエハ、PL…投影光学系、R…レチクル。

【特許請求の範囲】
【請求項1】
ベース部材と、
互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、
前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、
前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる少なくとも一対の第2アクチュエータと、を備える移動体装置。
【請求項2】
前記第1アクチュエータは前記第2アクチュエータよりも高精度であり、前記第2アクチュエータは前記第1アクチュエータよりも高効率である請求項1に記載の移動体装置。
【請求項3】
前記第1アクチュエータはローレンツ力を発生するアクチュエータであり、前記第2アクチュエータは吸引力を発生するアクチュエータである請求項1又は2に記載の移動体装置。
【請求項4】
前記第1アクチュエータは、前記第1方向の駆動力を発生する第1部分と、前記第2方向の駆動力を発生する第2部分とを有する請求項1〜3のいずれか一項に記載の移動体装置。
【請求項5】
前記第1アクチュエータは、前記第2移動部材を挟んで前記第1方向の一側及び他側に各1つ配置されている請求項1〜4のいずれか一項に記載の移動体装置。
【請求項6】
前記第2アクチュエータは、前記第3方向に沿った一直線上に前記第2移動部材を挟んで各1つ配置されている請求項1〜5のいずれか一項に記載の移動体装置。
【請求項7】
前記第2アクチュエータは、前記第2移動部材の前記第2軸に関して前記第3方向と対称な第4方向に沿った一直線上に前記第2移動部材を挟んで各1つ配置されている請求項1〜6のいずれか一項に記載の移動体装置。
【請求項8】
前記第3方向と前記第4方向とは、前記第2軸と45度以外の角度で交差する請求項7に記載の移動体装置。
【請求項9】
前記第2アクチュエータは、前記第1及び第2移動部材の一方に設けられた磁性体と、これに対応して前記第1及び第2移動部材の他方に設けられた電磁石とを含む請求項1〜8のいずれか一項に記載の移動体装置。
【請求項10】
前記第1移動部材と前記第2移動部材との間の離間距離に関連する物理量を計測する複数のセンサをさらに備え、
前記複数のセンサの計測結果に基づいて、前記第1及び第2アクチュエータの少なくとも一方が制御される請求項1〜9のいずれか一項に記載の移動体装置。
【請求項11】
前記複数のセンサは、前記第2アクチュエータの近傍に配置された複数のセンサを含む請求項10に記載の移動体装置。
【請求項12】
前記複数のセンサは、前記第1アクチュエータの近傍に配置されたセンサをさらに含む請求項11に記載の移動体装置。
【請求項13】
前記センサは、前記離間距離を計測するギャップセンサである請求項10〜12のいずれか一項に記載の移動体装置。
【請求項14】
前記第1アクチュエータは固定子と可動子とを備え、
前記固定子と前記可動子との一方は、磁石ユニットを含み、
前記固定子と前記可動子との他方は、前記磁石ユニットに対向するコイルユニットを含む請求項1〜13のいずれか一項に記載の移動体装置。
【請求項15】
前記第1移動部材に対して前記第2移動部材を前記2次元平面に直交する方向に駆動する第3アクチュエータをさらに備える請求項1〜14のいずれか一項に記載の移動体装置。
【請求項16】
前記ベース部材に対して前記移動体を前記二次元平面に沿って駆動する平面モータをさらに備える請求項1〜15のいずれか一項に記載の移動体装置。
【請求項17】
前記平面モータは、前記ベース部材に設けられたコイルユニットと、前記第1移動部材に設けられた磁石ユニットとを含むムービングマグネット型の平面モータである請求項16に記載の移動体装置。
【請求項18】
前記平面モータは前記2次元平面と交差する方向の駆動力を発生する請求項16又は17に記載の移動体装置。
【請求項19】
前記第2移動部材を前記二次元平面と直交する方向に移動自在に支持する支持装置をさらに備える請求項1〜18のいずれか一項に記載の移動体装置。
【請求項20】
エネルギビームを照射して物体を露光する露光装置であって、
前記物体が前記第2移動部材上に保持される請求項1〜19のいずれか一項に記載の移動体装置と、
前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える露光装置。
【請求項21】
前記移動体の前記第2方向への走査駆動と前記第1方向へのステップ駆動とを繰り返して、前記第2部材上に保持された前記物体上の複数の区画領域のそれぞれに前記パターンを形成し、
前記走査駆動中の少なくとも一部で前記第1アクチュエータが前記第2アクチュエータよりも大きな駆動力を発生し、前記ステップ駆動中の少なくとも一部で前記第2アクチュエータが前記第1アクチュエータよりも大きな駆動力を発生する請求項20に記載の露光装置。
【請求項22】
前記第3方向は、前記ステップ駆動中の前記移動体に作用する最大加速度の方向に一致する請求項21に記載の露光装置。
【請求項23】
前記ステップ駆動から前記走査駆動に遷移するのに先立って前記移動体の前記ステップ駆動中に前記第2アクチュエータの駆動力の発生が停止される請求項21又は22に記載の露光装置。
【請求項24】
ベース部材と、
互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、
前記ベース部材に対して前記移動体を6自由度で駆動する第1駆動装置と、
前記第2移動部材を前記第1移動部材に対して6自由度で駆動する第2駆動装置とを備え、
前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する際、前記第1駆動装置によって前記第1移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動するとともに、前記第2駆動装置によって前記第2移動部材を前記第1部材に対して前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する移動体装置。
【請求項25】
前記第1移動部材と前記第2移動部材との所定の位置関係が維持されるように、前記第1駆動装置と前記第2駆動装置とによって前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方に対して回転駆動する請求項24に記載の移動体装置。
【請求項26】
前記第1駆動装置は、前記ベース部材に設けられたコイルユニットと、前記第1移動部材に設けられた磁石ユニットとを含むムービングマグネット型の平面モータであり、該平面モータは、前記ベース部材と前記移動体との間に前記2次元平面に直交する方向の駆動力を発生する請求項24又は25に記載の移動体装置。
【請求項27】
前記第2駆動装置は、前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第2アクチュエータと、前記第1移動部材に対して前記第2移動部材を前記二次元平面に直交する方向に駆動する第3アクチュエータとを含む請求項24〜26のいずれか一項に記載の移動体装置。
【請求項28】
前記第1アクチュエータはローレンツ力を発生するアクチュエータであり、前記第2アクチュエータは吸引力を発生するアクチュエータである請求項27に記載の移動体装置。
【請求項29】
基準フレームと、
前記基準フレームに対して前記第2移動部材の位置情報を計測する第1計測装置と、前記基準フレームに対する前記第1移動部材の位置情報又は前記第1移動部材と前記第2移動部材との相対位置の情報を計測する第2計測装置とを含む計測系と、をさらに備え、
前記計測系の計測結果に基づいて、前記第1駆動装置と前記第2駆動装置とにより前記第2移動部材を駆動する請求項24〜28のいずれか一項に記載の移動体装置。
【請求項30】
前記第1計測装置は、前記第2移動部材を介した光を受光して前記第2移動部材の位置情報を計測する干渉計を含む請求項24〜29のいずれか一項に記載の移動体装置。
【請求項31】
前記第1計測装置は、前記第2移動部材及び前記基準フレームの一方に設けられたグレーティングからの反射光を受光して前記第2移動部材の位置情報を計測するエンコーダを含む請求項24〜30のいずれか一項に記載の移動体装置。
【請求項32】
前記第2計測装置は、前記第1移動部材と前記第2移動部材との間の離間距離を計測する複数のギャップセンサを含み、該複数のギャップセンサの計測結果に基づいて前記第1移動部材と前記第2移動部材との相対位置情報を計測する請求項24〜31のいずれか一項に記載の移動体装置。
【請求項33】
前記第2アクチュエータは、前記第1及び第2移動部材の一方に設けられた磁性体と、これに対応して前記第1及び第2移動部材の他方に設けられた電磁石とを含む請求項27〜32のいずれか一項に記載の移動体装置。
【請求項34】
エネルギビームを照射して物体を露光する露光装置であって、
前記物体が前記第2移動部材上に保持される請求項24〜33のいずれか一項に記載の移動体装置と、
前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える露光装置。
【請求項35】
前記第1駆動装置と前記第2駆動装置とにより前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動して、前記物体を露光位置に位置決めする請求項34に記載の露光装置。
【請求項36】
請求項20〜23、34、35のいずれか一項に記載の露光装置を用いて物体を露光し、該物体上にパターンを形成することと、
パターンが形成された前記物体を現像することと、を含むデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2013−98355(P2013−98355A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−239883(P2011−239883)
【出願日】平成23年11月1日(2011.11.1)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】