説明

車両用自動変速機の制御装置

【課題】リニアソレノイド弁の出力油圧を正確に制御し、ばらつきの少ない応答性を確保することができる車両用自動変速機の制御装置を提供する。
【解決手段】電子制御装置40は、リニアソレノイド弁12の自動変速機10への組付前に所定の第1作動油温t1において予め測定された出力油圧P1,P2および駆動電流I1,I2から算出される第1閾値Ith1と、リニアソレノイド弁12の自動変速機10への組付後に所定の第2作動油温t2において予め測定された出力油圧P1’,P2’および駆動電流I1’,I2’から算出される第2閾値Ith2と、実際の作動油温tとに基づいて、リニアソレノイド弁12のバイアス電流Ib及び駆動電流Iopを決定するので、作動油温tの変動の影響を抑えて、ばらつきの少ないリニアソレノイド弁12の応答性を確保することができる。更に、作動油温tの変動の影響を抑えて出力油圧Pを正確に制御することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用自動変速機が備えるリニアソレノイド弁の電流制御に関するものである。
【背景技術】
【0002】
出力油圧や流体流量を調整できるリニアソレノイド弁が、従来から知られている。例えば、上記出力油圧を調整できるリニアソレノイド弁は、従来から車両用の自動変速機に備えられており、その自動変速機の油圧式摩擦係合装置の係合圧を調整するためなどに用いられる。上記リニアソレノイド弁には、例えば、それが備えるソレノイドに通電されるソレノイド電流Iが大きくなるほど出力油圧Pが大きくなるものがある。そして、ソレノイド電流Iと出力油圧Pとの関係である油圧制御特性は、各個体ごとにばらつくものである。
【0003】
上記リニアソレノイド弁において出力油圧Pの精度向上は課題の一つであるところ、上記油圧制御特性が各個体ごとにばらついても、出力油圧Pを精度よく出力するための特性補正装置が、特許文献1に開示されている。その特許文献1の特性補正装置では、前記リニアソレノイド弁の自動変速機への組込前、すなわち、そのリニアソレノイド弁の製造工程において、各個体ごとに、前記リニアソレノイド弁の油圧制御特性が、各個体ごとに測定され、二次元バーコード化されてそのリニアソレノイド弁に刻印される。そして、その刻印された油圧制御特性が前記自動変速機の制御装置に予め記憶され、その自動変速機の制御装置は、その記憶された油圧制御特性に基づいて上記リニアソレノイド弁の電流制御を実行する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−114525号公報
【特許文献2】特開2004−212182号公報
【特許文献3】特開平11−201314号公報
【特許文献4】特開2006−125435号公報
【特許文献5】特開2003−254418号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述のように、前記自動変速機の制御装置は、前記特許文献1の特性補正装置により予め測定された各個体ごとの油圧制御特性に基づいて、前記リニアソレノイド弁の電流制御を実行すれば、出力油圧Pが油圧制御特性の各個体ごとのばらつきに影響されることは抑制される。しかし、上記油圧制御特性は、前記自動変速機の作動油温に応じて変化するものであり、特に低温時の応答性が低下する。この作動油温による上記油圧制御特性への影響を説明する図が、図8である。
【0006】
その図8に示す油圧制御特性を有する前記リニアソレノイド弁では、横軸をソレノイド電流Iとし縦軸を出力油圧Pとする図8に示すように、ソレノイド電流Iが大きくなるほど出力油圧Pが大きくなる。また、ソレノイド電流Iが低い領域では出力油圧Pが生じず、上記リニアソレノイド弁を駆動するための駆動電流Iop(ソレノイド電流I)を零から大きくしていった場合に出力油圧Pが生じ始める駆動電流Iopの閾値Ithが存在する点が、図8に示されている。
【0007】
その図8では、作動油温t1における油圧制御特性が実線IP01で示され、作動油温t1よりも低い作動油温t2における油圧制御特性が破線IP02で示されている。その作動油温t1時の油圧制御特性(実線IP01)での閾値IthはIth1であり、作動油温t2時の油圧制御特性(破線IP02)の閾値IthはIth2である。このように、上記油圧制御特性は上記作動油温に応じて変化するので、同一の駆動電流Iopが与えられたとしても、作動油温t1のときには出力油圧PはPaである一方で、作動油温t2のときには出力油圧PはPaよりも低圧のPa’となり、上記作動油温に応じて異なった出力油圧Pが生じることになる。
【0008】
また、駆動電流Iop変化に対する出力油圧Pの応答性も、上記作動油温に影響されるところ、この点を示したものが図9である。その図9は、作動油温t1とt2とで上記応答性を比較するための、前記リニアソレノイド弁での出力油圧Pのタイムチャートである。図9に示すように、同一の駆動電流Iopが与えられた場合において、作動油温t1では、その駆動電流Iopが与えられた時から時間td1の経過後に出力油圧Pが立ち上がる一方で、作動油温t2では、その駆動電流Iopが与えられた時から時間td2の経過後に出力油圧Pが立ち上がり、前記応答性が上記作動油温に応じて異なることになる。なお、前記リニアソレノイド弁の応答性を向上させるため、図9に示すように、そのリニアソレノイド弁の非駆動時においてバイアス電流Ibが前記ソレノイドに通電されている。このバイアス電流Ibが通電されることは従来からなされており、例えば、基準として予め設定された油圧制御特性における閾値Ithの約1/2に固定されたバイアス電流Ibが前記ソレノイドに通電される。
【0009】
このように、図8および図9からすると、前記リニアソレノイド弁の出力油圧Pを正確に制御し、ばらつきの少ない前記応答性を確保するためには、前記特許文献1の特性補正装置により予め測定された油圧制御特性に基づくだけでは不十分であり、その出力油圧Pに対する、前記油圧制御特性の各個体ごとのばらつきによる影響を抑えることに加え、前記自動変速機の作動油温による影響も抑える必要があると考えられた。
【0010】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、リニアソレノイド弁の出力油圧を正確に制御し、ばらつきの少ない応答性を確保することができる車両用自動変速機の制御装置を提供することにある。
【課題を解決するための手段】
【0011】
かかる目的を達成するために、請求項1に係る発明では、(a)駆動電流に応じて出力油圧が変化するリニアソレノイド弁を備えた車両用自動変速機の制御装置であって、(b)前記リニアソレノイド弁の前記車両用自動変速機への組付前に所定の第1作動油温において予め測定された前記出力油圧および駆動電流からその出力油圧が生じるか否かの境界の駆動電流として算出される第1閾値と、前記リニアソレノイド弁の前記車両用自動変速機への組付後に前記第1作動油温とは異なる所定の第2作動油温において予め測定された前記出力油圧および駆動電流から前記境界の駆動電流として算出される第2閾値と、前記車両用自動変速機の実際の作動油温とに基づいて、前記リニアソレノイド弁のバイアス電流および前記駆動電流を決定することを特徴とする。
【発明の効果】
【0012】
請求項1に係る発明によれば、その発明の係る車両用自動変速機の制御装置は、前記リニアソレノイド弁の前記車両用自動変速機への組付前に所定の第1作動油温において予め測定された前記出力油圧および駆動電流から出力油圧が生じるか否かの境界の駆動電流として算出される第1閾値と、前記リニアソレノイド弁の前記車両用自動変速機への組付後に前記第1作動油温とは異なる所定の第2作動油温において予め測定された前記出力油圧および駆動電流から前記境界の駆動電流として算出される第2閾値と、前記車両用自動変速機の実際の作動油温とに基づいて、前記リニアソレノイド弁のバイアス電流を決定するので、上記作動油温の変動の影響を抑えて、ばらつきの少ない安定した応答性を確保することができる。更に、同様にして、前記制御装置は、前記第1閾値と、前記第2閾値と、前記実際の作動油温とに基づいて、前記リニアソレノイド弁の駆動電流を決定するので、上記作動油温の変動の影響を抑えて正確に前記出力油圧を制御することができる。
【図面の簡単な説明】
【0013】
【図1】本発明が適用される車両用自動変速機が備えるリニアソレノイド弁の製造工程から車両への組込工程までを模式的に表した第1実施例の図である。
【図2】図1に表された工程を示す第1実施例のフローチャートである。
【図3】図1に示された電子制御装置(ECU)の制御作動の要部、すなわち、リニアソレノイド弁のバイアス電流および駆動電流が実際の作動油温に基づいて決定される制御作動を説明する第1実施例のフローチャートである。
【図4】図3の制御作動により決定されたバイアス電流および駆動電流を、実際の作動油温が第1作動油温である場合、および、実際の作動油温が第2作動油温である場合のそれぞれで例示した図である。
【図5】本発明が適用される車両用自動変速機が備えるリニアソレノイド弁の製造工程から車両への組込工程までを模式的に表した第2実施例の図であって、図1に相当する図である。
【図6】図5に表された工程を示す第2実施例のフローチャートであって、図2に相当する図である。
【図7】図5に示された電子制御装置(ECU)の制御作動の要部、すなわち、リニアソレノイド弁のバイアス電流および駆動電流が実際の作動油温に基づいて決定される制御作動を説明する第2実施例のフローチャートであって、図3に相当する図である。
【図8】本発明が解決しようとする課題の理解を容易にするため、作動油温によるリニアソレノイド弁の油圧制御特性への影響を説明する図である。
【図9】図8の作動油温t1とt2とでリニアソレノイド弁の応答性を比較できるように記載された、リニアソレノイド弁の出力油圧のタイムチャートである。
【発明を実施するための形態】
【0014】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【実施例1】
【0015】
図1は、本発明が適用される車両用自動変速機10(以下、「自動変速機10」という)が備えるリニアソレノイド弁12の製造工程から車両14への組込工程までを模式的に表した図である。リニアソレノイド弁12は、それの駆動電流Iopに応じて出力油圧Pが変化する比例電磁弁であり、例えば、自動変速機10の油圧式摩擦係合装置の係合圧を調整するために従来から広く用いられ、変速用油圧制御回路の一部を構成している。図2は、図1に表された工程を示すフローチャートである。
【0016】
図1に示すように、リニアソレノイド弁12の自動変速機10への組付前に、リニアソレノイド弁12が有するソレノイド16に通電されるソレノイド電流Iとそのリニアソレノイド弁12の出力油圧Pとの関係である油圧制御特性IP1が予め測定される。具体的には、リニアソレノイド弁12の製造工程(製造工場)で予め測定される。そして、上記油圧制御特性IP1は、リニアソレノイド弁12へ供給される作動油の温度(作動油温)が所定の第1作動油温t1に設定された上で、リニアソレノイド弁12の各個体ごとに測定される。図1に示すように、油圧制御特性IP1の測定では、具体的には、リニアソレノイド弁12を駆動するためのソレノイド電流Iである駆動電流Iopが所定の組込前第1駆動電流I1とその組込前第1駆動電流I1よりも大きい所定の組込前第2駆動電流I2とに順次設定されて、その組込前第1駆動電流I1と組込前第2駆動電流I2との各々に対する出力油圧P1とP2とが測定される。このように、リニアソレノイド弁12の自動変速機10への組付前に、所定の第1作動油温t1において、駆動電流I1,I2及びそれに対する出力油圧P1,P2が予め測定されることが、図2のステップ(以下、「ステップ」を省略する)S110に対応する。
【0017】
更に、リニアソレノイド弁12の製造工程において、下記式(1)を用いて、前記出力油圧P1,P2および駆動電流I1,I2から、第1閾値Ith1が算出される。これが、図2のS120に対応する。上記第1閾値Ith1は、図1に示すように、第1作動油温t1において、出力油圧Pが生じるか否かの境界の駆動電流Iopとして算出されるものであり、換言すれば、図1の油圧制御特性IP1で、駆動電流Iop(ソレノイド電流I)を零から大きくしていった場合に出力油圧Pが生じ始める駆動電流Iopである。
Ith1=I1−P1/((P2−P1)/(I2−I1)) ・・・(1)
【0018】
リニアソレノイド弁12の製造工程では、上記式(1)により算出された第1閾値Ith1の情報は、ラベルとしてリニアソレノイド弁12の外装に貼付され、レーザーなどによって刻印され、又は、リーフに書き込まれてそれがリニアソレノイド弁12に添付される。要するに、前記算出された第1閾値Ith1は、各個体ごとに、リニアソレノイド弁12と関連付けられる。図1には、その第1閾値Ith1の情報がラベルとしてリニアソレノイド弁12の外装に貼付された場合のイメージが図示されている。
【0019】
次に、リニアソレノイド弁12の自動変速機10への組付後に、前記ソレノイド電流出力油圧Pとの関係である油圧制御特性IP2が予め測定される。具体的には、リニアソレノイド弁12の組込工程(自動変速機ユニット工場)で予め測定される。そして、上記油圧制御特性IP2は、前記作動油温が第1作動油温t1とは異なる所定の第2作動油温t2に設定された上で、リニアソレノイド弁12の各個体ごとに測定される。図1に示すように、油圧制御特性IP2の測定では、具体的には、駆動電流Iopが所定の組込後第1駆動電流I1’とその組込後第1駆動電流I1’よりも大きい所定の組込後第2駆動電流I2’とに順次設定されて、その組込後第1駆動電流I1’と組込後第2駆動電流I2’との各々に対する出力油圧P1’とP2’とが測定される。このように、リニアソレノイド弁12の自動変速機10への組付後に、所定の第2作動油温t2において、駆動電流I1’,I2’及びそれに対する出力油圧P1’,P2’が予め測定されることが、図2のS130に対応する。
【0020】
更に、リニアソレノイド弁12の組込工程において、下記式(2)を用いて、前記出力油圧P1’,P2’および駆動電流I1’,I2’から、第2閾値Ith2が算出される。これが、図2のS140に対応する。上記第2閾値Ith2は、図1に示すように、第2作動油温t2において、出力油圧Pが生じるか否かの境界の駆動電流Iopとして算出されるものであり、換言すれば、図1の油圧制御特性IP2で、駆動電流Iop(ソレノイド電流I)を零から大きくしていった場合に出力油圧Pが生じ始める駆動電流Iopである。
Ith2=I1’−P1’/((P2’−P1’)/(I2’−I1’)) ・・・(2)
【0021】
リニアソレノイド弁12の組込工程では、前記式(1)、式(2)により算出された第1、第2閾値Ith1,Ith2の情報は、ラベルとして自動変速機10の筐体に貼付され、又は、リーフに書き込まれてそれが自動変速機10に添付される。要するに、前記算出された第1、第2閾値Ith1,Ith2は、各個体ごとに、自動変速機10と関連付けられる。図1には、その第1、第2閾値Ith1,Ith2の情報がラベルとして自動変速機10の筐体に貼付された場合のイメージが図示されている。
【0022】
次に、車両14への自動変速機10の組込工程(車両工場)で、第1閾値Ith1及び第2閾値Ith2が、自動変速機10を制御するための制御装置である電子制御装置40(図1のECU)に記憶させられる。これが、図2のS150に対応する。その電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジンの駆動制御や自動変速機10の変速制御等を実行する車両用の制御装置である。
【0023】
特に本実施例では、電子制御装置40は、予め記憶された前記第1閾値Ith1と、第2閾値Ith2と、自動変速機10の実際の作動油温tとに基づいて、リニアソレノイド弁12のバイアス電流Ibおよび駆動電流Iopを決定する。具体的には、図3に示す制御作動が実行される。なお、上記バイアス電流Ibとは、リニアソレノイド弁12の応答性を向上させるため、そのリニアソレノイド弁12の非駆動時においてソレノイド16に予め通電されているソレノイド電流Iである。
【0024】
図3は、電子制御装置40の制御作動の要部、すなわち、リニアソレノイド弁12のバイアス電流Ibおよび駆動電流Iopが実際の作動油温tに基づいて決定される制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
【0025】
先ず、S210においては、油温センサなどによって、実際の作動油温tが検出される。
【0026】
次に、S220においては、下記式(3)が用いられて、上記実際の作動油温tにおける駆動電流Iopの閾値Ithtが、その実際の作動油温tと、予め記憶された前記第1閾値Ith1と、前記第2閾値Ith2とに基づいて算出される。
Itht=Ith1+(t−t1)×((Ith2−Ith1)/(t2−t1)) ・・・(3)
【0027】
次に、S230においては、上記閾値Ithtに応じてバイアス電流Ibが決定される。具体的には、バイアス電流Ibは、下記式(4)又は式(5)が用いられて、上記閾値Itht未満となるように決定される。このとき、下記式(4)のαは正の値であり、下記式(5)のβは下記式(6)で与えられる範囲の値である。そして、そのα及びβは、リニアソレノイド弁12を非駆動状態とするときにバイアス電流Ibによりリニアソレノイド弁12が駆動されることが無いように、閾値Ithtに対してバイアス電流Ibに余裕を与えるための実験的に予め定められたパラメータである。
Ib=Itht−α ・・・(4)
Ib=Itht×β ・・・(5)
0<β<1 ・・・(6)
【0028】
電子制御装置40は、上記のようにバイアス電流Ibを決定した上で、そのバイアス電流Ibを、リニアソレノイド弁12の非駆動時のソレノイド16に通電する。なお、バイアス電流Ibはリニアソレノイド弁12の非駆動時に決定されれば足りるが、本実施例では、リニアソレノイド弁12の駆動時か非駆動時かを問わずに、バイアス電流Ibが決定されるものとする。
【0029】
次に、S240においては、上記閾値Ithtに応じて駆動電流Iopが決定される。具体的には、基準となる油圧制御特性IPn(以下、「ノミナル油圧制御特性IPn」という)が実験的に決定されて電子制御装置40に予め記憶されており、そのノミナル油圧制御特性IPnにおいて、電子制御装置40がリニアソレノイド弁12に出力させるべき目標出力油圧Paに対応したノミナル駆動電流Iopnが求められる。次に、駆動電流Iopの補正量ΔIop、すなわち、ノミナル駆動電流Iopnに対する補正量ΔIopが下記式(7)により決定され、下記式(8)により、駆動電流Iopが、その補正量ΔIopとノミナル駆動電流Iopnとから決定される。
ΔIop=Itht−Ithn ・・・(7)
Iop=Iopn+ΔIop ・・・(8)
【0030】
電子制御装置40は、上記のように駆動電流Iopを補正し決定した上で、リニアソレノイド弁12を駆動する場合に、その駆動電流Iopをソレノイド16に通電する。それにより、リニアソレノイド弁12に目標出力油圧Paを出力させる。なお、駆動電流Iopはリニアソレノイド弁12の駆動時に決定されれば足りるが、本実施例では、リニアソレノイド弁12の駆動時か非駆動時かを問わずに、駆動電流Iopが決定されるものとする。
【0031】
このようにして決定されたバイアス電流Ibおよび駆動電流Iopを、実際の作動油温tが第1作動油温t1である場合、および、実際の作動油温tが第2作動油温t2である場合のそれぞれで例示したものが、図4である。
【0032】
図4に示すように、実際の作動油温tがt1である場合には、バイアス電流Ibは、第1閾値Ith1よりも若干小さいIb1とされる。そして、リニアソレノイド弁12に目標出力油圧Paを出力させる場合の駆動電流IopはIop1とされる。
【0033】
また、実際の作動油温tがt2である場合には、バイアス電流Ibは、第2閾値Ith2よりも若干小さいIb2とされる。そして、リニアソレノイド弁12に目標出力油圧Paを出力させる場合の駆動電流IopはIop2とされる。この図4に示すように、第2閾値Ith2が第1閾値Ith1に対して大きいので、その差に応じて、バイアス電流Ib2はバイアス電流Ib1に対して大きく設定され、そして、駆動電流Iop2は駆動電流Iop1に対して大きく設定される。すなわち、実際の作動油温tに応じて閾値Ithtが変化すれば、それに応じてバイアス電流Ibおよび駆動電流Iopが変化させられる。
【0034】
以上のことから、本実施例によれば、電子制御装置40は、リニアソレノイド弁12の自動変速機10への組付前に所定の第1作動油温t1において予め測定された出力油圧P1,P2および駆動電流I1,I2から算出される第1閾値Ith1と、リニアソレノイド弁12の自動変速機10への組付後に上記第1作動油温t1とは異なる所定の第2作動油温t2において予め測定された出力油圧P1’,P2’および駆動電流I1’,I2’から算出される第2閾値Ith2と、自動変速機10の実際の作動油温tとに基づいて、リニアソレノイド弁12のバイアス電流Ibを決定するので、作動油温tの変動の影響を抑えて、ばらつきの少ない安定したリニアソレノイド弁12の応答性を確保することができる。更に、同様にして、電子制御装置40は、上記第1閾値Ith1と第2閾値Ith2と実際の作動油温tとに基づいて、リニアソレノイド弁12の駆動電流Iopを決定するので、作動油温tの変動の影響を抑えて、リニアソレノイド弁12の出力油圧Pを正確に制御することができる。
【0035】
また、本実施例によれば、所定の第1作動油温t1での油圧制御特性IP1の測定は、リニアソレノイド弁12の自動変速機10への組付前に行われるので、リニアソレノイド弁12の自動変速機10への組付後すなわち自動変速機ユニット工場で、油圧制御特性IPが作動油温tを変化させて測定される必要が無く、自動変速機ユニット工場での測定工数を削減できる。
【0036】
続いて、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
【実施例2】
【0037】
前述の第1実施例では、第1閾値Ith1および第2閾値Ith2はそれぞれ、リニアソレノイド弁12の製造工場と自動変速機ユニット工場とで算出されたが、それに換えて、電子制御装置40により算出されてもよい。本実施例では、第1閾値Ith1および第2閾値Ith2が電子制御装置40により算出される例を説明する。なお、説明を簡潔にするため、第1実施例とは異なる点を主として説明する。
【0038】
図5は、本実施例において、自動変速機10が備えるリニアソレノイド弁12の製造工程から車両14への組込工程までを模式的に表した図1に相当する図である。図6は、図5に表された工程を示すフローチャートである。
【0039】
図5では、第1実施例と同様に、リニアソレノイド弁12の製造工程(製造工場)で、油圧制御特性IP1が予め測定される。すなわち、リニアソレノイド弁12の自動変速機10への組付前に、所定の第1作動油温t1において、駆動電流I1,I2及びそれに対する出力油圧P1,P2が予め測定される。これが、図6のS310に対応する。
【0040】
リニアソレノイド弁12の製造工程では、第1実施例とは異なり、駆動電流I1,I2及び出力油圧P1,P2の情報が、ラベルとしてリニアソレノイド弁12の外装に貼付され、レーザーなどによって刻印され、又は、リーフに書き込まれてそれがリニアソレノイド弁12に添付される。要するに、駆動電流I1,I2及び出力油圧P1,P2は、各個体ごとに、リニアソレノイド弁12と関連付けられる。この場合において、駆動電流I1,I2のそれぞれを各個体で共通の測定電流として予め定めておき、出力油圧P1,P2の情報だけが、リニアソレノイド弁12の外装にラベルとして貼付等されてもよい。図5には、その出力油圧P1,P2の情報がラベルとしてリニアソレノイド弁12の外装に貼付された場合のイメージが図示されている。
【0041】
次に、第1実施例と同様に、リニアソレノイド弁12の組込工程(自動変速機ユニット工場)で、油圧制御特性IP2が予め測定される。すなわち、リニアソレノイド弁12の自動変速機10への組付後に、所定の第2作動油温t2において、駆動電流I1’,I2’及びそれに対する出力油圧P1’,P2’が予め測定される。これが、図6のS320に対応する。
【0042】
リニアソレノイド弁12の組込工程では、第1実施例とは異なり、駆動電流I1,I2,I1’,I2’及び出力油圧P1,P2,P1’,P2’の情報が、ラベルとして自動変速機10の外装に貼付され、レーザーなどによって刻印され、又は、リーフに書き込まれてそれが自動変速機10に添付される。要するに、駆動電流I1,I2,I1’,I2’及び出力油圧P1,P2,P1’,P2’は、各個体ごとに、自動変速機10と関連付けられる。この場合において、駆動電流I1,I2,I1’,I2’のそれぞれを各個体で共通の測定電流として予め定めておき、出力油圧P1,P2,P1’,P2’の情報だけが、自動変速機10の筐体にラベルとして貼付等されてもよい。図5には、その出力油圧P1,P2,P1’,P2’の情報がラベルとして自動変速機10の筐体に貼付された場合のイメージが図示されている。
【0043】
次に、車両14への自動変速機10の組込工程(車両工場)で、駆動電流I1,I2,I1’,I2’及び出力油圧P1,P2,P1’,P2’が、電子制御装置40(図5のECU)に記憶させられる。これが、図6のS330に対応する。
【0044】
図7は、本実施例の電子制御装置40の制御作動の要部、すなわち、リニアソレノイド弁12のバイアス電流Ibおよび駆動電流Iopが実際の作動油温tに基づいて決定される制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
【0045】
先ず、S410においては、前記式(1)を用いて、予め記憶された前記駆動電流I1,I2および出力油圧P1,P2に基づき、第1閾値Ith1が算出される。
【0046】
次に、S420においては、前記式(2)を用いて、予め記憶された前記駆動電流I1’,I2’および出力油圧P1’,P2’に基づき、第2閾値Ith2が算出される。
【0047】
図7のS430以降のステップ、すなわち、S430乃至S460はそれぞれ、図3のS210乃至S240と同じである。そして、バイアス電流Ibおよび駆動電流Iopは、第1実施例と同様に図4に例示されるように決定される。従って、本実施例においても、第1実施例と同様の効果を得ることが可能である。
【0048】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【0049】
例えば、前述の実施例において、リニアソレノイド弁12は、出力油圧調整用のリニアソレノイド弁であったが、作動油の流量調整用であっても差し支えない。
【0050】
また、前述の実施例において、第1作動油温t1と第2作動油温t2とは相互に異なる油温であればよく、その上下関係に制限はない。
【0051】
また、前述の実施例において、リニアソレノイド弁12の閾値Ithは、駆動電流Iop(ソレノイド電流I)を零から大きくしていった場合に出力油圧Pが生じ始める駆動電流Iopであるが、駆動電流Iopがその閾値Ithである場合に、出力油圧Pが厳密に零である必要はなく、そのときの出力油圧Pが零と看做される程度であってもよい。
【符号の説明】
【0052】
10:自動変速機(車両用自動変速機)
12:リニアソレノイド弁
40:電子制御装置(制御装置)

【特許請求の範囲】
【請求項1】
駆動電流に応じて出力油圧が変化するリニアソレノイド弁を備えた車両用自動変速機の制御装置であって、
前記リニアソレノイド弁の前記車両用自動変速機への組付前に所定の第1作動油温において予め測定された前記出力油圧および駆動電流から該出力油圧が生じるか否かの境界の駆動電流として算出される第1閾値と、前記リニアソレノイド弁の前記車両用自動変速機への組付後に前記第1作動油温とは異なる所定の第2作動油温において予め測定された前記出力油圧および駆動電流から前記境界の駆動電流として算出される第2閾値と、前記車両用自動変速機の実際の作動油温とに基づいて、前記リニアソレノイド弁のバイアス電流および前記駆動電流を決定する
ことを特徴とする車両用自動変速機の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−174934(P2010−174934A)
【公開日】平成22年8月12日(2010.8.12)
【国際特許分類】
【出願番号】特願2009−15906(P2009−15906)
【出願日】平成21年1月27日(2009.1.27)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】