説明

非接触給電設備の2次側受電回路

【課題】効率が良く、低電圧による定電流制御、または定電圧制御が可能な非接触給電設備の2次側受電回路を提供することを目的とする。
【解決手段】同一のコアに巻かれ1次側の給電コイル17より起電力が誘起される第1コイル32および第2コイル33と、第1コイル33と共振回路37を形成する共振コンデンサ38と、共振コンデンサ38の両端を接続状態と開放状態に切り換えるスイッチング素子39と、共振回路37の出力電圧のゼロクロス点を検出するゼロクロス検出回路40と、第2コイル33から出力される電流を電池22へ出力する整流回路41と、電池22へ出力される電流と基準電流とを比較して、駆動パルスのパルス幅を制御し、前記ゼロクロス点に同期してスイッチング素子39ヘ駆動パルスを出力し、電池22へ出力される電流を基準電流に一定に制御する定電流制御機能を有するパルス発生回路45を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非接触給電設備の2次側受電回路、特に、充電(給電)対象の電池を駆動源として移動可能な移動体に搭載され、所定位置において前記電池に非接触で給電(充電)する非接触給電設備の2次側受電回路に関するものである。
【背景技術】
【0002】
従来の非接触給電設備の2次側受電回路の一例が、特許文献1に開示されている。
従来の非接触給電設備の2次側受電回路では、周波数fが、例えば10kHzの高周波電流を流す1次側誘導線路に対向して、1次側誘導線路より起電力が誘起されるピックアップコイルを設け、このピックアップコイルに並列に、ピックアップコイルとともに1次側誘導線路の周波数に共振する並列共振回路を形成する共振コンデンサを接続し、この並列共振回路に整流回路(全波整流回路)を接続し、定電圧制御回路を介して、消費電力が変動する負荷(例えば、自走台車の走行用電動モータを制御するインバータ)へ給電している。
前記定電圧制御回路は、チョークコイルと、ダイオードと、出力コンデンサ(電圧コンデンサ)と、整流回路の出力端間をチョークコイルを介して接続状態(オン状態)または開放状態(オフ状態)とするスイッチ手段(例えば、出力調整用トランジスタ)と、スイッチング周波数を正確に2fとし、前記スイッチ手段を駆動する駆動パルスを出力するコントローラから構成されている。
前記コントローラは、前記駆動パルスのオンタイミングを、チョークコイルの入力電圧がピークから下降に転じた位置とし、駆動パルスのパルス幅の中間点を全波の入力電圧のゼロクロス位置としており、また前記出力コンデンサの出力電圧(負荷の電圧)を計測し、駆動パルスのパルス幅を、前記出力コンデンサの出力電圧が予め設定された基準電圧より低いとき短くし、前記基準電圧より高いとき長くして、出力電圧を一定に制御している。
【0003】
以下に、上記2次側受電回路の構成における作用を説明する。
周波数が、例えば10kHzの高周波電流が1次側誘導線路に供給されると、この1次側誘導線路に発生する磁束により、ピックアップコイルに誘導起電力が誘起され、この誘導起電力によりピックアップコイルにおいて発生した電流は整流回路で整流され、スイッチ手段はスイッチング周波数2fでオン・オフされ、その駆動パルスのパルス幅は、前記出力コンデンサの出力電圧が予め設定された基準電圧より低いとき短くされ、前記基準電圧より高いとき長くされる。よって、出力電圧が基準電圧に維持されている。
また駆動パルスがオンとなりチョークコイルが励磁されるとき、共振回路によってチョークコイルへ供給される電流は略ゼロに近く、かつこの後入力電圧は下降しゼロクロス範囲を含むことにより、チョークコイルに流れるコイル電流の上昇は抑えられ、脈動が少なくなりリップルが抑えられている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−154696号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
負荷が電池の場合、電池に対する充電には、定電流制御が求められる。
しかし、特許文献1に記載の非接触給電設備の2次側受電回路は、基本的に、並列共振回路から出力される電流は一定であり、また出力コンデンサへ供給する電流をスイッチ手段により導通・遮断することにより、出力コンデンサの出力電圧を制御する定電圧回路であり、出力コンデンサから給電される負荷の状態により、出力電圧は変化することから、出力電圧に一定にするように、スイッチ手段によりオン・オフしている。このように、基本的に、特許文献1に記載の非接触給電設備の2次側受電回路は定電圧回路であること、さらにスイッチ手段の前段にチョークコイルがあり、チョークコイルに蓄えるエネルギーがあることにより、負荷に流れる電流を一定に制御すること(定電流とすること)は困難であった。
また完全な定電流制御を実現するためには、出力コンデンサと負荷との間に、定電流回路を付加することが考えられるが、回路が複雑となると同時にコストがかかるという問題の発生が予測される。
【0006】
また一般に、電池の定格電圧は、12Vと低いが、特許文献1に記載の非接触給電設備の2次側受電回路は、基本的に、定電圧が数百V(例えば、300V)の負荷用に設計されており、直流側で直接的に300Vを12Vに定電圧に制御するには、制御が困難で、精度に問題が発生すると予測され、定格電圧が低い電池の充電には向かないと考えられる。
【0007】
また特許文献1に記載の非接触給電設備の2次側受電回路ではスイッチ手段が接続状態の時にスイッチ手段に流れる電流は整流回路にも流れるため整流回路による余分な電力消費があり、効率の低下を招いていた。さらに、出力コンデンサの前段にもダイオードが接続されており、さらなる効率の低下を招いていた。
【0008】
そこで、本発明は、効率が良く、低電圧による定電流制御、また定電圧制御が可能な非接触給電設備の2次側受電回路を提供することを目的としたものである。
【課題を解決するための手段】
【0009】
前記した目的を達成するために、本発明の請求項1記載の非接触給電設備の2次側受電回路は、高周波電流が供給される1次側の誘導線路または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される第1コイルおよび第2コイルと、前記第1コイルに並列に接続され、この第1コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、前記共振コンデンサの両端を、接続状態と開放状態に切り換えるスイッチ手段と、前記共振回路の出力電圧のゼロクロス点を検出するゼロクロス検出回路と、前記第2コイルから出力される電流を整流して前記負荷へ出力する整流回路と、前記整流回路より前記負荷へ出力される電流を検出する電流検出回路と、前記負荷の電圧を検出する電圧検出回路と、前記高周波電流の周波数あるいはその2倍の周波数を、スイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路を備え、前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行することを特徴としたものである。
【0010】
上記構成によれば、誘導線路または給電コイルに発生する磁束により、第1コイルに誘導起電圧が誘起され、非接触で電力が伝送される。さらに第1コイルと同一磁性体上に巻かれた第2コイルにも誘導起電圧が誘起され電力が伝送される。この際、第1コイル側の共振回路に流れる電流は、共振回路に発生する電圧と位相がほぼ90度ずれて無効電力となっており、給電側から送られた電力はほぼ全て第2コイル側の回路に供給される。第2コイルから出力された交流電流は整流回路によって直流化され負荷に供給される。
【0011】
負荷に出力される電流は電流検出回路で検出され、また負荷の電圧は電圧検出回路により検出され、パルス発生回路に入力される。パルス発生回路は、スイッチング周波数を共振周波数と同一周波数あるいは2倍周波数とし、共振回路の電圧がゼロボルト近傍になったタイミングを示すゼロクロス検出回路の出力タイミングと同期して、共振コンデンサの両端に接続したスイッチ手段へ駆動パルスを出力する。
パルス発生回路は、電流検出回路出力と基準電流とを比較し、駆動パルスのパルス幅を制御し、負荷へ出力される電流を前記基準電流へ一定に制御する。またはパルス発生回路は、電圧検出回路出力と基準電圧とを比較し、駆動パルスのパルス幅を制御し、負荷へ印加される電圧を前記基準電圧に一定に制御する。すなわち、基準電流または基準電圧の方が大きい場合には駆動パルスのパルス幅を短くし、基準電流または基準電圧の方が小さい場合にはパルス幅を長くする。
前記駆動パルスのパルス幅が最短(または駆動しない)のとき、第1コイル側の共振回路の両端電圧は最大となり、逆にパルス幅が長くなるほど電圧は低くなる。第2コイルは第1コイルと同一磁性体上に巻かれており、トランスとして動作するため、共振回路に発生する電圧の大小を制御することにより、第2コイル側の整流回路へ出力される電圧が制御され、負荷への出力の大小が変化する。このとき、パルス発生回路は、共振周波数と同一またはその2倍の速いスイッチング周波数(制御周期)でリニアに可変できるため、電流検出を参照してパルス幅制御を行うことにより定電流制御を行うことができ、また電圧検出を参照してパルス幅制御を行うことにより定電圧制御を行うことができる。すなわち、パルス発生回路は、定電流制御機能と定電圧制御機能を有し、定電流制御機能または定電圧制御機能を実行できる。
【0012】
駆動パルスの出力タイミングは共振コンデンサ両端電圧がゼロボルト近傍で駆動するようにゼロクロス検出回路で同期を行なっているが、この同期を行なわない場合、出力タイミングがゼロボルトから遠ざかるにつれて、スイッチ手段が開放状態(OFF)から接続状態(ON)へ制御される時、共振コンデンサからスイッチ手段に流れる突入電流が急激に大きくなり、スイッチ手段および共振コンデンサが損傷される恐れがある。
【0013】
また請求項2記載の非接触給電設備の2次側受電回路は、高周波電流が供給される1次側の誘導線路、または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される第1コイルおよび第2コイルと、前記第1コイルに並列に接続され、この第1コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、前記第2コイルの両端を、接続状態と開放状態に切り換えるスイッチ手段と、前記第2コイルの出力電圧のゼロクロス点を検出するゼロクロス検出回路と、前記第2コイルから出力される電流を整流して前記負荷へ出力する整流回路と、前記整流回路から負荷へ出力される電流を検出する電流検出回路と、前記負荷の電圧を検出する電圧検出回路と、前記高周波電流の周波数あるいはその2倍の周波数を、スイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路を備え、前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行することを特徴としたものである。
【0014】
上記構成によれば、誘導線路または給電コイルに発生する磁束により、第1コイルに誘導起電圧が誘起され、非接触で電力が伝送される。さらに第1コイルと同一磁性体上に巻かれた第2コイルにも誘導起電圧が誘起され電力が伝送される。この際、第1コイル側の共振回路に流れる電流は、共振回路に発生する電圧と位相がほぼ90度ずれて無効電力となっており、給電側から送られた電力はほぼ全て第2コイル側の回路に供給される。第2コイルから出力された交流電流は整流回路によって直流化され負荷に供給される。
第1コイルには共振コンデンサのみが接続され、共振回路が形成されており、第1コイルと共振コンデンサの内部インピーダンスにより制約されて共振回路に(一定)電圧が発生する。第2コイルは第1コイルと同一磁性体上に巻かれており、トランスとして動作するため、共振回路に発生する電圧により、第2コイルに発生される電圧が決定されるそして、第2コイルから出力された交流電流はスイッチ手段の後端に接続された整流回路によって直流化され負荷へ出力される。
パルス発生回路の作用は、上記請求項1に記載の非接触給電設備の2次側受電回路のパルス発生回路の作用と同一であり、整流回路の前段に設けたスイッチ手段により整流回路へ出力される電圧をリニアに可変して定電流制御または定電圧制御を実行する。パルス発生回路の作用の詳細な説明は省略する。
【0015】
さらに請求項3記載の非接触給電設備の2次側受電回路は、請求項1または請求項2に記載の発明であって、前記第1コイルと前記第2コイルの巻数比を、前記第1コイルに誘起される最大電圧と前記負荷の定格電圧に基づいて設定したことを特徴とするものである。
【0016】
上記構成によれば、第1コイルに誘起される最大電圧と負荷の定格電圧に応じて第1コイルと前記第2コイルの巻数比を変更することにより、種々の定格電圧の負荷に対応可能となる。
【0017】
また請求項4記載の非接触給電設備の2次側受電回路は、高周波電流が供給される1次側の誘導線路、または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される受電コイルと、前記受電コイルに並列に接続され、この受電コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、前記共振コンデンサの両端を、接続状態と開放状態に切り換えるスイッチ手段と、前記共振回路の出力電圧のゼロクロス点を検出するゼロクロス検出回路と、前記受電コイルから出力される電流を整流して前記負荷へ出力する整流回路と、前記整流回路から負荷へ出力される電流を検出する電流検出回路と、前記負荷の電圧を検出する電圧検出回路と、前記高周波電流の周波数あるいはその2倍の周波数を、スイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路を備え、前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行することを特徴としたものである。
【0018】
上記構成によれば、誘導線路または給電コイルに発生する磁束により、受電コイルに誘導起電圧が誘起され、非接触で電力が伝送される。受電コイルには共振コンデンサが接続されて共振回路が形成されており、受電コイルから出力された交流電流は整流回路によって直流化され負荷に供給される。
パルス発生回路の作用は、上記請求項1に記載の非接触給電設備の2次側受電回路のパルス発生回路の作用と同一であり、整流回路の前段に設けたスイッチ手段により整流回路へ出力される電圧をリニアに可変して定電流制御または定電圧制御を実行する。パルス発生回路の作用の詳細な説明は省略する。
【0019】
また請求項5記載の非接触給電設備の2次側受電回路は、請求項1〜請求項4のいずれか1項に記載の発明であって、前記パルス発生回路は、前記定電流制御機能と前記定電圧制御機能とを切り換え可能としたことを特徴としたものである。
【0020】
上記構成によれば、負荷の要求に応じて、定電流制御と定電圧制御に自在に切り換えることが可能となる。
【0021】
また請求項6記載の非接触給電設備の2次側受電回路は、請求項1〜請求項4のいずれか1項に記載の発明であって、前記負荷は蓄電手段であり、前記パルス発生回路は、まず、前記定電流制御機能により、前記蓄電手段へ出力する電流を、前記蓄電手段の要求により予め設定された基準電流に制御し、前記電圧検出回路により検出される蓄電手段の電圧が前記蓄電手段の要求により予め設定された定格電圧に達すると、前記定電圧制御機能により、前記蓄電手段の電圧を前記定格電圧に制御することを特徴としたものである。
【0022】
上記構成によれば、蓄電手段の充電時には、ます定電流制御機能により、蓄電手段へ出力する電流は、基準電流に一定に制御され、蓄電手段の電圧が定格電圧となると、定電圧制御機能により、蓄電手段の電圧は、定格電圧に一定に制御される。
【0023】
また請求項7記載の非接触給電設備の2次側受電回路は、請求項1〜請求項6のいずれかに記載の発明であって、前記負荷への給電開始時に前記共振回路を非共振状態とする給電開始回路を設けたことを特徴とするものである。
【0024】
上記構成によれば、パルス発生回路が動作する前は、スイッチ手段は開放状態であり、この状態で、第1コイルおよび第2コイルが、1次側の誘導線路または1次側の給電コイルに対向すると、負荷へ定格電圧より高い電圧が印加されて、負荷が損傷する恐れがあるが、前記対向前に、共振回路を非共振状態とする給電開始回路が動作していれば、負荷へ印加される電圧が抑制され、負荷が損傷する恐れが回避される。
【発明の効果】
【0025】
本発明の非接触給電設備の2次側受電回路は、整流回路へ出力される電圧を、共振周波数と同一またはその2倍の速いスイッチング周波数(制御周期)でリニアに可変できるため、負荷へ流れる電流を定電流制御することができ、また負荷へ印加する電圧を定電圧制御することができ、このとき整流回路の前段で、交流側の電圧を制御することにより、負荷へ流れる電流または負荷へ印加する電圧を、簡易な回路構成で、精度よく制御でき、最適な給電回路を提供でき、さらにスイッチ手段が接続状態のとき、スイッチ手段に流れる電流が整流回路を流れないため、整流回路を構成する素子の発熱が小さくなり、効率を良くすることができ、また発熱が小さくなるため、整流回路を構成する素子に、より小さい放熱板が使用でき、小型化・低コスト化が可能となる、という効果を有している。
【図面の簡単な説明】
【0026】
【図1】本発明の実施の形態における非接触給電設備の2次側受電回路を備えた電池の充電システムの構成図である。
【図2】同非接触給電設備の2次側受電回路の回路図である。
【図3】同非接触給電設備の2次側受電回路の共振コンデンサの両端電圧の特性図である。
【図4】同非接触給電設備の2次側受電回路を使用して充電される電池の充電遷移図である。
【図5】他の実施の形態における非接触給電設備の2次側受電回路の回路図である。
【図6】他の実施の形態における非接触給電設備の2次側受電回路の回路図である。
【図7】他の実施の形態における非接触給電設備の2次側受電回路の回路図である。
【図8】他の実施の形態における非接触給電設備の2次側受電回路の回路図である。
【図9】他の実施の形態における非接触給電設備の2次側受電回路の回路図である。
【発明を実施するための形態】
【0027】
以下に、本発明の実施の形態における非接触給電設備の2次側受電回路について、図面を参照しながら説明する。
【0028】
図1は、本発明の実施の形態における非接触給電設備の2次側受電回路を備えた電池の充電システムの構成図であり、図1において、Aは、充電対象の電池を搭載し、この電池を駆動源として移動可能な車両(移動体,機器の一例)であり、Bは、車両Aの電池を充電するための給電ステーションである。
『給電ステーション(1次側;給電側)』
【0029】
図1に示すように、1次側の給電ステーションBには、給電カプラ11と、商用電源から給電されて高周波電流を給電カプラ11へ供給するインバータ12と、インバータ12に対して給電の開始・停止を指令する給電コントローラ13と、給電コントローラ13に接続された給電側光送受信器(光通信器)14が設けられている。
【0030】
前記給電カプラ11は、E字形コア(磁性体)16と、このE字形コア16に(1次側の)給電コイル17を巻きつけて構成され、インバータ12から給電コイル17に高周波電流が給電される。
【0031】
また給電コントローラ13には、受電を許可された車両Aのデータ(例えば、認証ナンバー)が予め記憶されており、給電側光送受信器14により、認証データを要求する信号が含まれた光信号を発信させている。また給電した車両Aの履歴を記憶する機能を有している。
『車両(2次側;受電側)』
【0032】
受電側の車両Aには、給電カプラ11に対向する受電カプラ21が設けられ、この受電カプラ21により非接触で給電されて、車両Aに搭載された充電対象の電池(負荷、蓄電手段の一例)22へ充電する定電流・定電圧制御機能付き充電装置23と、充電装置23に対して、充電の開始・停止を指令する受電コントローラ24と、受電コントローラ24に接続された受電側光送受信器(光通信器)25と、電池22の電圧や発熱を監視し、受電コントローラ24へ、電圧が低下すると充電要求信号を出力し、電圧が上限電圧を超えたことを検出すると、あるいは発熱を検出すると充電停止信号を出力する電池監視装置26が設けられている。上記受電カプラ21と充電装置23により、本発明の非接触給電設備の2次側受電回路が構成される。
【0033】
前記受電カプラ21は、E字形コア(同一の磁性体の一例)31と、E字形コア31に強結合で巻き線された第1コイル32および中間タップ付き第2コイル33から構成され、これらコイル32,33には給電カプラ11の給電コイル17により起電力が誘起される。
【0034】
また受電コントローラ24には、特有の認証データが記憶されており、給電側光送受信器14から発信される光信号を受電側光送受信器25が受信したことにより、給電カプラ11に対して受電カプラ21が対向したことを検出する機能と、受信した光信号の認証データ要求に応じて、特有の認証データを受電側光送受信器25により送信する機能と、電池監視装置26から入力する電池22の充電要求信号に応じて、充電装置23に対して充電の開始を指令し、また停止を指令する機能(詳細は後述する)と、受電終了信号を受電側光送受信器25から送信する機能(詳細は後述する)を有している。
【0035】
上記給電ステーションBの給電コントローラ13は、給電側光送受信器14により受信した認証データと、受電を許可された車両Aの認証データが一致すると、インバータ12へ給電開始を指令し、受電終了信号を入力すると、インバータ12へ給電停止を指令し、履歴を記憶する。
【0036】
充電装置23は、図2に示すように、
第1コイル32に並列に接続され、この第1コイル32と、給電コイル17に供給される高周波電流の周波数に共振する共振回路37を形成する共振コンデンサ38と、
共振コンデンサ38の両端を、接続状態と開放状態に切り換えるスイッチング素子(スイッチ手段の一例)39と、
共振回路37の出力電圧のゼロクロス点を検出するゼロクロス検出回路40と、
第2コイル33に接続され、第2コイル33から出力される電流を整流して電池22へ出力する整流回路41と、
電池22へ供給される電流を検出する電流検出回路43および電池22の電圧を検出する電圧検出回路44を内蔵し、前記給電コイル17へ供給される高周波電流の周波数をスイッチング周波数とし、ゼロクロス検出回路40により検出されるゼロクロス点に同期してスイッチング素子39ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチング素子39を接続状態とし、オフのときにスイッチング素子39を開放状態とするパルス発生回路45
を備えている。
パルス発生回路45は、電流検出回路43により検出された電流と電池22が要求する基準電流とを比較し、または電圧検出回路44により検出された電圧と電池22が要求する定格電圧(基準電圧の一例)とを比較して、前記駆動パルスのパルス幅を制御することにより、電池22へ供給される電流または電圧を一定に制御する定電流制御機能と定電圧制御機能(詳細は後述する)を有しており、定電流制御機能と定電圧制御機能のいずれかを選択して(切り換えて)実行する。またパルス発生回路45は、電池22から制御電源を得ている。
【0037】
また前記スイッチング素子39は、第1トランジスタ(またはMOS−FET)39aとこの第1トランジスタ39aとは電流の流れる向きを逆にして並列接続された第1ダイオード39b、および第2トランジスタ(またはMOS−FET)39cとこの第2トランジスタ39cとは電流の流れる向きを逆にして並列接続された第2ダイオード39dとを、トランジスタ39a,39cに流れる向きが逆となるように直列接続して構成されている。このスイッチング素子39の構成により、パルス発生回路45から駆動パルスが、第1トランジスタ39aまたは第2トランジスタ39cに入力されると、スイッチング素子39が接続状態となり、共振コンデンサ38(共振回路37)の両端が接続状態(短絡状態)とされる。
【0038】
また前記整流回路41は、第2コイル33の一端にアノードが接続され、カソードが電池22のプラス電極に接続された第1ダイオード41aと、第2コイル33の他端にアノードが接続され、カソードが電池22のプラス電極に接続された第2ダイオード41bから構成され、電池22のマイナス電極に第2コイル33の中間タップが接続されている。
【0039】
また図3に示すように、パルス発生回路45は、スイッチング周波数を高周波電流の周波数として、ゼロクロス発生回路40により検出されるゼロクロス点(例えば、正から負へ反転するゼロクロス点)に同期して駆動パルスを出力しており、出力される駆動パルスのパルス幅が最短(または駆動しない)のとき、共振回路37の両端電圧は最大となり、逆にパルス幅が長くなるほど電圧は低くなる。また第2コイル33は第1コイル32と同一コア上に巻かれており、トランスとして動作するため、共振回路37に発生する電圧の大小を制御することにより、電池22の前段にある整流回路41出力の大小が変化する。
このように、共振回路37に発生する電圧を共振周波数と同一の速いスイッチング周波数(制御周期)でリニアに可変して、電池22の前段にある整流回路41の出力をリニアに可変すること、および電流検出回路43により検出される電流を参照して上記パルス幅を変更する制御を行うことにより、電池22へ流れる電流を定電流制御することができる。また同様に電圧検出回路44により検出され電圧を参照して上記パルス幅を変更する制御を行うことにより電池22の電圧を定電圧制御することができる。
なお、パルス発生回路45の駆動パルス出力タイミングは共振コンデンサ38両端電圧がゼロボルト近傍で駆動するようにゼロクロス発生回路40で同期を行なっている。この同期を行なわない場合、出力タイミングがゼロボルトから遠ざかるにつれてスイッチング素子39が開放状態(OFF)から接続状態(ON)へと制御される時、共振コンデンサ38からスイッチング素子39に流れる突入電流が急激に大きくなり、スイッチング素子39および共振コンデンサ38が損傷される恐れがある。
また第1コイル32の巻数N1と第2コイル33の巻数N2の巻線比は、上記共振回路37に発生する最大電圧と電池22の定格電圧に基づいて設定されており、第2コイル33に誘起される電圧は、電池22の定格電圧以下に抑えられている。
【0040】
次に、受電コントローラ24による電池22の充電の流れを、上記充電装置23の回路構成による作用とともに、図4に基づいて説明する。なお、電池22は、電池22の電圧が定格電圧より低い電圧のとき、定電流で充電し、定格電圧となると定電圧で充電する必要がある。
【0041】
ステップ−1.「充電要求」
電池監視装置26は電池22の電圧を監視しており、電圧が低下すると充電要求信号を出力する。また図示していないが、この充電要求信号は、車両Aの走行コントローラへ出力され、車両Aの走行コントローラによる指令により、車両Aは、給電ステーションBの給電カプラ11に対して受電カプラ21が対向するように移動する。すると、給電側光送受信器14から発信される光信号は受電側光送受信器25に受信され、上述したように、給電コントローラ13により認証されるとインバータ12により高周波電流が給電カプラ11に供給される。またパルス発生回路45は電池22より制御電源を得ており、充電要求がない状態では、スイッチング素子39への出力する駆動パルスのパルス幅を最大としている。これにより受電カプラ21が対向したとき、電池22の前段にある整流回路41出力が最小となるようにしている。
なお、スイッチング素子39が開放状態(OFF)のまま受電カプラ21が対向すると、共振コンデンサ38は空の状態なため、ダッシュ電流が流れて、共振回路37の両端電圧は図3に示す最大電圧よりさらに高い(例えば、2倍の)電圧となり、また電池22に印加される電圧が過電圧となり、電池22や共振コンデンサ38やスイッチング素子39が損傷する恐れがある。
【0042】
受電コントローラ24は、給電側光送受信器14から発信される光信号を受電側光送受信器25が受信したことにより、給電カプラ11に対して受電カプラ21が対向したことを検出し、電池監視装置26より充電要求信号を入力すると、充電装置23のパルス発生回路45に対して充電開始指令を出力する。なお、受電コントローラ24は、給電カプラ11に対して受電カプラ21が対向したことを検出したとき、車両Aの走行コントローラへ走行停止指令を出力して、位置ずれが発生しないように働きかけるようにしてもよい。
【0043】
ステップ−2.「受電確認」
受電カプラ21が給電カプラ11に対向し、給電コイル17へインバータ12より高周波電流が供給されると、給電コイル17に発生する磁束により、第1コイル32に誘導起電圧が誘起される。つまり給電コイル17から第1コイル32へは非接触で電力が伝送される。さらに第1コイル32と同一コア31上に強結合で巻き線された第2コイル33にも、給電コイル17に発生する磁束により誘導起電圧が誘起されて電力が伝送される。この際、共振回路37に流れる電流は共振回路37に発生する電圧と位相がほぼ90度ずれて無効電力となっており、給電ステーションBから送られた電力はほぼ全て第2コイル33側の回路に供給される。第2コイル33から出力された交流電流は整流回路41によって直流化され電池22に供給される。このように、1次側の給電コイル17から非接触で給電され、電池22に給電される。
なお、受電カプラ21が給電カプラ11に対向しても、始動時は、スイッチング素子39への出力する駆動パルスのパルス幅を最大としているために、整流回路41へ出力される電圧は小さく、よって、電池22に印加される電圧が過電圧となり、電池22や共振コンデンサ38やスイッチング素子39が損傷する恐れが回避されている。パルス発生回路45は、電流検出回路43により整流回路41から電池22へ電流が流れたことを検出することによって受電を確認する。
【0044】
ステップ−3.「定電流充電」
パルス発生回路45は、受電を確認し、受電コントローラ24より充電開始指令を入力すると、定電流充電(定電流制御)を開始する。
すなわち、パルス発生回路45は、電流検出回路43により電池22に流れる電流を検出し、電圧検出回路44により電池22の電圧を検出しており、電池22の電圧が定格電圧(あるいは上限値)未満のとき、定電流制御を実行する。
この定電流制御時、パルス発生回路45は、電流検出回路43により検出される電池22への出力電流をフィードバックしながら、この電流検出回路43の出力とパルス発生回路45内で発生される基準電流と比較し、基準電流の方が大きい場合には駆動パルス幅を短くし、基準電圧または基準電流の方が小さい場合には駆動パルスのパルス幅を長くして、共振コンデンサ38両端の電圧がゼロボルト近傍になったタイミングを示すゼロクロス検出回路40の出力タイミングと同期して、スイッチング素子39へ駆動パルスを出力する。
【0045】
上述したように、パルス幅が最短(または駆動しない)のとき、共振回路37の両端電圧は最大となり、逆にパルス幅が長くなるほど電圧は低くなり、また第2コイル33は第1コイル32と同一コア上に巻かれており、トランスとして動作するため、共振回路37に発生する電圧の大小を制御することにより、電池22の前段にある整流回路41出力の大小が変化する。よって、パルス発生回路45において電流検出を参照してパルス幅制御を行うことにより、定電流に制御できる。(パルス発生回路45は定電流制御機能を有している。)
【0046】
ステップ−4.「定電圧充電」
パルス発生回路45は、定電流制御中、電圧検出回路44により電池22の電圧を監視しており、電圧が定格電圧まで上昇すると、タイマーを起動し、定電流充電から、定電圧充電(定電圧制御)へ切り替える。
定電圧制御時、パルス発生回路45は、電圧検出回路44により検出される電池22の電圧をフィードバックしながら、この電圧検出回路44の出力とパルス発生回路45内で発生される基準電圧を比較し、基準電圧の方が大きい場合には駆動パルスのパルス幅を短くし、基準電圧の方が小さい場合にはパルス幅を長くして、共振コンデンサ38両端の電圧がゼロボルト近傍になったタイミングを示すゼロクロス検出回路40の出力タイミングと同期して、スイッチング素子39へ駆動パルスを出力する。
【0047】
上述したように、駆動パルスのパルス幅により、電池22の前段にある整流回路41出力の大小が変化し、パルス発生回路45において電圧検出を参照してパルス幅制御を行うことにより、定電圧に制御できる。(パルス発生回路45は定電圧制御機能を有している。)
【0048】
ステップ−5.「充電完了」
パルス発生回路45は、定電圧充電開始時に起動したタイマーのカウント値(タイマー時間)が規定の充電時間に達すると、駆動パルスのパルス幅を最大として、電池22の前段にある整流回路41出力を最小に変化させて、電池22への充電を停止する。(電池22の電圧が高くなるために、充電されることは無い。)
続いて充電完了信号を受電コントローラ24へ出力し、受電コントローラ24は、光送受信器25,14を介して給電コントローラ13へ受電終了信号を送信する。給電側の給電コントローラ13は、この受電終了信号を入力すると、インバータ12へ給電停止を指令し、インバータ12は、給電カプラ11への給電を停止する。
【0049】
なお、受電コントローラ24は、電池監視装置26より充電停止信号を入力すると、充電装置23のパルス発生回路45へ充電停止指令を出力し、また光送受信器25,14を介して給電コントローラ13へ受電終了信号を送信する。パルス発生回路45は、充電停止指令に応じて、駆動パルスのパルス幅を最大として、電池22への充電を停止し、また給電ステーションBの給電コントローラ13は、インバータ12へ給電停止を指令し、インバータ12は、給電カプラ11への給電を停止する。
このように、電池22に対して、はじめは、定電流制御により充電され、定格電圧に達すると定電圧制御が実行され、電池22は正常に充電される。
【0050】
以上のように実施の形態によれば、共振回路37に発生する電圧を、共振周波数と同一の速いスイッチング周波数(制御周期)でリニアに可変できるため、電池22の前段にある整流回路41の出力をリニアに可変でき、よって電池22へ流れる電流を定電流制御することができ、また電池22の電圧を定電圧制御することができ、電池22に最適な充電回路を提供できる。このとき、スイッチング素子39の駆動パルスの出力タイミングをゼロクロス点に同期させていることにより、出力タイミングがゼロクロス点から遠ざかるにつれて発生するスイッチング素子39および共振コンデンサ38の損傷の恐れを回避できる。
【0051】
また実施の形態によれば、整流回路41の前段に、また別の回路で、スイッチング素子39を設けたことにより、スイッチング素子39がオン(接続状態)のとき、スイッチング素子39に流れる電流が整流回路41を流れないため、整流回路41を構成するダイオード41a,41bの発熱が小さくなり、効率を良くすることができ、また発熱が小さくなるためダイオード41a,41bに、より小さい放熱板が使用でき、小型化・低コスト化が可能となる。
【0052】
また実施の形態によれば、定電流制御と定電圧制御を選択して実行できることから、種々の充電方式に対応することができる。このとき、充電方式に応じてパルス発生回路45による充電方法を書き換える必要がある。
【0053】
また実施の形態によれば、整流回路41の前段において、第1コイル32と第2コイル33がトランスとして動作することにより、整流回路41へ出力される電圧の低電圧化を簡易な回路構成で図ることができ、電池22の充電に対応しやすい電圧を得ることができる。また整流回路41の後段(直流)で低電圧化を図る回路構成と比較して、前記トランスの作用により第2コイル33に誘起される電圧が低電圧または高電圧であっても、効率を向上することができる。また第1コイル32の巻数N1と第2コイル33の巻数N2の巻線比を、第1コイル32に誘起される最大電圧と電池22の定格電圧に基づいて設定することにより、同一の回路構成で、種々の定格電圧の電池22(あるいは負荷)に対応することができる。
【0054】
また実施の形態によれば、第1コイル32側でスイッチング素子39の制御によって交流側の電圧を制御することにより、共振回路37の大きな電圧で、整流回路41へ出力される小さな電圧を制御することができ、よって精度のよい制御を期待でき、最適な充電回路を提供できる。
【0055】
[他の形態における充電装置の回路構成]
図5に、他の実施の形態における充電装置23の回路図を示す。なお、図2に示した回路構成と同一の構成には、同一の符号を付して説明を省略する。
電池22に代えて、消費電力が変動するモータ等の負荷51へ給電する回路としており、さらに整流回路41から出力された直流電流を平滑する平滑回路52を設けている。この平滑回路52は、整流回路41のプラス出力端子に一端が接続された平滑コイル52aと、一端が平滑コイル52aの他端に接続され、他端が第2コイル33の中間タップ(整流回路41のマイナス出力端子)に接続された平滑コンデンサ52bから形成され、負荷51は、平滑コンデンサ52bの両端に接続される。第2コイル33から出力された交流電流は整流回路41と平滑回路52によって直流化され平滑され負荷51に供給される。なお、電池22の場合は、平滑回路52は不要である。
【0056】
またパルス発生回路45は、整流回路41から負荷51への給電ラインから制御電源を得ている。したがって、パルス発生回路45は、給電カプラ11に受電カプラ21が対向するまで、制御電源を得ることができず、よって何らスイッチング素子39が制御されることなく、開放状態となっている。それにより、上述したように、給電カプラ11に受電カプラ21が対向すると、共振コンデンサ38は空の状態なため、ダッシュ電流が流れて、共振回路37の両端電圧は図3に示す最大電圧よりさらに高い(例えば、2倍の)電圧となり、また負荷51に印加される電圧が過電圧となり、負荷51や共振コンデンサ38やスイッチング素子39が損傷する恐れがある。
【0057】
そこで、共振コンデンサ38を、並列に接続される2つのコンデンサ38a,38bから形成し、一方のコンデンサ38bに、常時は開放状態(ノーマルオープン)のスイッチ53を直列に接続している。このスイッチ53は、パルス発生回路45により、上記「定電流充電」のステップで接続状態とされ、「充電完了」のステップで開放状態とされる。
この2つのコンデンサ38a,38bとスイッチ53の構成により、最初に制御電源を得ることができず、よって何らスイッチング素子39およびスイッチ53が制御されることなく、開放状態であっても、起動時は共振コンデンサ38の容量値が意図的に最大電力点からずらされているために、共振回路37の両端電圧、すなわち整流回路41へ出力される電圧は抑えられ、負荷51に過電圧が印加されることを回避でき、負荷51や共振コンデンサ38やスイッチング素子39が損傷することを回避できる。
このように、共振コンデンサ38を並列に接続される2つのコンデンサ38a,38bから形成し、一方のコンデンサ38bにスイッチ53を直列に接続することにより、電池22への給電開始時に共振回路37を非共振状態とする給電開始回路を構成している。
またスイッチ53は、上記「定電流充電」のステップで接続状態とされるため、制御開始後は、整流回路41へ出力される電圧として規定の最大電圧を得ることができる。
【0058】
なお、図5では、共振コンデンサ38を、並列に接続される2つのコンデンサ38a,38bから形成し、一方のコンデンサ38bに、常時は開放状態のスイッチ53を直列に接続して、起動時に、パルス発生回路45に制御電源が供給されてパルス発生回路45が動作開始するまで整流回路41へ出力される電圧の上昇を抑えて、負荷51に印加される電圧を抑えているが、次のように回路を変更することにより、同様に負荷51に印加される電圧を抑えることができる。
・共振コンデンサ38はそのままで、スイッチング素子39を常時接続状態(ノーマルクローズ)のトランジスタに変更する。
・共振コンデンサ38はそのままで、スイッチング素子39とは別に、共振コンデンサ38の両端に、常時接続状態(ノーマルクローズ)のスイッチを接続する。
・共振コンデンサ38はそのままで、スイッチング素子39とは別に、共振コンデンサ38の両端に、抵抗と常時接続状態(ノーマルクローズ)のスイッチからなる直列回路を接続する。
【0059】
上記スイッチング素子39を常時接続状態(ノーマルクローズ)のトランジスタに変更、または共振コンデンサ38の両端に、常時接続状態(ノーマルクローズ)のスイッチを接続すると、始動時には、共振コンデンサ38の両端は接続状態(短絡状態)となり、共振回路37に発生する電圧はゼロに近づくが、共振が無くても第1コイル32と第2コイル33は疎結合のトランスとして若干の電力が取れるため、負荷51への電力供給を抑えつつパルス発生回路45に電力を供給することができる。
【0060】
しかし、この方法ではパルス発生回路45に必用な電力が取れない場合や信頼性に問題がある場合には、上記図5のように、共振コンデンサ38を、並列に接続される2つのコンデンサ38a,38bから形成し、一方のコンデンサ38bに、常時は開状態のスイッチ53を直列に接続する方式、あるいは共振コンデンサ38の両端に別途、抵抗と常時接続状態(ノーマルクローズ)のスイッチとからなる直列回路を接続する方式を採用する。
【0061】
[変形例]
図2に示す充電装置23の回路を変形した回路図を、図6〜図9に示す。
【0062】
図6では、中間タップ付き第2コイル33に代えて、中間タップ無しの第2コイル33Aを備え、整流回路41を4つのダイオードからなる公知の全波整流回路41Aに変更している。これによれば、受電カプラ21から第2コイル33の中間タップからの配線の引き出しが不要となり、受電カプラ21の製作を容易にすることができる。
【0063】
また図7では、共振回路37のスイッチング回路(スイッチング素子39とゼロクロス検出回路40)を、第2コイル33と整流回路41との間に移動させている。この回路では、共振回路37(第1コイル32)には、常に、最大電圧の交流電圧(第1コイル32と共振コンデンサ38の内部インピーダンスで電圧は制約される)が発生しており、第2コイル33には、第1コイル32の巻数N1と第2コイル33の巻数N2の巻線比によって降圧された電圧が誘起され、この電圧が、交流の状態で、スイッチング素子39の制御により変化され(制御され)、すなわち整流回路41の前段で、整流回路41へ印加される電圧がリニアに変化され、定電流制御、または定電圧制御が実行される。
このように、図7に示す回路では、図2に示す回路と同様に、整流回路41の前段にスイッチング素子39を設けて整流回路41へ出力される電圧をリニアに可変して定電流制御と定電圧制御を実現し、また第1コイル32と第2コイル33をトランスとして動作させて低電圧化を図っている。
【0064】
また図8では、図6と同様に中間タップ付き第2コイル33に代えて、中間タップ無しの第2コイル33Aを備え、整流回路41を4つのダイオードからなる公知の全波整流回路41Aに変更し、さらに図7と同様に共振回路37のスイッチング回路を、第2コイル33と整流回路41との間に移動させている。
【0065】
また図9では、図5と同様に、電池22に代えて負荷51へ給電する回路としており、平滑回路52を設けている。また図7および図8に示す、共振回路37を構成する第1コイル32と共振コンデンサ38を無くし、さらに図8と同様に中間タップ付き第2コイル33に代えて、中間タップ無しの第2コイル(受電コイル)33Aを備えている。そして、第2コイル(受電コイル)33Aに並列に、この第2コイル(受電コイル)33Aと、給電コイル17に供給される高周波電流の周波数に共振する共振回路37Aを形成する共振コンデンサ38Aを接続している。また整流回路41を4つのダイオードからなる公知の全波整流回路41Aに変更し、さらに図7および図8と同様に共振回路37Aのスイッチング回路を、第2コイル33Aと整流回路41Aとの間に移動させている。
この回路構成によると、給電コイル17に発生する磁束により、第2コイル(受電コイル)33に誘導起電圧が誘起され、非接触で電力が伝送される。誘起された電圧が、交流の状態で、スイッチング素子39の制御により変化され(制御され)、すなわち整流回路41Aの前段で、整流回路41Aへ印加される電圧がリニアに変化され、定電流制御、または定電圧制御が実行される。
このように、図9に示す回路では、図2に示す回路と同様に、整流回路41Aの前段にスイッチング素子39を設けて整流回路41Aへ出力される電圧をリニアに可変し、定電流制御と定電圧制御を実現している。
【0066】
なお、上記実施の形態では、パルス発生回路45に、電流検出回路43と電圧検出回路44を内蔵させているが、別途設けるようにしてもよい。
また本実施の形態では、パルス発生回路45は、高周波電流の周波数をスイッチング周波数としているが、高周波電流の周波数の2倍の周波数をスイッチング周波数とすることもできる。
また本実施の形態では、パルス発生回路45は、図3に示すように、正から負へ反転するゼロクロス点に同期してパルスを出力しているが、負から正へ反転するゼロクロス点に同期してパルスの出力するようにすることもできる。
【0067】
また本実施の形態では、車両Aの受電カプラ21は、給電カプラ11より非接触で給電されるように構成されているが、給電カプラ11に代えて、高周波電流が供給されている誘導線路を設け、この誘導線路に受電カプラ21を対向することで、非接触で給電される構成としてもよい。
また本実施の形態では、受電カプラ21と充電装置23からなる非接触給電設備の2次側受電回路は、移動体の一例である車両Aに搭載されているが、必ずしも移動体に搭載されることはなく、給電カプラ11または誘導線路に、受電カプラ21が対向するように移動できればよい。
また本実施の形態では、蓄電手段して電池22へ充電しているが、電池22に限ることはなく、電力を貯める手段であればよく、例えば、電気2重層コンデンサであっても良い。
【符号の説明】
【0068】
A 車両
B 給電ステーション
11 給電カプラ
12 インバータ
13 給電コントローラ
14 給電側光送受信器
16 E字形コア
17 給電コイル
21 受電カプラ
22 電池
23 充電装置
24 受電コントローラ
25 受電側光送受信器
26 電池監視装置
31 E字形コア
32 第1コイル
33,33A 第2コイル
37,37A 共振回路
38,38a,38b,38A 共振コンデンサ
39 スイッチング素子
40 ゼロクロス検出回路
41,41A 整流回路
43 電流検出回路
44 電圧検出回路
45 パルス発生回路
51 負荷
52 平滑回路

【特許請求の範囲】
【請求項1】
高周波電流が供給される1次側の誘導線路または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される第1コイルおよび第2コイルと、
前記第1コイルに並列に接続され、この第1コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、
前記共振コンデンサの両端を、接続状態と開放状態に切り換えるスイッチ手段と、
前記共振回路の出力電圧のゼロクロス点を検出するゼロクロス検出回路と、
前記第2コイルから出力される電流を整流して前記負荷へ出力する整流回路と、
前記整流回路より前記負荷へ出力される電流を検出する電流検出回路と、
前記負荷の電圧を検出する電圧検出回路と、
前記高周波電流の周波数あるいはその2倍の周波数をスイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路
を備え、
前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行すること
を特徴とする非接触給電設備の2次側受電回路。
【請求項2】
高周波電流が供給される1次側の誘導線路、または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される第1コイルおよび第2コイルと、
前記第1コイルに並列に接続され、この第1コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、
前記第2コイルの両端を、接続状態と開放状態に切り換えるスイッチ手段と、
前記第2コイルの出力電圧のゼロクロス点を検出するゼロクロス検出回路と、
前記第2コイルから出力される電流を整流して前記負荷へ出力する整流回路と、
前記整流回路から負荷へ出力される電流を検出する電流検出回路と、
前記負荷の電圧を検出する電圧検出回路と、
前記高周波電流の周波数あるいはその2倍の周波数をスイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路
を備え、
前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行すること
を特徴とする非接触給電設備の2次側受電回路。
【請求項3】
前記第1コイルと前記第2コイルの巻数比を、前記第1コイルに誘起される最大電圧と前記負荷の定格電圧に基づいて設定したこと
を特徴とする請求項1または請求項2に記載の非接触給電設備の2次側受電回路。
【請求項4】
高周波電流が供給される1次側の誘導線路、または1次側の給電コイルから非接触で給電され、負荷に給電する非接触給電設備の2次側受電回路であって、
同一の磁性体に巻かれ、前記1次側の誘導線路または1次側の給電コイルより起電力が誘起される受電コイルと、
前記受電コイルに並列に接続され、この受電コイルと前記高周波電流の周波数に共振する共振回路を形成する共振コンデンサと、
前記共振コンデンサの両端を、接続状態と開放状態に切り換えるスイッチ手段と、
前記共振回路の出力電圧のゼロクロス点を検出するゼロクロス検出回路と、
前記受電コイルから出力される電流を整流して前記負荷へ出力する整流回路と、
前記整流回路から負荷へ出力される電流を検出する電流検出回路と、
前記負荷の電圧を検出する電圧検出回路と、
前記高周波電流の周波数あるいはその2倍の周波数をスイッチング周波数とし、前記ゼロクロス検出回路により検出されるゼロクロス点に同期して前記スイッチ手段ヘ駆動パルスを出力し、この駆動パルスがオンのときにスイッチ手段を接続状態とし、オフのときにスイッチ手段を開放状態とするパルス発生回路
を備え、
前記パルス発生回路は、前記電流検出回路により検出された電流と予め設定された基準電流とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ出力される電流を前記基準電流に一定に制御する定電流制御機能と、前記電圧検出回路により検出された電圧と予め設定された基準電圧とを比較して、前記駆動パルスのパルス幅を制御することにより、前記負荷へ印加される電圧を前記基準電圧に一定に制御する定電圧制御機能とを有し、前記定電流制御機能または定電圧制御機能を実行すること
を特徴とする非接触給電設備の2次側受電回路。
【請求項5】
前記パルス発生回路は、前記定電流制御機能と前記定電圧制御機能とを切り換え可能としたこと
を特徴とする請求項1〜請求項4のいずれか1項に記載の非接触給電設備の2次側受電回路。
【請求項6】
前記負荷は蓄電手段であり、
前記パルス発生回路は、まず、前記定電流制御機能により、前記蓄電手段へ出力する電流を、前記蓄電手段の要求により予め設定された基準電流に制御し、前記電圧検出回路により検出される蓄電手段の電圧が前記蓄電手段の要求により予め設定された定格電圧に達すると、前記定電圧制御機能により、前記蓄電手段の電圧を前記定格電圧に制御すること
を特徴とする請求項1〜請求項4のいずれか1項に記載の非接触給電設備の2次側受電回路。
【請求項7】
前記負荷への給電開始時に前記共振回路を非共振状態とする給電開始回路を設けたこと
を特徴とする請求項1〜請求項6のいずれか1項に記載の非接触給電設備の2次側受電回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−139011(P2012−139011A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−289058(P2010−289058)
【出願日】平成22年12月27日(2010.12.27)
【出願人】(592007601)株式会社コンテック (19)
【Fターム(参考)】