説明

薄膜検査装置及びその方法

【課題】複数の薄膜が積層された状態で各薄膜の膜厚を計測すること。
【解決手段】薄膜検査装置は、第1透明薄膜及び第2透明薄膜の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選択し、選択した該特徴量の各々と第1透明薄膜の膜厚及び第2透明薄膜の膜厚とをそれぞれ関連付けた少なくとも2つの特徴量特性が格納された記憶部14と、被検査基板Sに対して透明ガラス基板側から白色光を照射する光照射部11と、被検査基板Sからの反射光を受光する受光部12と、受光された反射光に基づく分光反射スペクトルから記憶部14に格納されている各特徴量の実測値を求め、求めた各特徴量の実測値と記憶部14に格納されている特徴量特性とを用いて、第1透明薄膜及び第2透明薄膜の膜厚をそれぞれ求める演算部15とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池、ディスプレイ等に適用される光電変換薄膜装置において、薄膜の検査を行う薄膜の検査装置及びその方法に関するものである。
【背景技術】
【0002】
従来、太陽電池等の光電変換薄膜装置においては、発電効率を向上させるために、透明ガラス基板と透明導電膜との間に、反射率を低減させるための反射率調整層を設けることが提案されている。この反射率調整層は、単層でもよいし、複数の層で構成されていてもよく、また、一般的に知られているフレネル反射の多重干渉膜の解析に基づき、各層における材料の屈折率と膜厚とが設計されている。この反射率調整層は、酸化錫(SnO)やITOや酸化亜鉛(ガリウムドープやアルミドープ)等の透明導電膜の面内の膜厚ムラで生じる面内の反射スペクトルの違い、すなわち、色相のムラ(色ムラ)を解消する機能も有している。
【0003】
太陽電池等の光電変換薄膜装置を製造する際、光電効率等の観点から透明ガラス基板上に積層される各層の膜厚を適切な範囲とすることが重要である。特許文献1には、透明ガラス基板上に透明薄膜(反射率調整層)及び透明導電膜を積層製膜する際に、各層を製膜する毎に膜厚を計測する方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第00/13237号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、光電変換薄膜装置の製造においては、一つの製膜装置内で透明ガラス基板上に反射率調整用の透明薄膜及び透明導電膜を連続的に製膜するのが一般的である。従って、通常は、透明ガラス基板上に反射率調整用の透明薄膜及び透明導電膜がこの順で積層された状態の基板が製膜装置から出力されることとなる。
製膜装置内は、製膜に適した条件に維持されなければならず、その製膜条件は厳しく管理されることから、装置内で膜厚を計測するのは好ましくない。また、更に、製膜装置内は、製膜用ガスが存在し、製膜条件として高温環境であることが通常である。従って、製膜装置内に膜厚計測用の計測機器を導入するには、高温環境、ガス環境、計測窓の汚れ等といった数々の課題を解決しなければならず、製膜装置内においてそれぞれの薄膜の製膜毎に膜厚計測を順次実施することは現実的ではない。
従って、上述した特許文献1に開示されている膜厚の計測方法では、製造工程に適用することができず、反射率調整用の透明薄膜の上に透明導電膜が製膜された状態で、換言すると、当該製膜装置において全工程を経た後に、各層の膜厚を計測する装置が望まれていた。
【0006】
本発明は、このような事情に鑑みてなされたものであって、複数の薄膜が積層された状態で各薄膜の膜厚を計測することのできる薄膜検査装置及びその方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、透明ガラス基板上に反射率調整用の第1透明薄膜及び第2透明薄膜、並びに透明導電膜がこの順で製膜された被検査基板において、該第1透明薄膜及び該第2透明薄膜の膜厚を求める薄膜検査装置であって、前記第1透明薄膜及び前記第2透明薄膜の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選択し、選択した該特徴量の各々と前記第1透明薄膜の膜厚及び前記第2透明薄膜の膜厚とをそれぞれ関連付けた少なくとも2つの特徴量特性が格納された記憶手段と、前記被検査基板に対して前記透明ガラス基板側から白色光を照射する光照射手段と、前記被検査基板からの反射光を受光する受光手段と、前記受光手段によって受光された反射光に基づく分光反射スペクトルから前記記憶手段に格納されている各前記特徴量の実測値を求め、求めた各前記特徴量の実測値と前記記憶手段に格納されている前記特徴量特性とを用いて、前記第1透明薄膜及び前記第2透明薄膜の膜厚をそれぞれ求める演算手段とを備える薄膜検査装置を提供する。
【0008】
本発明によれば、第1透明薄膜及び第2透明薄膜の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選定し、この特徴量を用いて第1透明薄膜及び第2透明薄膜の膜厚を演算するので、計測対象となる複数の薄膜の上に、更に透明導電膜等の薄膜が形成された状態であっても、計測対象であるそれぞれの薄膜の膜厚をその反射特性に基づいて求めることが可能となる。これにより、例えば、薄膜を用いた光電変換薄膜装置の製造ラインに適用することが可能となり、膜厚検査の効率を向上させることが可能となる。
例えば、反射率調整層を構成している各薄膜の膜厚が変動すれば、反射率調整層に期待される機能(例えば、反射を低減させる、色ムラ消し等)の効果が変動する。つまり、膜厚が好ましい範囲にあれば、反射率調整層の機能を評価する評価指標はある所定の範囲内に収まることとなる。換言すると、反射率調整層に期待される機能を評価するためのパラメータが好ましい範囲内に入っていれば、第1透明薄膜及び第2透明薄膜の膜厚の組み合わせが良好な範囲内にあるとみなすことができる。従って、本発明では、第1透明薄膜及び第2透明薄膜の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量として、反射率調整層に期待される種々の機能を評価するためのパラメータを適用している。
【0009】
上記薄膜検査装置において、前記記憶手段に格納される特徴量特性には、前記第1透明薄膜の膜厚に応じて反射率が変動する波長における反射率または反射率の最大値が含まれていることが好ましい。
【0010】
これにより、第1透明薄膜の膜厚計測精度を高めることができる。
【0011】
上記薄膜検査装置において、前記記憶手段に格納される特徴量特性には、波長約900nm以上約1200nm以下における最大反射率と最小反射率との差分、波長約500nm以上約900nm以下における平均反射率、波長約550nm以上約700nm以下における最大反射率と最小反射率との差分、及び波長約550nm以上約700nm以下における最小反射率のいずれかが含まれていることが好ましい。
【0012】
上記特徴量は、第1透明薄膜及び第2透明薄膜の少なくともいずれかの膜厚変動に対して特に感度の高い特徴量である。従って、このような特徴量を用いて膜厚計測を行うことにより、薄膜の膜厚計測精度を更に向上させることができる。
上記波長約900nm以上約1200nm以下における最大反射率と最小反射率との差分は、第2透明薄膜の膜厚を評価するためのパラメータであり、例えば、第2透明薄膜の膜厚が許容膜厚よりも厚くなると、差分が大きくなる傾向を示す。
波長約500nm以上約900nm以下における平均反射率は、反射率調整層の機能に対する評価量に相当するパラメータである。即ち、反射率調整層の目的は、太陽電池等の光電変換薄膜装置の分光感度の中心帯域における反射率低減であるので、波長500nm以上900nm以下における平均反射率を見ることで、反射率調整層の機能評価を行うことができる。この平均反射率は小さい程好ましい。
波長約550nm以上約700nm以下における最大反射率と最小反射率との差分は、色ムラ抑制効果に関するパラメータであり、この帯域の反射率の差分が小さい場合に、色相を抑えることが出来、色ムラ抑制効果が高くなる、更に、この差分が小さいほど、平均反射率を抑えることができ、発電効率に寄与する。
波長約550nm以上約700nm以下における最小反射率は、発電効率の評価に関するパラメータであり、最小反射率が小さい程好ましい。
【0013】
上記薄膜検査装置において、各前記特徴量特性は、第1透明薄膜の膜厚及び第2透明薄膜の膜厚を変数とした多項式を用いて表わされており、前記演算手段は、以下の(1)式におけるWが最小となるときのxの値を第1透明薄膜の膜厚、yの値を前記第2透明薄膜の膜厚として求めることとしてもよい。
【0014】
【数1】

【0015】
上記(1)式において、Zj(x,y)はj番目の特徴量に対応する特徴量特性に所定の第1透明薄膜の膜厚x及び第2透明薄膜の膜厚yを入力したときの特徴量の算出値、zはj番目の特徴量における実測値、nは前記記憶手段に格納されている特徴量特性の数である。
【0016】
このように、本発明では、特徴量特性を第1透明薄膜の膜厚を変数x、第2透明薄膜の膜厚を変数yとした多項式を用いて表わし、この多項式によって求められる各特徴量の算出値と実測値との差分の二乗和が最小となるときのx,yの値を第1透明薄膜の膜厚、第2透明薄膜の膜厚として求めることとしている。
【0017】
本発明は、透明ガラス基板上に反射率調整用の第1透明薄膜及び第2透明薄膜、並びに透明導電膜がこの順で製膜された被検査基板において、該第1透明薄膜及び該第2透明薄膜の膜厚を求める薄膜検査方法であって、前記第1透明薄膜及び前記第2透明薄膜の膜厚の少なくとも一方に依存して変動する分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選択し、選択した該特徴量の各々と前記第1透明薄膜の膜厚及び前記第2透明薄膜の膜厚とをそれぞれ関連付けた少なくとも2つの特徴量特性を予め取得しておき、前記被検査基板に対して該透明ガラス基板側から白色光を照射し、前記被検査基板からの反射光を受光し、受光した反射光に基づく分光反射スペクトルから前記特徴量の実測値を求め、取得した各前記特徴量の実測値と前記特徴量特性とを用いて、前記第1透明薄膜及び前記第2透明薄膜の膜厚をそれぞれ求める薄膜検査方法を提供する。
【発明の効果】
【0018】
本発明によれば、複数の薄膜が積層された状態で各薄膜の膜厚を計測することができるという効果を奏する。
【図面の簡単な説明】
【0019】
【図1】本発明の一実施形態に係る薄膜検査装置の検査対象とされる被検査基板の断面図を模式的に示した図である。
【図2】本発明の一実施形態に係る薄膜検査装置の概略構成を示したブロック図である。
【図3】分光反射スペクトルの一例を示した図である。
【図4】特徴量「波長380nmの反射率」に関する特徴量特性の一例を示した図である。
【図5】特徴量「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」に関する特徴量特性の一例を示した図である。
【図6】特徴量「波長500nm以上900nm以下における平均反射率」に関する特徴量特性の一例を示した図である。
【図7】特徴量「波長550nm以上700nm以下における最大反射率と最小反射率との差分」に関する特徴量特性の一例を示した図である。
【図8】特徴量「波長550nm以上700nm以下における最小反射率」に関する特徴量特性の一例を示した図である。
【図9】特徴量「反射率の最大値」に関する特徴量特性の一例を示した図である。
【図10】特徴量として「波長380nmの反射率」と「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」とを用いた場合の計測結果と実際の膜厚(真値)とを比較して示した図である。
【図11】特徴量として「波長380nmの反射率」と「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」とを用いた場合の計測結果と実際の膜厚(真値)とを比較して示した図である。
【図12】特徴量として表1に示した1番目から6番目までの全ての特徴量を用いて膜厚計測を行った場合の計測結果と実際の膜厚とを比較して示した図である。
【図13】特徴量として表1に示した1番目から6番目までの全ての特徴量を用いて膜厚計測を行った場合の計測結果と実際の膜厚とを比較して示した図である。
【発明を実施するための形態】
【0020】
以下に、本発明に係る薄膜検査装置及びその方法を太陽電池の薄膜検査に適用する場合についての実施形態について、図面を参照して説明する。
【0021】
図1は、本実施形態に係る薄膜検査装置の検査対象とされる被検査基板Sの断面図を模式的に示した図である。図1に示すように、被検査基板Sは、透明ガラス基板1上に、反射率調整用の第1透明薄膜2及び第2透明薄膜3、並びに透明導電膜4がこの順番で形成されている。上記第1透明薄膜2及び第2透明薄膜3により、反射率調整層が構成されている。
【0022】
第1透明薄膜2は第2透明薄膜3よりも屈折率が高く、例えば、TiO2、SnO2、Ta25、MgO、Al23等からなる。第2透明薄膜3は、例えば、SiO2等からなる。
また、第1透明薄膜2及び第2透明薄膜3の膜厚は、反射損失を低減して高い発電効率が得られるように設定されることが好ましい。
透明導電膜(TCO:Transparent Conductive Oxide)4は、ITO(Indium Tin Oxide)、酸化亜鉛(ZnO)、酸化錫(SnO)等で構成されている。
【0023】
次に、上記構造を有する被検査基板Sにおいて、第1透明薄膜2及び第2透明薄膜3の膜厚を計測する場合について説明する。本実施形態では、第1透明薄膜2としてTiOを、第2透明薄膜3としてSiOを使用した場合について説明する。
【0024】
図2は、本実施形態に係る薄膜検査装置の概略構成を示したブロック図である。図2に示すように、薄膜検査装置は、光照射部(光照射手段)11、受光部(受光手段)12、分光部13、記憶部(記憶手段)14、及び演算部(演算手段)15を主な構成として備えている。
【0025】
光照射部11は、光源21、光ファイバ22、光射出端23を備えている。光源21は、例えば、ランプである。また、広い波長範囲をカバーするために、適宜、複数のランプを組み合わせることが可能である。ランプとしては、例えば、ハロゲンランプ、重水素ランプ等が一例として挙げられる。また、光ファイバ22としては、例えば、バンドルファイバを適用することが可能である。光射出端23は、例えば、光ファイバ22の先端に装着されたコリメートレンズ等である。光射出端23は、光ファイバ22からの拡散光に指向性を与える。また、光射出端23は、正反射光が光出射端23にそのまま戻らないようにするために、光射出端23から射出される照明光の光軸が被検査基板Sに対して所定の角度を持って入射されるように設置されている。光軸の角度は、例えば、被検査基板Sの法線方向に対して約5度から約10度程度に設定される。
【0026】
分光部13は、光源21から射出された光が光ファイバ22へ導かれる光路の途中に設けられている。分光部13は、光源21から射出された光を分光し、例えば、時系列でそれぞれ異なる波長の光を選択して光ファイバ22へ出力する。これにより、例えば、1500nmから300nmの波長の光が順番に出力される。
受光部12は、例えば、積分球31と受光素子32とを備えている。積分球31は、被検査基板Sに対して隙間dをあけて配置されている。なお、この隙間dは任意であり、なくてもよい。隙間dがない場合には、例えば、昇降機構(図示略)を用いて、計測時は積分球31を被検査基板Sに密着させ、計測終了後には有限の隙間dを与えて、被検査基板Sを搬送する。隙間dがある場合には、隙間dを一定に保って計測を実施する。この場合、被検査基板Sは静止状態でも、搬送状態でもよい。隙間dは、例えば、約0.5mm以上2mm以下の範囲に設定される。
受光素子32は、積分球31の内壁面に取り付けられている。受光素子32は、広い波長帯域をカバーするために、適宜、複数の素子を組み合わせることが可能である。例えば、光電子増倍管とPbS受光素子とを組み合わせて構成することが可能である。なお、本実施形態では、受光素子32を一つ備える場合について例示しているが、複数の受光素子32を、積分球31の異なる位置に設置することとしてもよい。
【0027】
記憶部14には、複数の特徴量の各々と第1透明薄膜2の膜厚および第2透明膜厚3の膜厚とをそれぞれ関連付けた複数の特徴量特性が格納されている。この特徴量特性についての詳細は後述する。
【0028】
演算部15は、受光素子32から出力される電気信号と分光部13による波長の選択情報に基づいて分光反射スペクトルを作成し、この分光反射スペクトルから各特徴量の実測値を取得し、取得した各特徴量の実測値と記憶部14に格納されている特徴量特性とを用いて、第1透明薄膜2及び第2透明薄膜3の膜厚をそれぞれ求める。
【0029】
演算部15は、例えば、図示しないCPU(中央演算装置)、ROM(Read Only Memory)、RAM(Random Access Memory)等から構成されている。後述する一連の処理過程を実現するためのプログラムがROM等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種処理が実現される。演算部15により求められた膜厚は、例えば、図示しない表示装置に出力され、表示装置に計測結果が表示される。
【0030】
このような構成において、光源21から射出された光は分光部13に導かれ、分光部13において各波長の光が時系列に選択されて光ファイバ22に導かれる。光ファイバ22に導かれた光は光射出端23から被検査基板Sに向けて射出される。光射出端23から射出された照明光L1は、被検査基板Sの基板面に対して斜めから入射し、一部が被検査基板Sを透過し、一部は反射される。透過光L3は、被検査基板Sの上面側に配置された遮光箱41の内部に設けられた無反射機構(いわゆる、ライトトラップ)42により吸収される。従って、遮光箱41の内部に迷光を放射しない構造となっているので、積分球31側に迷光が戻らないようになっている。なお、遮光箱41は、外部からの迷光が受光素子32に到達しないように、外部からの光を遮断するために設けられている。
一方、被検査基板Sにより反射された反射光L2は、積分球31の内壁で多数回反射されて受光素子32に到達する。受光素子32に到達した光は、受光素子32によって光電変化されて受光量に応じた電気信号が生成され、電気信号が演算部15に出力される。
演算部15では、受光素子32からの電気信号と分光部13からの情報に基づき分光反射スペクトルが作成され、この分光反射スペクトルから各特徴量の実測値が取得され、取得された各特徴量の実測値と記憶部14に格納されている特徴量特性とに基づいて、第1透明薄膜2及び第2透明薄膜3の膜厚がそれぞれ求められる。
【0031】
なお、上記構成例では、積分球31を使用する場合について述べたが、積分球31を省略した構成としてもよい。この場合、受光素子32は、反射光L2を直接受光できる位置に配置される。
【0032】
次に、上記特徴量について説明する。
本実施形態の薄膜の検査装置は、上述したようにガラス基板上に複数の薄膜、即ち、第1透明薄膜2及び第2透明薄膜3が積層された状態で各々の膜厚を計測するものである。従って、各々の薄膜の膜厚変動によって影響を受ける分光反射スペクトルの特徴量を検討した。この特徴量を以下の表1に示す。
【0033】
【表1】

【0034】
上記特徴量は、いずれも第1透明薄膜2及び第2透明薄膜3の少なくともいずれかの膜厚変動に伴って値が変動するパラメータ(特徴量)であり、特に、第1透明薄膜及び第2透明薄膜の少なくともいずれかの膜厚変動に対して感度の高い特徴量を選定したものである。従って、このような特徴量を用いて膜厚計測を行うことにより、薄膜の膜厚計測精度を更に向上させることができる。
【0035】
本実施形態では、これらの特徴量の中から少なくとも2つの特徴量を用いて膜厚を求める。なお、上記1番目の特徴量である「波長380nmの反射率」と6番目の特徴量である「反射率の最大値」とは、略同じことを意味するため、双方を使用する必要はなく、いずれか一方を使用すれば足りる。
【0036】
次に、上記各特徴量に係る特徴量特性は、以下の手順で作成される。
まず、被検査基板Sと同様の構造を有し、かつ、第1透明薄膜2及び第2透明薄膜3の膜厚の組み合わせが異なる複数の試験片を用意する。各試験片の膜厚は、各試験片の一部を切り取り、TEM(Transmission Electron Microscope)観察することにより計測した。
【0037】
このようにして、膜厚が既知である複数の試験片を用意すると、続いて、各試験片に対して白色光を透明ガラス基板側から照射し、その反射光を測定し、分析する。白色光の照射、反射光の受光、反射光の分析については、上述した薄膜検査装置の各構成を用いる。このように、同じ構成を用いることにより、精度の高い特徴量特性を得ることができ、装置構成の違いによる測定誤差の低減を図ることができる。
【0038】
図3に、分光反射スペクトルの一例を示す。この分光反射スペクトルにおいて、各特徴量、つまり、上述した表1における各特徴量の値を取得する。そして、各試験片に対して同様の試験を行うことで、試験片毎に各特徴量を取得する。
【0039】
続いて、取得した各特徴量の値、各試験片における第1透明薄膜2の膜厚及び第2透明薄膜3の膜厚に基づいて、特徴量毎にその特徴量と第1透明薄膜2の膜厚と第2透明薄膜3の膜厚との関係を表わす特徴量特性を作成する。特徴量特性は、例えば、第1透明薄膜2の膜厚及び第2透明薄膜3の膜厚を変数とした多項式を用いた相関式として表される。
以下に示す(2)式は、相関式の一例である。ここでは、2次の多項式を用いて表わしている。
【0040】
【数2】

【0041】
上記(2)式において、xは第1透明薄膜2の膜厚、yは第2透明薄膜3の膜厚、A〜Fは、j番目の特徴量に関する相関式の係数である。
【0042】
このようにして、各特徴量に対して特徴量特性を得ると、これらの特徴量特性は記憶部14に記憶される。なお、上記表1に示した各種特徴量のうち、予め検査に使用する特徴量を決めている場合には、それら検査に使用する特徴量についてのみ上記事前試験を行い、特徴量特性を用意しておけばよい。
【0043】
図4乃至図9に、1番目から6番目(j=1〜6)までの特徴量特性を表わしたグラフを示す。図4は特徴量「波長380nmの反射率」に関する特徴量特性、図5は特徴量「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」に関する特徴量特性、図6は特徴量「波長500nm以上900nm以下における平均反射率」に関する特徴量特性、図7は特徴量「波長550nm以上700nm以下における最大反射率と最小反射率との差分」に関する特徴量特性、図8は特徴量「波長550nm以上700nm以下における最小反射率」に関する特徴量特性、図9は特徴量「反射率の最大値」に関する特徴量特性の一例をそれぞれ示した図である。図4乃至図9において、横軸は第2透明薄膜(SiO2)3の膜厚、縦軸は第1透明薄膜(TiO2)2の膜厚を示している。
【0044】
次に、上記特徴量特性を用いた薄膜の検査方法について図1を参照して説明する。
まず、実際の検査においては、表1に示した6つの特徴量のうち、少なくとも2つの特徴量が選択されて使用される。ここでは、1番目(j=1)の特徴量である「波長380nmの反射率」に関する特徴量特性、2番目(j=2)の特徴量である「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」に関する特徴量特性を用いて、第1透明薄膜2及び第2透明薄膜3の膜厚を求める場合について説明する。
【0045】
まず、図1において、光照射部11が作動することにより、被検査基板Sに対して、透明ガラス基板側から光が照射される。被検査基板Sから反射された反射光は、略球状の受光部12によって受光され、受光された反射光の情報が演算部15に入力される。演算部14は、入力された反射光の情報に基づいて分光反射スペクトルを作成し、この分光反射スペクトルから波長380nmの反射率と波長900nm以上1200nm以下における最大反射率と最小反射率との差分とを取得する。
続いて、演算部15は、記憶部14に格納されている1番目の特徴量特性と2番目の特徴量特性を読み出し、これらの特徴量特性のx,yの値として膜厚を1nm刻みで入力して得られた値(以下「算出特徴量」という。)と実測値との差の二乗和が最小となる膜厚x,yを求める。
つまり、以下の(3)式において、Wが最小となるときのx,yの値を求める。
【0046】
【数3】

【0047】
上記(3)式において、xは第1透明薄膜の膜厚、yは第2透明薄膜の膜厚、Z(x,y)は(2)式から求められるj番目の特徴量の演算値、zはj番目の特徴量における実測値、nは特徴量の数である。
【0048】
つまり、本実施形態では、1番目と2番目の特徴量を用いているため、上記(3)式は、以下の(4)式のように表される。
【0049】
【数4】

【0050】
上記(3)式において、Z1(x,y)は1番目の特徴量における算出特徴量、z1は1番目の特徴量における実測値、Z2(x,y)は2番目の特徴量における算出特徴量、z2は2番目の特徴量における実測値である。
【0051】
そして、Wが最小となるx,yを求めると、求められたxの値を第1透明薄膜の膜厚、yを第2透明薄膜の膜厚として出力する。これにより、例えば、演算式から膜厚情報を取得した表示装置等には、各薄膜の膜厚が表示される。
【0052】
以上、説明してきたように、本実施形態に係る薄膜検査装置及びその方法によれば、第1透明薄膜2及び第2透明薄膜3の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選定し、この特徴量を用いて第1透明薄膜2及び第2透明薄膜3の膜厚を演算するので、複数の薄膜が積層された状態、具体的には、測定対象である波長調整用の薄膜の上面に透明導電膜が積層された状態であっても、波長調整層を構成する各薄膜の反射特性に基づいて、それらの膜厚をそれぞれ求めることが可能となる。
また、光の入射面を透明ガラス基板側としているので、透明導電膜の表面に形成されている凹凸による光の干渉を低減することが可能となる。具体的には、透明導電膜側から照明光を照射し、膜面からの反射光を測定する場合、透明導電膜の上面に形成された凹凸ムラ(テクスチャ)の影響で光が散乱されてしまう。従って、分光反射スペクトルにはテクスチャの情報(ヘイズ率の大小)が重畳されてしまい、これが誤差要因となり、膜厚計測の精度が低減してしまう。これに対し、本実施形態では、透明ガラス基板側から光を入射させるので、透明導電膜の表面の凹凸による誤差を抑制でき、計測精度を向上させることが可能となる。即ち、ガラス基板側から光を照射した場合には、透明導電膜の上面に形成されたテクスチャにかかわらず、試験片の分光反射スペクトルは略同じ形状となることから、透明導電膜のテクスチャの影響を受けずに第1透明薄膜及び第2透明薄膜の膜厚を計測することができる。
【0053】
また、波長調整層の上面に透明導電膜が積層された状態で、波長調整層を構成する第1透明薄膜及び第2透明薄膜の膜厚を計測することができることから、例えば、このような薄膜を用いる光電変換薄膜装置の製造ラインに適用することが可能となり、膜厚検査の効率向上を望むことができる。つまり、本実施形態に係る薄膜検査装置によれば、透明ガラス基板上に波長調整層と透明導電膜とをこの順番で製膜する製膜装置から出力される基板を被検査基板として波長調整層を構成する各膜の膜厚を計測することができるので、光電変換薄膜装置の製造ラインに用意に適用することができる。
【0054】
また、本実施形態に係る薄膜検査装置及びその方法によれば、第1透明薄膜2及び第2透明薄膜3の膜厚変動に対して特に感度の高い特徴量を用いることから薄膜の膜厚計測精度を更に向上させることが可能となる。
【0055】
なお、本実施形態では、特徴量として「波長380nmの反射率」と「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」とを用いたが、これらに限定されることなく、表1に示した6つの特徴量から少なくとも2つの特徴量を選択することが可能である。例えば、使用する特徴量が多いほど、計測精度を向上させることが可能である。
【0056】
例えば、図10及び図11は、特徴量として「波長380nmの反射率」と「波長900nm以上1200nm以下における最大反射率と最小反射率との差分」とを用いた場合の計測結果と実際の膜厚(真値)とを比較して示した図である。
図10は、第1透明薄膜2の計測誤差を示した図であり、横軸に実際の膜厚(真値)が、縦軸に本実施形態に係る薄膜検査装置で計測された膜厚が示されている。図10に示すように、真値との膜厚誤差の平均は5.0nmであった。
図11は、第2透明薄膜の計測誤差を示した図であり、横軸に実際の膜厚(真値)が、縦軸に本実施形態に係る薄膜検査装置で計測された膜厚が示されている。図11に示すように、真値との膜厚誤差の平均は5.2nmであった。
【0057】
また、図12及び図13は、特徴量として表1に示した1番目から6番目までの全ての特徴量を用いて膜厚計測を行った場合の計測結果と実際の膜厚とを比較して示した図である。
図12は、第1透明薄膜の計測誤差を示した図であり、横軸に実際の膜厚(真値)が、縦軸に本実施形態に係る薄膜検査装置で計測された膜厚が示されている。図12に示すように、真値との膜厚誤差の平均は1.2nmであった。
図13は、第2透明薄膜の計測誤差を示した図であり、横軸に実際の膜厚(真値)が、縦軸に本実施形態に係る薄膜検査装置で計測された膜厚が示されている。図13に示すように、真値との膜厚誤差の平均は2.3nmであった。
このように、表1に示された全ての特徴量を用いた場合には、計測精度が向上することを確認できた。
【符号の説明】
【0058】
1 透明ガラス基板
2 第1透明薄膜
3 第2透明薄膜
4 透明導電膜
11 光射出部
12 受光部
13 分光部
14 記憶部
15 演算部

【特許請求の範囲】
【請求項1】
透明ガラス基板上に反射率調整用の第1透明薄膜及び第2透明薄膜、並びに透明導電膜がこの順で製膜された被検査基板において、該第1透明薄膜及び該第2透明薄膜の膜厚を求める薄膜検査装置であって、
前記第1透明薄膜及び前記第2透明薄膜の少なくとも一方の膜厚変動に影響を受ける分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選択し、選択した該特徴量の各々と前記第1透明薄膜の膜厚及び前記第2透明薄膜の膜厚とをそれぞれ関連付けた少なくとも2つの特徴量特性が格納された記憶手段と、
前記被検査基板に対して前記透明ガラス基板側から白色光を照射する光照射手段と、
前記被検査基板からの反射光を受光する受光手段と、
前記受光手段によって受光された反射光に基づく分光反射スペクトルから前記記憶手段に格納されている各前記特徴量の実測値を求め、求めた各前記特徴量の実測値と前記記憶手段に格納されている前記特徴量特性とを用いて、前記第1透明薄膜及び前記第2透明薄膜の膜厚をそれぞれ求める演算手段と
を備える薄膜検査装置。
【請求項2】
前記記憶手段に格納される特徴量特性には、前記第1透明薄膜の膜厚に応じて反射率が変動する波長における反射率または反射率の最大値が含まれている請求項1に記載の薄膜検査装置。
【請求項3】
前記記憶手段に格納される特徴量特性には、波長約900nm以上約1200nm以下における最大反射率と最小反射率との差分、波長約500nm以上約900nm以下における平均反射率、波長約550nm以上約700nm以下における最大反射率と最小反射率との差分、及び波長約550nm以上約700nm以下における最小反射率のいずれかが含まれている請求項2に記載の薄膜検査装置。
【請求項4】
各前記特徴量特性は、第1透明薄膜の膜厚及び第2透明薄膜の膜厚を変数とした多項式を用いて表わされており、
前記演算手段は、以下の(1)式におけるWが最小となるときのxの値を第1透明薄膜の膜厚、yの値を前記第2透明薄膜の膜厚として求める請求項1から請求項3のいずれかに記載の薄膜検査装置。
【数1】

上記(1)式において、Zj(x,y)はj番目の特徴量に対応する特徴量特性に所定の第1透明薄膜の膜厚x及び第2透明薄膜の膜厚yを入力したときの特徴量の算出値、zはj番目の特徴量における実測値、nは前記記憶手段に格納されている特徴量特性の数である。
【請求項5】
透明ガラス基板上に反射率調整用の第1透明薄膜及び第2透明薄膜、並びに透明導電膜がこの順で製膜された被検査基板において、該第1透明薄膜及び該第2透明薄膜の膜厚を求める薄膜検査方法であって、
前記第1透明薄膜及び前記第2透明薄膜の膜厚の少なくとも一方に依存して変動する分光反射スペクトルの特徴量の中から少なくとも2つの特徴量を選択し、選択した該特徴量の各々と前記第1透明薄膜の膜厚及び前記第2透明薄膜の膜厚とをそれぞれ関連付けた少なくとも2つの特徴量特性を予め取得しておき、
前記被検査基板に対して該透明ガラス基板側から白色光を照射し、
前記被検査基板からの反射光を受光し、
受光した反射光に基づく分光反射スペクトルから前記特徴量の実測値を求め、
取得した各前記特徴量の実測値と前記特徴量特性とを用いて、前記第1透明薄膜及び前記第2透明薄膜の膜厚をそれぞれ求める薄膜検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−203814(P2010−203814A)
【公開日】平成22年9月16日(2010.9.16)
【国際特許分類】
【出願番号】特願2009−47361(P2009−47361)
【出願日】平成21年2月27日(2009.2.27)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】