説明

自動車のフレーム構造

【課題】本発明は、軸方向に延びる円筒パイプを備える自動車のフレーム構造において、フレーム構造の軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる自動車のフレーム構造を提供することを目的とする。
【解決手段】厚肉部20は、横ビード12の円筒パイプ11軸方向の延長上に設けられた三つの厚肉部(第一厚肉部)20Aと、その間に設けられた三つの厚肉部(第二厚肉部)20Bで、60度間隔で、六つ形成しており、円筒パイプ11の内周面11aから内方側に突出して、円筒パイプ11の後端位置まで(詳細には図示しない)延設している。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、自動車のフレーム構造に関し、特に、衝突エネルギーの吸収性能を高めた自動車のフレーム構造に関する。
【背景技術】
【0002】
従来より、自動車のフレーム構造においては、フロントサイドフレームやリヤサイドフレームを衝突時に軸方向に座屈変形させて、衝突エネルギーを吸収することで、車室内に衝突の影響が及ばないようにすることが知られている。
このため、自動車のフレーム構造では、衝突エネルギーの吸収性能が高いフレーム構造が求められる。
【0003】
例えば、下記特許文献1では、押し出し成形等によって、フレーム断面を複数断面に分割したフレーム構造が提案されている。
このフレーム構造によると、エネルギー吸収量が増加するとともに、座屈形状が安定するため、エネルギー吸収量及び変形時の座屈変形が安定するという効果が得られる。
しかし、この押し出し成形のフレーム構造によると、被加工材料及び製造コストが高く、生産性等が悪化するという問題がある。
【0004】
そこで、生産性の悪化を防ぐフレーム構造として、下記特許文献2のフレーム構造が提案されている。
【0005】
このフレーム構造は、矩形閉断面等のフレーム内に、複数の小径のパイプ部材等を充填挿入して、フレーム構造を構成したものである。
このフレーム構造によると、衝突荷重を受けた際に、フレーム内のパイプ部材もフレームと同様に、軸方向に座屈変形するため、衝突エネルギーの吸収量が増加する。特に、フレーム内にパイプ部材が充填されていることから、座屈変形の際には、パイプ部材が相互に干渉し合うことになり、衝突エネルギーの吸収量がさらに増大する旨が記載されている。
【特許文献1】特開2001−63626号公報
【特許文献2】特開2003−312535号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、車体構造を構成するフレーム構造においては、燃費向上、動力性能向上を図るため、軽量化が求められる。そして、一般に軽量化を図るためには、フレーム板厚を薄くすること等が考えられる。
【0007】
この点、例えば、前述の特許文献2のフレーム構造においても、フレームやパイプ部材の板厚を薄くすることで、フレーム構造の軽量化を図ることが考えられる。
【0008】
しかし、単にフレームやパイプ部材の板厚を薄くすると、パイプ部材等が変形しやすくなるため、衝突エネルギーの吸収量が低下するという問題が生じる。
【0009】
特に、パイプ部材を円筒パイプで構成した場合には、パイプ部材が断面形状を三角形と逆三角形との間を交互に変化させながら、座屈変形していくことになるが、特許文献2のフレーム構造では、こうした断面形状の変化に対応して、何ら対策を採っていないため、フレーム構造の軽量化を図りつつ、エネルギー吸収量を増加させることはできない。
【0010】
そこで、本発明は、軸方向に延びる円筒パイプを備える自動車のフレーム構造において、フレーム構造の軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる自動車のフレーム構造を提供することを目的とする。
【課題を解決するための手段】
【0011】
この発明の自動車のフレーム構造は、軸方向に延びる円筒パイプを備える自動車のフレーム構造であって、前記円筒パイプの先端周面に、座屈変形時の起点となる脆弱部を所定箇所に形成し、該脆弱部の円筒パイプの軸方向の延長線上に、高強度部を形成したものである。
【0012】
上記構成によれば、円筒パイプの先端周面に脆弱部を形成することで、円筒パイプの座屈変形の断面形状のパターンを規定できる。そして、高強度部を、この脆弱部の延長線上に形成することで、次の変形位置の断面形状の頂点(稜線)となる部分の強度を高めることができる。
このため、円筒パイプが座屈変形していく際に、最も変形荷重が作用する断面形状の頂点の強度が高まるため、円筒パイプの板厚を薄くしつつも、変形荷重を増加させることができ、衝突エネルギー吸収量を高めることができる。
なお、このパイプ部材を構成する金属材料は、軸方向に座屈変形するものであればどのようなものであってもよい。一般的な鋼材だけでなく、アルミ材等の軽金属であってもよい。
【0013】
この発明の一実施態様においては、前記高強度部を、座屈変形の変形周期単位に合わせた間隔で形成したものである。
上記構成によれば、高強度部を変形周期単位(変形ピッチ)に合わせた間隔で形成することにより、より変形荷重が作用する部分だけを高強度部とすることで、衝突エネルギーの吸収量を確保しながら、軽量化を図ることができる。
よって、フレーム構造の軽量化をより図りつつ、衝突エネルギーの吸収量を高めることができる。
【0014】
この発明の自動車のフレーム構造は、軸方向に延びる複数の円筒パイプを備える自動車のフレーム構造であって、前記複数の円筒パイプを、隣り合う円筒パイプ同士で結合して、該各円筒パイプに、他の円筒パイプとの結合部を一箇所含んで120度間隔で、円筒パイプの軸方向の延長線上に高強度部を形成したものである。
【0015】
上記構成によれば、複数の円筒パイプを結合することで、座屈変形時の変形断面の三角形のパターンを規定することができる。すなわち、円筒パイプが座屈変形する際には、断面形状を三角形と逆三角形で交互に繰り返しながら座屈変形していくが、円筒パイプを結合することで、この結合部が剥離しないように変形形状を拘束するため、結合部が三角形の頂点となる。
そして、その結合部を含んだ120度間隔で軸方向の延長線上に高強度部を形成することで、規定された断面形状の三角形の頂点(稜線)となる部分の強度が、確実に高まることになり、衝突エネルギー吸収量を高めることができる。
よって、複数の円筒パイプを結合したフレーム構造で、軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる。
【0016】
この発明の一実施態様においては、前記各円筒パイプの周面に、他の円筒パイプとの結合部を、一箇所含んで120度間隔で座屈変形時に起点となる脆弱部を形成し、前記高強度部を、該脆弱部の円筒パイプの軸方向延長線上で、且つ座屈変形の変形周期単位に合わせた間隔で形成したものである。
上記構成によれば、脆弱部を設けたことで、複数の円筒パイプを結合した場合における、座屈変形時の断面形状の三角形の変形パターンの軸方向位置を規定することができる。また、高強度部を、座屈変形の変形周期単位に合わせた間隔で形成することで、より変形荷重が作用する部分だけを、高強度部とすることで、衝突エネルギーの吸収量を確保しながら、より軽量化を図ることができる。
よって、複数の円筒パイプを集合して結合したフレーム構造で、フレーム構造の軽量化をより図りつつ、衝突エネルギーの吸収量を高めることができる。
【0017】
この発明の一実施態様においては、前記円筒パイプに、前記高強度部を形成した位置と径方向で対向する位置で、且つ座屈変形の変形周期単位の半周期ずらした位置に、第二の高強度部を形成したものである。
上記構成によれば、第二の高強度部を形成したことで、座屈変形時の断面形状の三角形の変形パターンが反転して逆三角形となる位置においても、逆三角形の頂点(稜線)となる部分の強度を高めることができる。
よって、座屈変形時に逆三角形の頂点となる部分の衝突エネルギー吸収量を高めることができ、さらに、衝突エネルギーの吸収量を高めることができる。
なお、この第二の高強度部を形成したものでは、各高強度部の間隔が周方向に60度間隔で設定されることになる。
【0018】
この発明の一実施態様においては、前記高強度部を、板厚を厚くした厚肉部で構成したものである。
上記構成によれば、高強度部を、厚肉部で構成したことで、円筒パイプの厚肉化によって、安定して衝突エネルギー吸収量を高めることができる。
よって、確実に衝突エネルギーの吸収量を増大させることができる。
【0019】
この発明の一実施態様においては、前記高強度部を、加熱加工した焼入れ部で構成したものである。
上記構成によれば、高強度部を、焼入れ部で構成したことで、円筒パイプの重量を増加させることなく、衝突エネルギー吸収量を高めることができる。
よって、フレーム構造の軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【0020】
この発明の一実施態様においては、前記高強度部を、鍛造加工した鍛造部で構成したものである。
上記構成によれば、高強度部を、鍛造部で構成したことで、円筒パイプの重量を増加させることなく、衝突エネルギー吸収量を高めることができる。
よって、フレーム構造の軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【0021】
この発明の一実施態様においては、前記高強度部を、ショットピーニング加工したショットピーニング部で構成したものである。
上記構成によれば、高強度部を、ショットピーニング部で構成したことで、円筒パイプの重量を増加させることなく、衝突エネルギー吸収量を高めることができる。
よって、フレーム構造の軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【発明の効果】
【0022】
この発明によれば、円筒パイプが座屈変形していく際に、最も変形荷重が作用する断面形状の頂点の強度が高まるため、円筒パイプの板厚を薄くしつつも、変形荷重を増加させることができ、衝突エネルギー吸収量を高めることができる。
よって、軸方向に延びる円筒パイプを備える自動車のフレーム構造において、フレーム構造の軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる。
【発明を実施するための最良の形態】
【0023】
以下、図面に基づいて本発明の実施形態を詳述する。
まず、第一実施形態について説明する。図1は本発明の自動車のフレーム構造をクラッシュカンとして使用した車体前部構造の前方斜視図、図2はクラッシュカンの全体斜視図、図3はクラッシュカンの前端部の斜視図、図4はクラッシュカンの正面図である。なお、本実施形態では、右側前部の車体構造だけを示している。
【0024】
図1に示すように、本実施形態では、車体前部に、車体前後方向に延びる断面略矩形状のフロントサイドフレーム1を設けている。このフロントサイドフレーム1の前端部には、平板状のセットプレート2を介して車体前後方向に延びるクラッシュカン3を設けている。また、そのクラッシュカン3の前端部には、車幅方向に延びて左右のクラッシュカン3(左側は図示せず)を掛け渡すバンパーレインメンバー4を設けている。
【0025】
フロントサイドフレーム1の後部には、下方に屈曲して傾斜する屈曲部5を形成している。そして、この屈曲部5の下端には、車体フロア(図示せず)下面で車体前後方向に延びるフロアフレーム6を結合固定している。
【0026】
この屈曲部5の車幅内方側側面には、車幅内方側に、傾斜して延びる傾斜連結メンバー7を結合固定している。この傾斜連結メンバー7は、図示しないダッシュパネル下部のダッシュクロスメンバーに接合固定している。
【0027】
また、屈曲部5の下面には、サスペンションクロスメンバー(図示せず)を締結固定するサスクロス取付けブラケット8を接合固定している。
【0028】
さらに、屈曲部5の前方上面には、上方且つ後方に向って延び、図示しないヒンジピラーに連結される上部連結メンバー9を、接合固定している。
【0029】
こうして、フロントサイドフレーム1の後部を補強することで、車体前方からフロントサイドフレーム1に入力される衝突荷重を、車体後方側に分散して伝達されるように構成している。
【0030】
前述のクラッシュカン3は、複数の円筒パイプ11…を集合させて結合した、いわゆる「集合パイプ体」で構成している。この集合パイプ体で構成したクラッシュカン3は、図2にも示すように、五本の円筒パイプ11…を、上部二本11A,11Bと下部二本11D,11Eと中央一本11Cで、略縦長形状に組み合わることで構成している。
【0031】
具体的に、このクラッシュカン3は、鋼材で成形した同一の直径d(本実施形態は38mm)の円筒パイプ五本11A,11B,11C,11D,11Eを、車体前後方向(図面では上下方向)に並ぶように組み合せ、後述するように、隣り合う各円筒パイプ同士を、それぞれ接合して構成している。
【0032】
このクラッシュカン3の前後方向長さは、約150mmに設定して、車体前後方向のクラッシュ量を確保している。なお、円筒パイプの板厚t(本実施形態は1mm)も全て同一である。
【0033】
このクラッシュカン3は、車体前後方向の荷重が作用すると、軸方向に座屈変形をして、衝突エネルギーを吸収するように構成している。特に、このクラッシュカン3は、同時に五本の円筒パイプ11A,11B,11C,11D,11Eを座屈変形させるため、衝突エネルギー吸収量を従来のクラッシュカンよりも高めることができ、エネルギー吸収量を多くすることができる。
【0034】
この集合パイプ体の前端から後方側へS(本実施形態は約15mm)の位置には、衝突荷重が作用した際に、クラッシュカン3の潰れ形状を規定する脆弱部たる横ビード12…を設けている。なお、このSは、円筒パイプ11の潰れ周期のピッチによって変化する。
【0035】
この横ビード12は、図3に示すように、全ての円筒パイプ11に、約120度間隔で設けた、内凹形状で形成している。この横ビード12は、後述するように、クラッシュカン3が座屈変形する際に、座屈変形の「きっかけ」を与えている。
【0036】
この横ビード12の後方側の円筒内周面には、円筒パイプの軸方向に延びる高強度部たる厚肉部20を形成している。
【0037】
この厚肉部20は、図4に示すように、横ビード12の円筒パイプ11軸方向の延長上に設けられた三つの厚肉部(第一厚肉部)20Aと、その間に設けられた三つの厚肉部(第二厚肉部)20Bで、60度間隔で、六つ形成しており、円筒パイプ11の内周面11aから内方側に突出して、円筒パイプ11の後端位置まで(詳細には図示しない)延設している。
【0038】
これらの厚肉部20A,20Bは、後述するように、クラッシュカン3が座屈変形した際に、衝突エネルギー吸収量を増加させる機能を有する。
【0039】
また、クラッシュカン3には、図4に示すように、隣り合う円筒パイプ11同士を接合する複数の接合部位13,14,15,16,17,18を設定している。
具体的に、この接合部位は、上部二本11A,11Bの間に最上部接合部位13を設定し、上部二本11A、11Bと中央一本11Cの間に上側部接合部位を二箇所14,15設定して、そして、下部二本11D,11Eと中央一本11Cの間に下側部接合部位を二箇所16,17設定し、さらに、下部二本11D,11Eの間に最下部接合部位18を設定している。
【0040】
そして、これらの接合部位13,14,15,16,17,18は、円筒パイプ11の軸方向に、ほぼ全域に亘って略直線状に延設するように設定している。このように接合部位を設定することで、円筒パイプ11間の接合強度を高めている。
【0041】
なお、この円筒パイプ11間の接合は、レーザー溶接等によって行なうことが考えられる。例えば、円筒パイプ11内に、光ファイバー等を用いたレーザーガンを差し込み、各接合部位13,14,15,16,17,18を円筒パイプ11内から加熱して、円筒パイプ11間の接触点を溶解させて、溶接を行なう。
【0042】
図4に示すように、この各円筒パイプ11の接合部位は、最上部接合部位13と、二箇所の上側部接合部位14,15と、二箇所の下側部接合部位16,17と、最下部接合部位18との、計六点で構成している。
【0043】
そして、上部の三点、すなわち、最上部接合部位13と上側部接合部位の二箇所14,15の三点を結んで構成される図形Rが、「正三角形」となるように設定している。また、下部の三点、すなわち、最下部接合部位18と下側部接合部位の二箇所16,17の三点を結んで構成される図形Qが「逆正三角形」となるように設定している。そして、この「正三角形」Rと「逆正三角形」Qが、中央の円筒パイプ11Cを挟んで上下対称となるように設定している。
【0044】
これは、円筒パイプ11の座屈変形時の変形挙動を考慮して、こうした接合部位に設定しているのである。
【0045】
図5は、円筒パイプの座屈変形時の断面形状の変形状態を示した模式図であり、(a)は座屈変形前の円筒パイプの一部を切欠いた側面図とA−A断面図であり、(b)は座屈変形後の円筒パイプの側面図とB−B断面図、C−C断面図である。なお、この円筒パイプのモデルも、直径38mm、板厚1mmの鋼材パイプである。
【0046】
(a)に示すように、円筒パイプ11は、座屈変形前には真円形状の円筒断面を有している。
【0047】
この円筒パイプ11が、車体前後方向荷重を受けて座屈変形する場合には、(b)に示すように、座屈変形の潰れ周期の半ピッチ毎に、断面形状が「正三角形」と「逆正三角形」を繰返して変形する。
【0048】
これは、「面」を構成する最小の多角形が三角形であるため、圧縮力を受けて円筒断面が外周側に拡張しようとする際、局所的に三点に応力集中が生じて、「正三角形」断面と、「正逆三角形」断面を周期的に繰返して、座屈変形していくと考えられるからである。
【0049】
このように、断面形状が「正三角形」と「正逆三角形」を繰り返しながら変形していくため、円筒パイプ11の接合部位は、この繰り返し変形を阻害しないように設定する必要がある。
【0050】
そこで、本実施形態では、図6、図7に示すように変形状態を考慮して、接合部位を設定している。図6はクラッシュカンの正面図に右側を頂点とする三角形の変形モデルを加えた図であり、図7はクラッシュカンの正面図に左側を頂点とする三角形の変形モデルを加えた図である。
【0051】
まず、図6に示すように、断面形状が右側を頂点とする三角形に変形する部分では、各接合部位が矢印に示すように移動する。すなわち、最上部接合部位13が右側に移動(13a)して、上側部接合部位の右側部位15が左斜め下側に移動(15a)して、左側部位14が左斜め上側に移動(14a)する。また、最下部接合部位18が右側に移動(18a)して、下側部接合部位の右側部位17が左斜め上側に移動(17a)して、左側部位16が左斜め下側に移動(16a)する。
【0052】
一方、図7に示すように、断面形状が左側を頂点とする三角形に変形する部分では、各接合部位が矢印に示すように移動する。すなわち、最上部接合部位13が左側に移動(13b)して、上側部接合部位の右側部位15が右斜め上側に移動(15b)して、左側部位14が右斜め下側に移動(14b)する。また、最下部接合部位18が左側に移動(18b)して、下側部接合部位の右側部位17が右斜め下側に移動(17b)して、左側部位16が右斜め上側に移動(16b)する。
【0053】
このように、各接合部位13,14,15,16,17,18は、円筒パイプ11の断面形状の繰り返し変形に即して往復移動することになる。
【0054】
もっとも、こうした接合部位の移動は、円筒パイプ11の変形を阻害することなく、また、各円筒パイプ11間の接合状態も維持することができる。
【0055】
仮に、各接合部位を「正四角形」を構成するように設定した場合には、円筒パイプ11の断面変形に即して接合部位が移動しないため、円筒パイプ11の座屈変形を阻害したり、また、円筒パイプ11間の接合が剥離したりするおそれがある。
【0056】
こうした点に関し、本実施形態では、前述のように、各接合部位13,14,15,16,17,18を、「正三角形」と「逆正三角形」を構成するように設定しているため、各円筒パイプ11間の接合状態を維持した状態で、クラッシュカン3の座屈変形を許容できる。
【0057】
このように、各接合部位13,14,15,16,17,18がクラッシュカン3の座屈変形を阻害しないため、本実施形態のクラッシュカン3では、全て円筒パイプ11が完全に座屈変形をして、衝突エネルギーを確実に吸収することができる。
また、図5に示すように、円筒パイプ11の内周面には、前述した厚肉部20(第一厚肉部20A、第二厚肉部20B)を、60度間隔で六つ設けている。
座屈変形時には、(b)に示すように、第一厚肉部20Aが正三角形の頂点に位置して、第二厚肉部20Bが逆正三角形の頂点に位置することで、断面形状の変形に対応して各厚肉部20A,20Bが折り曲げられることになる。
【0058】
このように、厚肉部20が折り曲げられることにより、通常の板厚部分を折り曲げる場合よりも、変形に必要な荷重(エネルギー)を増加させることができるため、円筒パイプ11の衝突エネルギー吸収量を、厚肉部を設けていないものと比較して増加させることができる。
【0059】
また、この厚肉部20の一部は、図4に示すように、各接合部位13,14,15,16,17,18に対応するように設けられている。このため、厚肉部20は確実に正三角形と逆正三角形に変形する断面形状に即して、変形することになる。
【0060】
図8に、クラッシュカンの座屈変形前と座屈変形後の状態を示す。図8(a)が座屈変形前のクラッシュカンの側面図、(b)が座屈変形後のクラッシュカンの側面図である。
【0061】
(a)に示すように、フロントサイドフレーム1の前端部にセットプレート2を介して取り付けられたクラッシュカン3は、車体前後方向に延びて、車体前後方向のクラッシュスペースを確保している。
【0062】
クラッシュカン3の前部側面には、前述した脆弱部たる横ビード12を設けている。
この横ビード12は、円筒パイプ11の断面形状が「三角形」に変形する際に、「三角形」の「辺」になるように設定している。すなわち、この横ビード12を設けることで、横ビード12を設けていない円周部19の強度が相対的に高まるため、圧縮荷重を受けた際に、この円周部19に応力が集中して三角形の頂点となるような変形が生じ、結果的に、横ビード12が「辺」となるような変形が生じるのである。
【0063】
このように、横ビード12を形成することで、円筒パイプ11の潰れ周期のピッチの起点と断面変形のパターンを規定できるため、この横ビードを形成した位置を基準として厚肉部を形成することができ、効果的に衝突エネルギー吸収量を高めることができる。
【0064】
(b)に示すように、車体前方から衝突荷重を受けた際には、クラッシュカン3は、フロントサイドフレーム1の前方で座屈変形する。このとき、全ての円筒パイプ11は、まったく同様に、軸方向に山折れと谷折れを繰り返して座屈変形する。
【0065】
なお、この座屈変形の潰れ周期のピッチPは、円筒パイプ11の板厚が一定の場合、直径dに依存しており、直径dが小さくなればピッチPも小さくなり、直径dが大きくなればピッチPも大きくなる(本実施形態では非圧縮時約38mm)。
【0066】
また、この横ビードの代わりに「横スリット」を設けることも考えられる。この横スリットを設けた場合も、円筒パイプの潰れ周期のピッチの起点と断面変形のパターンを規定することができる。
【0067】
図9は、本実施形態の厚肉部を設けたクラッシュカンと、厚肉部を設けていないクラッシュカンと、従来構造のクラッシュカンとの衝突エネルギー吸収状態を比較したグラフを示した図である。このグラフは、縦軸を座屈荷重、横軸をストローク量で示している。
【0068】
本実施形態のクラッシュカン3の荷重特性ラインは、Xに示した特性ラインである。これに対して、厚肉部を設けていないクラッシュカンの荷重特性ラインはYに示した特性ラインであり、従来の四角柱状のクラッシュカンの荷重特性ラインは、Zに示した特性ラインである。
【0069】
このグラフに示すように、本実施形態のクラッシュカン3の荷重特性Xは、衝突初期の荷重ピーク値Xpにおいて最も高い値を示し、その後の荷重特性についても、比較的大きな座屈荷重を維持したまま、ストロークして(潰れて)いく。
【0070】
つまり、本実施形態の平均荷重Xmは、従来構造の荷重特性Zの平均荷重Zmの約4倍以上の値となり、衝突エネルギーの吸収性能が従来構造と比較して極めて高くなっていることが分かる。
これは、前述したように、潰れ周期が小さい小径の円筒パイプという質量効率の高い衝撃吸収体を、接合部位を介して五本同時に同調して座屈変形させているためである。
【0071】
また、本実施形態の荷重特性Xでは、厚肉部を設けていないクラッシュカンの荷重特性Yの平均荷重Ymと比較しても、荷重ピーク値Xp以降の荷重が高い値を維持している。
【0072】
これは、前述したように、正三角形の頂点と逆正三角形の頂点となる部分に厚肉部20を設けたことで、座屈変形の中期から後期にかけて変形荷重が増加して、衝突エネルギー吸収量が増加しているためである。
【0073】
よって、本実施形態のクラッシュカン3によると、円筒パイプ11の質量をさほど大きくすることなく、極めて高い衝撃吸収性能を得ることができる。
【0074】
次に、図16によって、このクラッシュカンがどの程度の直径と板厚の円筒パイプで確実に座屈変形するかを説明する。
図16は、前後方向の長さが約150mmの円筒パイプの板厚と直径を変化させてクラッシュカンを座屈変形させた場合のグラフを示した図である。このグラフでは、縦軸を円筒パイプの直径d、横軸を円筒パイプの板厚tで示している。
【0075】
このグラフでは、○は円筒パイプが三角形断面で座屈変形した場合を示し、×は円筒パイプが三角形断面以外で座屈変形した場合を示している。また、ハッチングドット領域については、密なドット領域が全ての円筒パイプが三角形断面で座屈変形する領域であり、疎なドット領域が三角形断面と四角形断面で座屈変形する領域である。さらに、ハッチングがない領域は、座屈変形しない領域であり横折れ変形等により、衝突エネルギーの吸収をほとんど行なわない領域を示している。
【0076】
このグラフの範囲に限っていえば、円筒パイプ11が断面形状を三角形断面で変形する領域は、板厚tが0.4〜2.0mmで、直径dが20〜80mmの範囲であることが分かる。また、同じ直径dでも板厚tが薄ければ、三角形断面で変形するだけでなく四角形断面等で変形することが分かる。さらに、同じ板厚tでも直径dが小さい場合や、また大きすぎる場合も、全て三角形断面で潰れない場合があることが分かる。
【0077】
本実施形態のように、板厚tが1.0mm、直径dが38mmの場合(T)には、確実に全ての円筒パイプ11が三角形断面で座屈変形していくことが分かる。
こうしたことから、本発明を効果的に実施するためには、このグラフの密なドット領域の板厚tと直径dで円筒パイプを設計して、クラッシュカン3を構成することが望ましいことが分かる。
【0078】
次に、この厚肉部を備える円筒パイプの成形方法について、図10により説明する。図10は、素材の円筒パイプから厚肉部を備える円筒パイプを製造する製造工程を示した模式図である。
【0079】
まず、上段に示す第一成形工程では、始めに、素材の円筒パイプWを第一成形型30に差し込む。この第一成形型の内周面には、60°間隔で六箇所に凹状に窪んだ受け溝部31を形成している。
【0080】
次に、素材の円筒パイプW内に、作動流体(液体又は気体)32を投入して加圧する。これにより、素材の円筒パイプWの外周面が、受け溝部31内に隆起して突出変形する。
【0081】
このとき、受け溝部31以外の部分では、受け溝部31内に隆起しない。このため、相対的にこの部分Waが肉厚となる。なお、この厚肉部分Waが円筒パイプ11の厚肉部20に変化する。
【0082】
こうして、第一成形工程では、放射状に外周側に六箇所突出した突出部Wbを有する円筒ワークW′を成形することになる。
【0083】
次に、下段に示す第二成形工程では、第一成形工程で成形した円筒ワークW′を、第二成形型33に差込む。この第二成形型33の内周面34は、完成した円筒パイプ11とほぼ同径の直径を有する円曲面で形成している。
【0084】
次に、円筒ワークW′内に、再度作動流体35を投入して加圧する。これにより、厚肉部分Waが外周側に広がり、突出部Wbの側面と端面が、それぞれ外周側に広がり、変形する。
【0085】
こうして、第二成形工程では、外周面が円曲面となって内周面に厚肉部20を備えた円筒パイプ11を、成形することができる。
以上の製造工程によって、本実施形態の円筒パイプ11を成形することができる。
【0086】
次に、このように構成された本実施形態の作用効果について、説明する。
この実施形態のフレーム構造は、クラッシュカン3を、軸方向に延びる円筒パイプ11を複数結合することで構成して、この円筒パイプ11の先端周面に、座屈変形時の起点となる横ビード12を三箇所に形成し、この横ビード12の円筒パイプ11軸方向の延長線上に、厚肉部20(第一厚肉部20A)を形成している。
【0087】
これにより、横ビード12で、円筒パイプ11の座屈変形の断面形状の変形パターンの位置を規定し、この横ビード12の延長線上に厚肉部20を形成することで、次の潰れ周期(潰れピッチ)の三角形の頂点となる部分の強度を高めることができる。
このため、円筒パイプ11が座屈変形していく際に、最も変形荷重が作用する三角形の頂点の強度が高まるため、円筒パイプ11全体の板厚を厚くしなくても、変形荷重を増加させることができ、衝突エネルギー吸収量を高めることができる。
よって、軸方向に延びる円筒パイプ11を備えるクラッシュカン3構造において、クラッシュカン3の軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる。
【0088】
また、この実施形態では、複数の円筒パイプ11を隣り合う円筒パイプ11同士で接合して、この各円筒パイプ11に、他の円筒パイプ11との接合部位13,14,15,16,17,18を一箇所含んで120度間隔で、円筒パイプ11の軸方向に延びるように厚肉部20(第一厚肉部20A)を形成している。
これにより、接合部位で規定される座屈変形時の断面形状の三角形のパターンを利用して、軸方向に延びる厚肉部20Aを120度間隔で形成することで、三角形の頂点(稜線)となる部分の強度を、確実に高めることができる。
よって、複数の円筒パイプ11を結合したクラッシュカン3で、軽量化を図りつつ、衝突エネルギーの吸収量を増加させることができる。
【0089】
また、この実施形態では、厚肉部20を、第一厚肉部20Aと、この第一厚肉部20Aと径方向に対向する位置に設けた第二厚肉部20Bと、によって構成している。
これにより、座屈変形時に断面形状が逆正方形になる位置においても、逆三角形の頂点となる部分の強度を高めることができる。
よって、座屈変形時の逆正三角形の頂点となる部分の衝突エネルギー吸収量を高めることができ、さらに衝突エネルギーの吸収量を高めることができる。
【0090】
また、この実施形態では、板厚を厚くした厚肉部20で、座屈強度を高めている。
これにより、円筒パイプ11の厚肉化によって、安定して衝突エネルギー吸収量を高めることができる。
よって、確実に衝突エネルギーの吸収量を増大させることができる。
【0091】
なお、本実施形態では、厚肉部20を60度間隔で六つ設けて、正三角形と逆正三角形の変形パターンに全て対応させて、衝突エネルギー吸収量を高めているが、例えば、正三角形の変形パターンにのみ対応するように、厚肉部を120度間隔で三つ設けるように構成してもよい。この場合には、衝突エネルギー吸収量がやや減少するものの、円筒パイプを軽量化できると共に、円筒パイプの成形性も高めることができる。
【0092】
次に、第二実施形態について、図11、図12で説明する。図11は第二実施形態の円筒パイプの一部を切欠いた側面図とD−D断面図であり、図12は、円筒パイプの製造方法を示したフローチャートである。なお、前提となるクラッシュカンの構造等その他の構成要素は、第一実施形態と同様である。
【0093】
この実施形態は、円筒パイプ51の厚肉部60を必要最小限にすることで、できるだけ円筒パイプ51を軽量化しつつも、衝突エネルギーの吸収量を増加させたものである。
具体的には、座屈変形時に正三角形と逆正三角形の頂点となる部分のみに厚肉部60を設け、その他の部分については、厚肉部を設けないように構成することで、円筒パイプ51を軽量化したものである。
【0094】
図11に示すように、アルミ合金で成形した円筒パイプ51の内周面51aには、厚肉部60を同じ断面位置に120度間隔で三つ(第一厚肉部60A)、そして、軸方向に潰れ周期の半ピッチ毎に60度ずつズレて三つ(第二厚肉部60B)、それぞれ設けている。
【0095】
各厚肉部60A,60Bは、円筒パイプ51の潰れ周期(潰れピッチ)の起点を基準として設けており、この起点は、円筒パイプ51の先端周面に設けた横ビード12で規定している。
【0096】
このように、各厚肉部60A,60Bを、潰れ周期(潰れピッチ)に合わせて、離間して設けることで、円筒パイプ51の質量の増加を抑えつつも、衝突エネルギー吸収量を高めることができる。
【0097】
図12で、この実施形態の円筒パイプ51の製造方法について説明する。
【0098】
まず、ステップ1(S1)で、アルミ材料から内周面にスプライン形状の凸部を設けた円筒パイプを押出成形する。ここで円筒パイプの内周面には、第一実施形態の円筒パイプと同様に、軸方向に延びる六つの凸部が形成される。
次に、ステップ2(S2)で、円筒パイプの内周面の凸部を、先端部分から所定長さ切削加工する。この切削加工によって、円筒パイプの先端部分には、厚肉部を設けない部分が設定される。
さらに、ステップ3(S3)で、円筒パイプの厚肉部を設けない部分の外周面に、横ビードを形成する。この横ビードは、内周面の凸部の三つに対応するように120度間隔で形成され、前述のように、潰れ周期の起点となる。
そして最後に、ステップ4(S4)で、内周面の凸部を、変形周期のピッチに合致する位置を残して、その他の部分を切削加工する。この切削加工によって、座屈変形する部分以外の不要な凸部が、円筒パイプから除去される。
以上の工程を経て、本実施形態の円筒パイプが製造される。
【0099】
次に、本実施形態の作用効果について説明する。
この実施形態では、各円筒パイプ51の周面に、120度間隔で座屈変形時に起点となる横ビード12を形成し、この横ビード12の円筒パイプ51の軸方向延長線上に、且つ座屈変形の変形周期単位に合わせた間隔で、厚肉部60(第一厚肉部60A)を形成している。
これにより、横ビード12で座屈変形時の断面形状の三角形の変形パターンの位置を規定して、この座屈変形の変形周期単位(変形ピッチ)に合わせた間隔で、厚肉部60Aが形成される。このため、変形荷重が最も作用する部分だけを強度を高めて、衝突エネルギーの吸収量を確保しながら、軽量化を図ることができる。
よって、複数の円筒パイプ51を集合して結合したクラッシュカンで、より軽量化を図りつつ、衝突エネルギーの吸収量を高めることができる。
【0100】
また、この実施形態では、円筒パイプ51の内周面51aに、第一厚肉部60Aを形成し、この第一厚肉部60Aを形成した位置と径方向で対向する位置で、且つ座屈変形の変形周期単位の半周期ずらした位置に、第二厚肉部60Bを形成している。
これにより、座屈変形時の断面形状の三角形の変形パターンが反転する位置においても、逆三角形の頂点(稜線)となる部分の強度を高めることができる。
よって、座屈変形の反転時の衝突エネルギー吸収量を高めることができ、さらに、衝突エネルギーの吸収量を高めることができる。
【0101】
なお、本実施形態では、アルミ材料によって、円筒パイプ51を構成したが、一般的な鋼材で、円筒パイプを構成してもよい。
【0102】
次に、第三実施形態について、図13で説明する。図13は第三実施形態の円筒パイプの一部切欠いた側面図とE−E断面図である。なお、前提となるクラッシュカンの構造等その他の構成要素は、第一実施形態と同様である。
【0103】
この実施形態は、焼入れ加工した焼入れ部80を、円筒パイプ71の周面に形成することで、厚肉部を設けることなく、座屈変形時の衝突エネルギー吸収量を高めたものである。
【0104】
具体的には、図13に示すように、バーナー等の加熱手段Vで、円筒パイプ71の表面を加熱して、軸方向に延びるように焼入れ部80を形成する。なお、焼入れ方法については、周知であるため、詳細な説明を省略する。
【0105】
この焼入れ部80は、円筒パイプ71の周面に約60度間隔で六箇所設けることで、「正三角形」と「逆正三角形」の頂点に、それぞれ対応するように設けている。
このように焼入れ部80を設けることで、円筒パイプ71は、焼入れ部80の硬度が高まるため、この部分が強靭化して、変形しにくくなる。
よって、この実施形態でも、座屈変形時には、焼入れ部が「正三角形」と「逆正三角形」の頂点となって変形するため、円筒パイプ71が座屈変形しにくくなり、円筒パイプ71の衝突エネルギー吸収量を増加させることができる。
【0106】
このように、この実施形態では、円筒パイプ71の、座屈変形時に「正三角形」と「逆正三角形」の頂点となる部分を、焼入れ加工した焼入れ部80で構成している。
これにより、円筒パイプ71に厚肉部を設けることなく、衝突エネルギー吸収量を高めることができる。
よって、本実施形態によると、クラッシュカンの軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【0107】
次に、第四実施形態について、図14で説明する。図14は第四実施形態の円筒パイプの一部を切欠いた側面図とF−F断面図である。
【0108】
この実施形態は、鍛造加工した鍛造部100を、円筒パイプ91の周面に形成することで、座屈変形時の衝突エネルギー吸収量を高めたものである。
【0109】
具体的には、図14に示すように、ハンマー等の打撃手段Hで、円筒パイプ91の表面を叩いて、軸方向に延びるように鍛造部100を形成する。なお、鍛造方法についても、周知であるため、詳細な説明を省略する。
【0110】
この鍛造部100は、円筒パイプ91の周面に60度間隔で六箇所設けることで、「正三角形」と「逆正三角形」に変形する断面形状に、それぞれ対応するように設けている。
このように鍛造部100を設けることで、この実施形態の円筒パイプ91でも、鍛造部100の硬度が高まるため、この部分が強靭化して、変形しにくくなる。
よって、この実施形態でも、円筒パイプ91が座屈変形しにくくなり、円筒パイプ91の衝突エネルギー吸収量を増加させることができる。
【0111】
このように、この実施形態では、円筒パイプ91の、座屈変形時に「正三角形」と「逆正三角形」の頂点となる部分を、鍛造加工した鍛造部100で構成している。
これにより、円筒パイプ91に厚肉部を設けることなく、衝突エネルギー吸収量を高めることができる。
よって、本実施形態によると、クラッシュカンの軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【0112】
特に、本実施形態によると、ハンマー等の打撃手段Hで、位置を規定して鍛造部100を形成するため、鍛造部100の位置を確実に規定することができるため、座屈変形時の断面形状の変形に確実に対応させることができる。
【0113】
次に、第五実施形態について、図15で説明する。図15は第五実施形態の円筒パイプの一部を切欠いた側面図とG−G断面図である。
【0114】
この実施形態は、ショットピーニング加工したショットピーニング部120を、円筒パイプ111の周面に形成することで、座屈変形時の衝突エネルギー吸収量を高めたものである。
【0115】
具体的には、図15に示すように、鉄球を投射するショットピーニング手段SPで、円筒パイプ111の周面に鉄球を投射して、軸方向に延びるようにショットピーニング部120を形成する。なお、ショットピーニングの方法についても、周知であるため、詳細な説明を省略する。
【0116】
このショットピーニング部120も、円筒パイプ111の周面に60度間隔で六箇所設けることで、「正三角形」と「逆正三角形」に変形する断面形状に、それぞれ対応するようになっている。
このように、ショットピーニング部120を設けることで、この実施形態でも、円筒パイプ111は、ショットピーニング部120の硬度が高まるため、この部分が強靭化して、変形しにくくなる。
よって、この実施形態でも、円筒パイプ111が座屈変形しにくくなり、円筒パイプ111の衝突エネルギー吸収量を増加させることができる。
【0117】
このように、この実施形態では、円筒パイプ111の、座屈変形時に「正三角形」と「逆正三角形」の頂点となる部分を、ショットピーニング加工したショットピーニング部120で構成している。
これにより、円筒パイプ111に厚肉部を設けることなく、衝突エネルギー吸収量を高めることができる。
よって、クラッシュカンの軽量化をより図りつつ、衝突エネルギーの吸収量を増大させることができる。
【0118】
特に、この実施形態によると、小さな鉄球を投射して、ショットピーニング部120を形成するため、細い円筒パイプに対しても容易に加工することができる。
【0119】
次に、第六実施形態について、図17、図18で説明する。図17は第六実施形態の円筒パイプの成形方法を説明する模式図であり、図18はプリフォーム積層タイプの円筒パイプの断面図である。
【0120】
この実施形態は、クラッシュカンを構成する円筒パイプの強度差を、いわゆるプリフォームを利用することにより発生させ、円筒パイプ内で部分的に強度差を持たせたものである。
すなわち、例えば、特開2007−268586公報等に記載された強化繊維で成形したプリフォームを、鋳型内にセットしておき、そのプリフォームを金属の母材で鋳込むことで、円筒パイプを成形するものである。
【0121】
具体的には、図17に示す成形工程によって、円筒パイプを成形する。
まず、初めに(a)に示すように、等間隔で厚肉部192…を有するシート状のプリフォーム191を成形する。このプリフォーム191は、前述したように強化繊維によって成形する。
【0122】
次に、(b)に示すように、シート状のプリフォーム191を円筒状に折曲げて、円筒形状のプリフォーム193を成形する。このとき、厚肉部192…が外周側に位置するように成形する。
なお、型を用いて(b)の形状を初めから作ってもよい。
【0123】
その後、(c)に示すように、円筒パイプの座屈変形の半ピッチに対応した長さで切断して、位相を60度ずらしたものを、一つとびに積層する(194)。
【0124】
最後に、(d)に示すように、この積層したプリフォーム194を、図示しない鋳型内にセットして、母材(アルミニウムなど)を流し込むことで、円筒パイプ195を成形する。
【0125】
このように、円筒パイプ195を成形することで、円筒パイプ195は、外周側に母材であるアルミニウム196が位置して、内周側にアルミニウムとプリフォームの複合化部分197が位置するように成形される。
【0126】
また、1−1縦断面図に示すように、厚肉部192を設けた部分では、アルミニウムとプリフォームの複合化部分197が、凹凸状に繰り返して成形されるように構成され、2−2縦断面図と比較すると、厚肉部192の部分では、複合化部分が増加することが分かる。
【0127】
このように、円筒パイプ195を構成することで、図18で一点鎖線に示すように、座屈変形時には、三角形の頂点K1がちょうど厚肉部192になるように変形させる。すなわち、厚肉部92を設けた部分の強度が高まるため、この部分を有効に利用して、座屈変形時の衝突エネルギー吸収量を増加させることができるのである。
【0128】
したがって、本実施形態の円筒パイプ195によると、確実に座屈変形時の衝突エネルギー吸収量を増加させることができるため、より衝突エネルギーの吸収量を高めることができる。
【0129】
なお、具体的には、図示しないが、この実施形態とは逆に、外周側にプリフォームを位置させて、内周側に母材であるアルミニウムが位置するように成形してもよい。この場合には、厚肉部を、三角形の頂点に対応して内周側に三箇所突出するように成形する。
【0130】
こうして、円筒パイプを構成した場合も、この厚肉部を有効に利用して、座屈変形時の衝突エネルギー吸収量を増加させることができる。よって、より衝突エネルギーの吸収量を高めることができる。
【0131】
また、第六実施形態と異なり、座屈変形の半ピッチに対応した長さでプリフォームを切断せずに、円筒形状に一体成形したプリフォームで、座屈変形時の衝突エネルギー吸収量を増加させるように構成してもよい。
【0132】
この場合には、円筒形状のプリフォームに、60度間隔で六箇所の厚肉部を形成して、このプリフォームにアルミ二ウム等の母材を流し込み、円筒パイプを成形する。なお、プリフォームが円筒パイプの内周側又は外周側のいずれに位置するように成形してもよい。
【0133】
このように円筒パイプを構成した場合には、プリフォームを切断して積層する必要がないため、円筒パイプの成形性を高めることができる。
【0134】
以上、この発明の構成と前述の実施形態との対応において、
この発明のフレーム構造は、実施形態のクラッシュカン3に対応し、
以下、同様に、
脆弱部は、横ビード12に対応し、
高強度部は、厚肉部20、厚肉部60、焼入れ部80、鍛造部100、ショットピーニング部120に対応し、
結合部は、接合部位13,14,15,16,17,18に対応するも、
この発明は、前述の実施形態に限定されるものではなく、あらゆる自動車のフレーム構造に適用する実施形態を含むものである。
【0135】
本実施形態では、車体前部構造のクラッシュカン3で説明したが、本発明は、これに限られず、車体後部のクラッシュカンや、フロントサイドフレームやリヤサイドフレームで採用してもよい。また、円筒パイプの結合構造も、溶接だけでなく、嵌合、圧着等であってもよい。
【図面の簡単な説明】
【0136】
【図1】本発明の自動車のフレーム構造をクラッシュカンとして使用した車体前部構造の前方斜視図。
【図2】クラッシュカンの全体斜視図。
【図3】クラッシュカンの前端部の斜視図。
【図4】クラッシュカンの正面図。
【図5】円筒パイプの座屈変形時の断面形状の変形状態を示した模式図であり、(a)は座屈変形前の円筒パイプの一部を切欠いた側面図とA−A断面図、(b)は座屈変形後の円筒パイプの側面図とB−B断面図、C−C断面図。
【図6】クラッシュカンの正面図に右側を頂点とする三角形の変形モデルを加えた図。
【図7】クラッシュカンの正面図に左側を頂点とする三角形の変形モデルを加えた図。
【図8】(a)が座屈変形前のクラッシュカンの側面図、(b)が座屈変形後のクラッシュカンの側面図。
【図9】本実施形態の厚肉部を設けたクラッシュカンと、厚肉部を設けていないクラッシュカンと、従来構造のクラッシュカンとの衝突エネルギー吸収状態を比較したグラフを示した図。
【図10】素材の円筒パイプから厚肉部を備える円筒パイプを製造する製造工程を示した模式図。
【図11】第二実施形態の円筒パイプの一部を切欠いた側面図とD−D断面図。
【図12】円筒パイプの製造方法を示したフローチャート。
【図13】第三実施形態の円筒パイプの一部を切欠いた側面図とE−E断面図。
【図14】第四実施形態の円筒パイプの一部を切欠いた側面図とF−F断面図。
【図15】第五実施形態の円筒パイプの一部を切欠いた側面図とG−G断面図。
【図16】円筒パイプの板厚と直径を変化させてクラッシュカンを座屈変形させた場合のグラフを示した図。
【図17】第六実施形態の円筒パイプの成形方法を説明する模式図。
【図18】プリフォーム積層タイプの円筒パイプの断面図。
【符号の説明】
【0137】
3…クラッシュカン
11…円筒パイプ
12…横ビード
13,14,15,16,17,18…接合部位
20…厚肉部
20A…第一厚肉部
20B…第二厚肉部
51…円筒パイプ
60…厚肉部
60A…第一厚肉部
60B…第二厚肉部
71…円筒パイプ
80…焼入れ部
91…円筒パイプ
100…鍛造部
111…円筒パイプ
120…ショットピーニング部

【特許請求の範囲】
【請求項1】
軸方向に延びる円筒パイプを備える自動車のフレーム構造であって、
前記円筒パイプの先端周面に、座屈変形時の起点となる脆弱部を所定箇所に形成し、
該脆弱部の円筒パイプの軸方向の延長線上に、高強度部を形成した
自動車のフレーム構造。
【請求項2】
前記高強度部を、座屈変形の変形周期単位に合わせた間隔で形成した
請求項1記載の自動車のフレーム構造。
【請求項3】
軸方向に延びる複数の円筒パイプを備える自動車のフレーム構造であって、
前記複数の円筒パイプを、隣り合う円筒パイプ同士で結合して、
該各円筒パイプに、他の円筒パイプとの結合部を一箇所含んで120度間隔で、円筒パイプの軸方向の延長線上に高強度部を形成した
自動車のフレーム構造。
【請求項4】
前記各円筒パイプの先端周面に、他の円筒パイプとの結合部を、一箇所含んで120度間隔で座屈変形時に起点となる脆弱部を形成し、
前記高強度部を、該脆弱部の円筒パイプの軸方向の延長線上で、且つ座屈変形の変形周期単位に合わせた間隔で形成した
請求項3記載の自動車のフレーム構造。
【請求項5】
前記円筒パイプに、前記高強度部を形成した位置と径方向で対向する位置で、且つ座屈変形の変形周期単位の半周期ずれた位置に、第二の高強度部を形成した
請求項1〜4いずれか記載の自動車のフレーム構造。
【請求項6】
前記高強度部を、板厚を厚くした厚肉部で構成した
請求項1〜5いずれか記載の自動車のフレーム構造。
【請求項7】
前記高強度部を、加熱加工した焼入れ部で構成した
請求項1〜5いずれか記載の自動車のフレーム構造。
【請求項8】
前記高強度部を、鍛造加工した鍛造部で構成した
請求項1〜5いずれか記載の自動車のフレーム構造。
【請求項9】
前記高強度部を、ショットピーニング加工したショットピーニング部で構成した
請求項1〜5いずれか記載の自動車のフレーム構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2009−227113(P2009−227113A)
【公開日】平成21年10月8日(2009.10.8)
【国際特許分類】
【出願番号】特願2008−74984(P2008−74984)
【出願日】平成20年3月24日(2008.3.24)
【出願人】(000003137)マツダ株式会社 (6,115)
【Fターム(参考)】