説明

高電流密度粒子ビームシステム

【課題】短い作用距離、コンパクトなデザインで、試料の高速かつ高品質な撮像を可能にすると同時に、画像コントラストの増強をもたらす分析システム及び荷電粒子ビーム装置を提供する。
【解決手段】荷電粒子ビームの荷電粒子を偏向及びエネルギー選択する荷電粒子ユニットに関する。荷電粒子ビームを偏向及び焦点合わせするための二重焦点セクターユニット425,445及び電位を形成するためのエネルギーフィルタ460が設けられ、これにより荷電粒子ビームの荷電粒子は、荷電粒子のエネルギーに応じて電位鞍点において方向を転換される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査システム、試験システム、リソグラフィ等に適用される荷電粒子ビーム装置に関する。本発明はまた、上記装置の運転方法に関する。本発明は更に、例えば電子ビーム検査(EBI)のための高速エネルギーフィルタを持つ荷電粒子通路を有するアプリケーションに関する。特に、本発明は、荷電粒子ユニット、荷電粒子検出装置、荷電粒子ビーム装置、荷電粒子マルチビーム装置及びこれらの運転方法に関する。
【背景技術】
【0002】
荷電粒子ビーム装置は、半導体装置の製造工程における検査、リソグラフィ用の露光システム、検出装置、試験装置を含みつつもこれらに限定されることのない様々な産業分野において多くの機能を有する。かくして、この種の装置は、マイクロメーター及びナノメータースケールでの試料の構造化及び検査に高い要求がある。
【0003】
マイクロメーター及びナノメータースケールプロセス制御、検査あるいは構造化は、しばしば荷電粒子ビーム、例えば電子ビームで行われ、荷電粒子ビームは電子顕微鏡あるいは電子ビームパターン発生器のような荷電粒子ビーム装置において生成され、焦点が合わされる。荷電粒子ビームは、その短波長により例えば光子ビームに比べて優れた空間分解能を提供する。
【0004】
分解能に加えて、スループットがこの種の装置の利点である。大きな基板エリアをパターニングあるいは検査する場合には、例えば10cm/minより大きなスループットが望まれる。荷電粒子ビーム装置においては、スループットは、二次式的にイメージコントラストに基づいている。かくして、コントラスト増強が必要となる。
【0005】
通常、以下の検討においては、二次電子と後方散乱電子及びオージェ電子とを区別する必要性は無い。それゆえ、説明を簡単にするためにこれらの3つのタイプは共に”二次電子”と称する。
【0006】
高分解能電子光学システムは、対物レンズとウエハーとの間に短い作用距離を必要とする。従って、二次電子収集は対物レンズの上方のコラムの内側で行われる。従来の電子ビーム撮像システムに共通に見受けられる形態は、図1に概略的に示されている。コラム100はエミッター105、対物レンズ110、環状の二次電子検出器115を含み、試料125から作用距離120だけ離されている。エミッター105からの一次電子ビーム130は、環状の検出器115の開口135を通して試料125に向けられる。二次電子140が試料125から一次ビーム130を取り囲む幅広のコーン状に放射される。二次電子140のいくつかは、検出器115で収集され二次電子(SE)信号145が出力される。
【0007】
このようなアプローチは、二次電子の一部が開口130を通して戻ってエミッター105に向かい、従って検出器115の実際の検出領域を外れるという制約がある。これは特に、撮像条件が、深層構造(例えばイン−プロセス半導体ウエハーにおけるコンタクトホール)の底部から二次電子を抽出するためにコラムと試料との間に電界を使用することを必要とする時に当てはまる。
【0008】
このような形態の更なる制約は、一次電子ビームの撮像条件が二次電子に影響を及ぼすこと及びその逆もあることである。例えば、もしエネルギーフィルタを必要とする場合、二次電子は(例えば減速電極の使用を通して)一次ビーム光学系に有害な影響を及ぼすと思われる。
【発明の開示】
【発明が解決しようとする課題】
【0009】
短い作用距離でコンパクトなデザインで済む改良された粒子ビームコラムが、例えば試料の高速かつ高品質での撮像を可能にするために望まれる。これによって、コントラスト増強をもたらす分析システム及び荷電粒子ビーム装置を提供しようとするものである。
【課題を解決するための手段】
【0010】
本発明は改良された荷電粒子システムを提供する。本発明の態様によれば、独立請求項1による荷電粒子ユニット、請求項11による荷電粒子検出装置、請求項16による荷電粒子ビーム装置、請求項17による荷電粒子マルチビーム装置、及び独立請求項24による二次荷電粒子を検出する方法が提供される。
【0011】
更に、本発明の利点、構成、態様及び詳細は、従属請求項、説明及び図面により明らかである。
【0012】
本発明の1つの態様によれば、荷電粒子ビームの荷電粒子を偏向及びエネルギー選択するための荷電粒子ユニットが提供される。本ユニットは、荷電粒子ビームをエネルギーフィルタへ偏向及び焦点合わせするための二重焦点セクターユニットを含む。エネルギーフィルタは、電位ヒル(hill)(電位鞍点)(potential saddle)を形成し、これにより荷電粒子ビームの荷電粒子は、そのエネルギーに応じて電位ヒル(電位鞍点)において方向が転換される。
【0013】
二重焦点セクターユニットによる焦点合わせ動作により、荷電粒子の発散が低減される。これにより、荷電粒子は、他のユニット、例えば検出器へと素早くかつ効率的にガイドされる。これによって達成された高透明性(high transparency)は、撮像、検査、試験処理等のスピードアップに有利となる。
【0014】
他の態様によれば、第1の大きさに焦点合わせをするためのセクター及び四極ユニット、または第2の方向に焦点合わせをするためのシリンダーレンズの形態、あるいは半球状セクターを含む二重焦点セクターユニットの形態、もしくは追加のレンズユニットを組合わせた上記セクターの1つの形態で二重焦点セクターユニットが提供される。
【0015】
本発明の他の態様によれば、エネルギーフィルタは、荷電粒子ビームを通過させるための1つの開口を有するバイアスされた電極を持つ。開口は、バイアスされたシリンダーの形態で提供されても良い。
【0016】
1つの開口を通過する荷電粒子の多くはグリッドライン等を回避する。これにより、システムの透明性が増加する。
【0017】
本発明の態様によれば、二次荷電粒子用の検出装置のために偏向及びフィルタリングユニットが使用される。
【0018】
本発明の更に他の態様によれば、試料から放射された二次荷電粒子は、加速ユニットにより二重焦点セクターへ向けて加速される。これにより、収集効率、透明性が撮像、検査、試験のスピードアップのために更に増加される。本加速ユニットは、荷電粒子ビーム装置のバイアスされた要素あるいはコラムにおける電極であり、典型的には対物レンズの一部、コラムハウジング等である。これによって、更なるオプションによれば、試料に隣接して近接電極が設けられても良い。このような電極は、二次粒子の放射時に加速ユニットの影響を低減あるいは制御することができる。
【0019】
上記の加速ユニットは、ウエハー電位と比較してバイアスされる。つまり、ウエハーが接地電位にある時にはある電位にバイアスされるか、ウエハーが異なった電位にバイアスされている時には接地されるかのいずれでも良く、あるいは双方が所望の電位差を得るためにバイアスされることもできる。
【0020】
本発明の更に他の態様によれば、偏向及びエネルギー選択ユニット、検出装置の少なくとも一方は、荷電粒子ビーム装置あるいはマルチ荷電粒子ビーム装置に用いられる。
【0021】
本発明の他の態様によれば、荷電粒子検出装置が提供される。本装置は、一次荷電粒子ビームの衝突時に試料から放射される荷電粒子を検出するものである。一次荷電粒子ビームは焦点要素により試料上に焦点合わせされる。本装置は、試料から放射された二次荷電粒子ビームの発散を低減するために焦点要素の焦点エリア外に配置された焦点ユニットと、二次荷電粒子ビームの一部を検出器から遠ざけるように方向を変えるためのフィルタとを含み、これにより二次荷電粒子の一部は選択可能なエネルギーしきい値より低いエネルギーを持つ荷電粒子を含む。検出器は二次荷電粒子ビームの入射に応じた検出信号を出力し、これにより、フィルタは、荷電粒子ビームに作用する単一の電位鞍点を形成するのに適している。
【0022】
これによって、検出効率が向上する。以上の結果、高速荷電粒子装置が提供される。
【0023】
更に他の態様によれば、本装置が提供されることにより、焦点ユニットはフィルタ内に二次荷電粒子のビームを焦点合わせするようにされる。これによって、ビーム発散のフィルタ依存性が低減され、フィルタの透明性が更に増加する。
【0024】
他の態様によれば、一次荷電粒子ビームからの二次荷電粒子ビームの分離角度を増加させるための偏向角増加ユニットを更に含む装置が提供される。偏向角増加ユニットはセクターの形態で提供され、セクターは二次荷電粒子ビームを偏向の平面上で焦点合わせする。代わりに、偏向角増加ユニットは半球状セクターの形態で提供されても良く、このセクターは互いに直角の少なくとも2つの平面において二次荷電粒子ビームを焦点合わせする。更に、セクターは、焦点ユニットの(第1の)一部として用いることができる。
【0025】
他の態様によれば、上記の検出装置の1つを含む荷電粒子ビーム装置、荷電粒子マルチビーム装置が提供される。更に、二次荷電粒子ビームを検出するための方法が提供される。
【0026】
本発明はまた、説明される方法ステップの各々を実行するための装置部品を含み、開示される方法を実行するための装置を指向する。これらの方法ステップは、ハードウエア要素、適切なソフトウエアによるコンピュータプログラム、これら2つの如何なる組合わせ、あるいは他のどのような方法で実行されても良い。
【0027】
本発明の上記及び他のより詳細な態様のいくつかが以下の記述及び図面を参照して説明される。
【発明を実施するための最良の形態】
【0028】
本出願の権利範囲を制限することなく、以下では、荷電粒子ビーム装置及びその要素は、電子ビーム装置及びその要素として参照される。これにより、電子ビームは、特に検査あるいはリソグラフィ用に用いられる。本発明は更に、試料イメージを得るために荷電粒子、他の二次荷電粒子、後方散乱荷電粒子の少なくとも1つの発生源を用いる装置及びその要素に適用され得る。
【0029】
本発明は、高い検出効率のみならず高プローブ電流を有し、そしてその結果、高検出速度を有する粒子ビーム検査システムに関する。特に、本発明は、電子ビームシステムに関する。
【0030】
以下の図面の説明では、同じ参照番号は同じ要素を示す。個々の実施例については差異のみを説明する。
【0031】
通常、更なるエネルギー選択ステップのための荷電粒子ビームの焦点合わせを示す時には、荷電粒子のビームは、フィルタリングステップが増加した透明性で行われるように発散が低減される。これは、荷電粒子が発散あるいは荷電粒子のブロッキングに起因して失われることを減少させるために、ビームの荷電粒子がエネルギー選択ユニットに向けて焦点合わせされるかあるいは少なくとも収束されることを意味する。
【0032】
収集効率を向上させること、エネルギーフィルタあるいはSE光学系増強の使用を許容することの少なくとも一方のために、一次電子ビーム及び二次電子ビームは分離されるべきである。一旦分離されると、二次電子ビームのための焦点及びフィルタリング光学系は一次電子ビームに作用することなく工夫することができる。
【0033】
一次電子ビームと二次電子ビームとを分離するために基本的に2つの方法があり、2つの方法とも、磁界を横切る移動電子に作用する力が電子の速度に対して独立しているという利点を持つ。これは、ローレンツ力の法則で説明される基本原理である。
【0034】
一次電子及び二次電子は実質上反対方向に移動するので、2つのビームに作用する力は、横向きの磁界を通過する時には反対方向である。
【0035】
1つの使用可能なビーム分離器はウィーンフィルタである。本発明の実施例によるウィーンフィルタレンジメントは図2aに概略的に示されている。エミッター205は一次電子ビーム210を放射し、一次電子ビーム210はウィーンタイプ運動量分散フィルタ215を通過し、対物レンズ220により試料225上に焦点合わせされる。二次電子ビーム230は、一次電子ビーム210とは反対向きに対物レンズ200及びウィーンタイプフィルタ215を通過する。ウィーンフィルタは、一次電子ビーム210がウィーンフィルタ215による影響を受けずに通過するようにされ、二次電子ビーム230はウィーンフィルタ215を通過する間に曲げられ、その結果、二次電子ビームは一次電子ビーム210に関して傾斜したコラムを出る。一旦一次電子ビームから分離されると、二次電子は、例えば二次電子光学系、フィルタ235、荷電粒子を偏向及びエネルギー選択する荷電粒子ユニットにより、一次電子ビームに何の作用もすること無く、焦点合わせ及びフィルタリングされる。電子検出器240は、二次電子を検出し、二次電子信号245を出力する。一次ビーム及び二次ビームは、試料平面の上方で同じ物理空間を占有するが、便宜上、図2aでは分離した矢印で示されている。
【0036】
ウィーンフィルタは交差した電界及び磁界を使用し、これらの振幅は、一次ビームに作用する正味の力と二次ビームに作用する偏向(横方向)力がゼロであるように調整される。
【0037】
ウィーンフィルタ215の使用の概略は図2b、図2cに示される。ウィーンフィルタ内の電界及び磁界は、図2bにおいて一次荷電粒子ビームが影響を受けないように調整される。逆に、図2cにおいて電界及び磁界は、二次荷電粒子ビームが影響を受けないように調整される。両方の例は一次ビームと二次ビームの分離を用いている。このようにして、二次荷電粒子のビームに対し、一次荷電粒子ビームの影響を受けること無く焦点合わせあるいはフィルタリングが適用され得る。更なるオプション(図示せず)によれば、双方のビームをわずかに偏向することができ、これによりビーム分離が達成される。
【0038】
一次ビームと二次ビームを分離する他の方法は、電界を使用せずに磁気偏向を用いることである。図3aは、本発明の実施例による磁気ビーム分離器光学系の配置を概略的に示す。エミッター305は一次電子ビーム310を生成し、一次電子ビーム310はそれが第2の磁気偏向器320にある角度で入射するように最初に第1の磁気偏向器315によって偏向される。一次ビームに対する磁気ビーム分離器の作用を小さく維持するために、第1の磁気偏向器315における偏向角度は10度より小さく維持されるべきである。一次電子ビームは第2の磁気偏向器320を通過し、試料330に向けられる。二次電子ビーム335は、一次ビーム320と二次ビーム335のトータルの分離角度αが第1の磁気偏向器315における一次ビームの偏向角度の約2倍(α=15〜20度)になるように第2の磁気偏向器320によって偏向される。この分離は、一次ビーム310から機械的に分離されると共に二次ビーム335を偏向させるのに十分な強さにされるべきセクター340、ビームベンダーにとって十分であり、二次電子は大きな角度、つまり一次ビームに対して30〜100度で移動する。
【0039】
一般的に、セクターは、ここで開示される実施例の組合わせで良く、静電型、磁界型、あるいは静電−磁界複合型のいずれでも良い。静電型セクターに必要なスペースは、磁気部分を含むセクターに必要なスペースより小さいので、通常は静電型セクターが使用される。
【0040】
既に少なくともある大きさに発散の低減(焦点合わせ)が行われているセクター340に続くのは二次電子光学系345のセットであり、ここで二次ビームを付加的に焦点合わせ及びフィルタリングする。この形態は、シフトされたコラム、つまり、一次ビーム光学系の上部(すなわち、エミッター305及びパート1である磁気偏向器315)が下部(すなわち、パート2である磁気偏向器320及び対物レンズ325)から横方向にシフトされている点で注目に値する。このようにして、エミッター305は、試料330の視線から外れる。二次電子光学系及びフィルタ345を通過した後、二次電子ビーム335は電子検出器350で検出され、二次電子信号355が出力される。
【0041】
大きな角度でのビーム分離を達成するために、ビーム分離器の後にビームベンダーあるいはセクターを使用することができる。一次ビームは完全にシールドされ、それ故、セクターの電界の影響を受けない。セクター340は、静電型、磁界型、あるいはこれらの複合型のいずれでも使用することができる。スペースが考慮される場合には静電型ビームベンダーが使用される。
【0042】
図3aは、一次荷電粒子ビーム及び二次荷電粒子ビームに作用する磁気偏向器で実現される特別な実施例を示す。図3b、図3cは一般的に実現可能な適用例を概略的に示す。ビーム通路は他の実施例の細部に組合わされても良い。
【0043】
ここでは磁気偏向器320が示されている。図3bにおいて、一次荷電粒子ビームは限定された入射角度で磁気偏向器に入射し、試料に向けて偏向される。試料から放射される二次電子のビームは、その軌道上を光学コラムへ向かうべく磁気偏向器に入射し、一次荷電粒子ビームと二次荷電粒子ビームとが分離されるように偏向される。磁気偏向器320は、一次荷電粒子ビームと二次荷電粒子ビームの分離ユニットとして動作する。図3bに示される通常の一般的な使用形態は、図3c、図3dに示される、異なった実施例にも適用され得る。図3cにおいて、電子を出射するガン305は、試料への衝突時の電子方向に関して傾けられている。出射された電子と試料に衝突する電子について平行な一次電子ビーム方向が要求される場合には、追加の磁気偏向器315は、磁気偏向器320により誘起されたビームの傾きを補正するために使用されても良い。これらの概略的なビーム通路は、荷電粒子光学系の更なる細部を示す他のどの実施例に組合わされても良い。
【0044】
更なる実施例について図4a、図4bを参照して説明する。図4aはセクター425を示す。セクター425は、電子ビームを曲げるように作用する負に帯電されたUベンド435と正に帯電されたUベンド440とを有する。オプションとして一対のセクターサイドプレートを備えることができる。これにより、電子ビームは、ある大きさに焦点合わせされると共に、付加的に、高速検出にインパクトのあるフライト効果の時間を回避すべく、高エネルギーに維持される。第2の大きさの焦点合わせは、四極要素445において起こる。これにより、セクター425及び四極要素は、二重焦点セクターユニットを形成する。更に、二重焦点合わせを達成するために四極要素に代えてシリンダーレンズを用いることができる。
【0045】
電子ビームはシリンダーの形態で備えられたフィルタ460に入射する。シリンダー内ではシリンダーへのバイアスによる電位鞍点が加えられている。十分大きなエネルギーを有する電子は電位鞍点(電位ヒル)を通過することができる。他の電子は後方に方向転換される。更に、すべての電子は同じ電位鞍点の影響を受ける。すべての電子が同じ鞍点電位の影響を受けるようにするために、シリンダーの開口は定められた十分に大きなサイズを必要とする。これにより、フィルタの透明性が増加する。電子がグリッドへ衝突することにより失われることは無く、不十分な焦点合わせにより失われることはほとんど無い。
【0046】
図4bの更なる実施例においては、半球状のセクター470が使用される。半球形状の観点から、セクターに入射する電子ビームは2つのディメンジョンに焦点合わせされる。このようにして、二重焦点セクターユニット470のために追加の焦点ユニットは必要としない。電子は、高い透明性でフィルタ460においてエネルギー選択がなされ得る。
【0047】
更に他の実施例(図示せず)によれば、二重焦点セクターユニット(図4aにおける425、445あるいは図4bにおける470)による焦点合わせは、追加の焦点ユニットでアシストされ得る。このようにして、二重焦点セクターユニットは、追加のレンズ、例えばアインツェルレンズを含んでも良い。この追加のレンズは、セクターの焦点をフィルタの位置に対応する位置へシフトさせるために適用されても良い。
【0048】
更に他の態様について、1つの実施例による検出光学系を示す図4cを参照して説明する。図4cは、偏向角増加ユニットとして動作するセクター425を含む。光軸からある角度、例えば3〜15度分離されている二次電子のビームは、検出器465へ向けて更に偏向される。
【0049】
通常、静電型ビームベンダーは、シリンダー、半球状のいずれにもすることができる。シリンダー型は、ビームが曲がるにつれて二次電子を1つの平面上に焦点合わせし、他には行かないようにする。半球状のビームベンダーは、二次ビームを2つの平面に焦点合わせする。シリンダー型セクターは、横断面への焦点合わせ、半球状のセクターと同じ焦点特性を得ることを達成するためにバイアスされたサイドプレートを使用することができる。
【0050】
図4cは、この種のシリンダー型セクターを概略的に示している。サイドプレート(図示せず)は、本図に関して言えば、セクター電極435と440との間のギャップの前及び後方に配置され得る。
【0051】
二次電子ビーム405は対物レンズ415の開口410及びプレート420の開口を通過し、セクター425に入射する。セクター425は、二次電子ビームを曲げるように作用する負に帯電されたUベンド435と正に帯電されたUベンド440を有する。更に、一対のセクターサイドプレートが設けられる。二次電子ビームはそれからSE整列四極要素445を通過する間に整列され、SE焦点レンズ450を通過する間に焦点合わせされる。二次電子ビーム405はそれから接地されたプレート455及びSEフィルタ460の開口を通過して電子検出器465に入射する。
【0052】
サイドプレートを持たないシリンダー型セクターの欠点は、SEビームを1つの平面(紙面の上下)に焦点合わせし、他の面(紙面の内外)にはしないという点にある。この焦点合わせの欠点は、シリンダー型セクターのサイドに電極を配置して平面上における焦点合わせ作用を強化することにより補償することができる。セクターにより焦点合わせ作用を均一にするための動機付けには2つある。その1つは高速検出器に小さいスポットを提供することであり、他の1つは、フィルタが二次ビームのエネルギー及び方向の両方に高感度であるので良好なエネルギーフィルタリングを可能にすることである。
【0053】
かくして、フィルタは二次電子の焦点近傍に配置されるべきである。
【0054】
本願で開示されている実施例のために備えられるフィルタ(エネルギー選択フィルタ)は以下のようにして形成される。高い透明性及び二次粒子の高い収集効率を提供するためには高電流密度装置であることが望ましい。このようにして、電子の損失が低減されるべきである。単一の開口を持つフィルタを設けることは電子ビームにおけるほとんどの電子がフィルタを通過する可能性を増加させる。そうでなければ、異なる開口を橋渡ししているハードウエア要素間で電子の損失が生じるかもしれない。
【0055】
図に示されているシリンダー状(あるいは開口状)のフィルタは、フィルタにおけるビーム通路に応じて変化する電位鞍点を形成する。これにより、円形のフットプリントを持つシリンダーのゆえに、依存性は放射方向、つまり光軸からの距離のみである。二次式のフットプリント、五角形のフットプリントあるいは他の形状を持つシリンダーのゆえに、電位形状は、アジマス座標と同様に軸からの距離で変化する。
【0056】
にもかかわらず、上記のシステムは、鞍点の電位形状を有し、あるしきい値より低い粒子エネルギーを持つビームの一部を反射する。
【0057】
シリンダーが長いほどしきい値電位はフィルタに印加される電位に近くなる。短いフィルタの場合、電位鞍点は印加されたバイアスから変化しても良い。しかしながら、スペースの必要性がこれを正当化すると思われる。加えて、フィルタにおける平均粒子速度は長いフィルタのゆえに減少する。かくして、高速の必要性の観点から、長さは制約される。
【0058】
一例として、フィルタの長さは、200μm〜20mmの範囲内にされる。ビームが通過する開口は200μm〜10mmの範囲である。
【0059】
図5は、半球状のセクターを持つ磁気タイプビーム分離器を有する、本発明の実施例による光学システムの破断図を示す。半球状のセクターが二次電子ビームを2つの平面に焦点合わせするので、本実施例ではサイドプレートを必要としない。
【0060】
図5を参照して、エミッター502からの一次電子ビームは、第1の磁気ビーム分離器偏向コイル505を通過する間に曲げられる(方向転換される)。一次電子ビーム500はプレート510の開口を通過し、第2の磁気ビーム分離器偏向コイルを通過する間に再び曲げられる(方向転換される)。一次電子ビーム500は、半導体ウエハー530のような試料に衝突するために対物レンズ525の開口520を通過し続ける。二次電子ビーム535は、対物レンズ525の開口520を通過し、第2の磁気ビーム分離器偏向コイル515を通過する間に曲げられる(方向転換される)。プレート510の開口を通過すると、二次電子ビーム535は半球状のセクター540に入射する。
【0061】
セクターに続いて、二次電子ビームを電子検出器565の動作エリアにおいて小さなスポット(例えば直径4mm)に焦点合わせすると共に、二次電子ビームのエネルギーフィルタリングを可能にするために、焦点及びフィルタリング要素のセットがある。焦点合わせは、磁気レンズ、静電レンズのいずれでも行うことができる。静電レンズはよりコンパクトなサイズ及び低減された複雑さを提供する。フィルタリングは1つ以上の静電レンズを必要とするが、これは1つは二次ビームのエネルギーを変化させなければならないからである。
【0062】
図5の実施例においては、焦点レンズは、焦点電極を囲んでいる2つのプレート(SE配列四極545及びプレート555)を持つ簡単な静電レンズであり、これによりレンズ550を形成する。二次電子フィルタ560は、試料ウエハーと実質上同じ電位にバイアスされている長いシリンダーである。
【0063】
レンズ550は、液浸系レンズあるいはアインツェルレンズを使用することができる。ウエハーがバイアスされる場合にはプレート545、555は接地されても良い。
【0064】
上記の実施例では、四極545とプレート555はレンズ550に一体化されている。通常、本願において示されているすべての実施例に関しては、四極、プレートの少なくとも一方は独立してレンズに設けられることができる。これにより、適切な数のレンズ電極が設けられ、付加的に、四極545及びプレート555の電極が設けられる。更に、プレート555の代わりに四極を設けることができる。この第2の四極は二次電子ビームの付加的な整列を許容する。
【0065】
通常、二次電子ビームを焦点合わせするレンズは、分離ユニット(ウィーンフィルタ、磁気偏向器の少なくとも一方)と検出器との間に配置される。典型的には、それは偏向角増加ユニット(分離ユニット)とフィルタとの間に配置される。焦点レンズは、静電型(上記のアインツェルレンズ)、磁気型、静電−磁気複合型のいずれも用いることができる。典型的には、スペースの理由により、二次電子を焦点合わせするために静電レンズが用いられる。更に、アインツェルレンズあるいは液浸レンズが二次電子ビームを焦点合わせする焦点ユニットとして用いることができる。
【0066】
検出器において小さなスポットとするために二次電子ビーム535を焦点合わせすることは、高速撮像を可能にする。検出器のタイプは、例えばピン(p−i−n)ダイオードである。この種の検出器は、高電流電子ビームシステム用に優れており、それは、これらが小さい場合には非常に高い量子効率(1に近い)及び優れた応答時間を有するからである。応答時間はデバイスのキャパシタンスに比例し、キャパシタンスは面積に比例する。したがって、面積は小さくされるべきである。二次電子ビームの焦点合わせは利点を持つ。典型的には、4〜5mm径の検出器動作領域が600MPPS近傍での撮像速度(imaging rate)に適している。
【0067】
ピンダイオードを含む実施例について説明してきたが、他の検出器が用いられても良い。ここに開示されるすべての実施例のために、高速シンチレーション検出器あるいはピンダイオードが用いられても良い。検出器は、典型的には、偏向角増加ユニット、つまり、例えば上記の図面におけるセクターの後方に配置される。シンチレーション検出器の場合には、二次電子ビームは、検出器では焦点合わせされない。これにより、その寿命が増加し、コンタミネーションが減少する。
【0068】
通常の撮像モード(非電圧コントラスト)での焦点要素の目的は、検出器において小さなスポットを形成することにある。このモードでは、フィルタ及び焦点電極がSEビーム焦点合わせのために使用され得る。
【0069】
電圧コントラストモードでは、フィルタ電極560は、ウエハー530の平面において設定(ユーザが選択可能な)された初期エネルギーレベルより低い二次電子を排除するハイパスフィルタとして作用する。二次電子はセクター540を出て、フィルタ電極電界の内側にクロスオーバーが形成されるように減速静電レンズ(SE焦点レンズ)を通して焦点合わせされる。フィルタ電極560は、鞍点電位Uを形成する電位Uにバイアスされる。これらの電位は、通常、ウエハーに関しての相対電位である。それ故、試料から放射されるUを越える電位を持つ電子がフィルタを通過することができ、Uより低い(あるいは等しい)電位を持つ電子はフィルタを通過することができず、排除される。
【0070】
電圧コントラスト撮像のための典型的なアプリケーションは、ウエハー上でのデバイスにおけるコンタクトホールで満足されるかあるいは満足されない。検査されるべきデバイスのこの層は、絶縁された導体コンタクトを持つ誘電体材料のフィールドから成り、導体コンタクトは、コンタクトの下にバルクシリコンか大きなキャパシタンスメタルのいずれかのために通路を持つ。電子ビームの検査において好結果を示す1つの電圧コントラスト技術は、誘電体材料を電子ビームで5〜50Vの範囲の電圧まで正に充電することである。それ故、充電された誘電体から出射する二次電子は、検出器信号に対してエスケープ及び寄与するために表面充電電位より大きな初期エネルギーを持たなければならない。良好なコンタクトから出射される二次電子は、基本的には接地された基板から出射され、2eVに近いピークで接地されたメタル材料と連携した典型的な二次エネルギー分布を持つ。もし、5eV(例えば)より高い初期エネルギーを持つすべての電子が検出されるように、二次信号をフィルタリングすれば、充電された誘電体を示す画像における領域は暗くなると思われ、良好なコンタクトは明るくなると思われる。
【0071】
図6は、二次電子光学系及び図5の配置のエネルギーフィルタ機能を示すフィルタ電極形態の概略を示す。
【0072】
試料から放出される二次電子の抽出は、近接電極532で制御される。その後、対物レンズのバイアスされた部分、例えばバイアスされたポールピース、あるいはコラムハウジングのバイアスされた部分または更なる加速電極(図示せず)のような加速ユニットは、改良された高速検出のための電子を加速する。この加速は本願において示されたすべての実施例に含まれることが可能であり、二次粒子が決められた加速フィールドにおいて加速されれば収集効率が増加されるという利点を持つ。近接電極のフィールドは、撮像条件の制御の特定の適用により調整され得る。その後、荷電粒子は加速ユニットにより、例えば5〜12keVで加速される。
【0073】
上述の加速ユニットはウエハー電位に関連してバイアスされる。つまり、ウエハーが接地電位にある間、加速ユニットはある電位にバイアスされることができるし、ウエハーが異なった電位にバイアスされている間、接地されることもでき、あるいは双方が所望の電位差を得るためにバイアスされることもできる。
【0074】
二次電子はセクター540を出る。それらは次に、アインツェルレンズ550(接地板545、555及び焦点電極)により電子エネルギーに対して正味の効果の無い解像度で焦点合わせされ、SEビームはそれが入射した時と同じエネルギーを持ってアインツェルレンズを出る。ビームは続いて、ウエハーとほぼ同じ電位にバイアスされているフィルタ電極560を通過する。フィルタ電極のバイアスは、図示されているように電極の中心に鞍点電界を形成するように選択され、つまり、セクター540通過後の二次電子運動エネルギーはアインツェルレンズを通して実質上一定のままであり、エネルギーフィルタ560の中心で最小に低下し、検出器565の前面に向かって再び上昇する。鞍点電界強度は、フィルタ強度を決定する。鞍点電位がウエハーより更に負側であったならば、電子は静電ミラー条件で回転すると思われる。電圧コントラストアプリケーションは、この鞍点電界強度をあるレベル、つまり二次電子をウエハー表面の正に帯電された領域から排除するレベルに設定することを必要とする。
【0075】
加えて、非電圧コントラストアプリケーションの場合、フィルタ電極は、検出器でのスポットサイズを制御する付加的な焦点電極として用いることができる。上記のように、ピンダイオードの場合、より小さなスポットが検出速度を増加させるために典型的であるのに対し、液浸検出器の場合にはより大きなスポットが寿命を長くし、コンタミネーションを低減するために典型的である。
【0076】
ここで示されるすべての実施例のために、一般的にフィルタを分離ユニットと検出器との間に配置することができる。これにより、付加的な偏向角(分離角)増加ユニットが存在するのであれば、フィルタは偏向角増加ユニットと検出器との間に配置されても良い。
【0077】
改良されたフィルタリングを提供するためには、フィルタは、1つの二次電子焦点ユニットと検出器との間に配置されるべきである。
【0078】
電圧コントラスト効果は、MEBS電子−光学モデリングソフトウエアの照射線軌跡を用いて図7、図8に示されている。
【0079】
図7は、非電圧コントラストの場合の図5、図6の二次電子光学要素を通る照射線軌跡を示す。この例では、SE光学モジュールに入射したすべての電子は、直径7mm未満のスポット以内で検出器565に到達する。
【0080】
図8は、電圧コントラストの場合の図5、図6の二次電子光学要素を通る照射線軌跡を示す。この場合、フィルタ電極560は、ウエハー電位より低い6Vの鞍点電位を提供すべくバイアスされる。約6eVの初期エネルギーを持つ二次電子は、フィルタで排除され、検出器には到達しない。6eVを越える初期エネルギーを持つ二次電子が検出器に到達する。6Vの鞍点電位は、ウエハー電位より低い、約20Vのフィルタ電極チューブのバイアスに対応する。
【0081】
図9は、本発明の実施例によるウエハー検査システム900の概略を示し、これは図5〜図8を参照して説明した電子−光学サブシステムを用いている。電子ビームコラム902は、電子ビーム源904、磁気ビーム分離器906、及びx−yステージ915上で搬送されるウエハー912に一次ビーム910を照射するための対物レンズ908を含む。ウエハー912からの二次電子は、ビーム分離器906、セクター914、及び焦点・フィルタリング要素916を経由して検出器918に至る。検出器918からの信号は、撮像電子光学部920に供給される。
【0082】
ウエハー912及びステージ915は絶縁フレーム922上に支持されたバキュームチャンバー922内に収容されている。バキュームポンプ926は、動作中、チャンバー922及びコラム902内を適切なバキューム状態に維持する。ウエハー912は、ウエハーハンドラーサブシステム928によりチャンバー922に出し入れされる。
【0083】
ウエハー検査システム900は、例えばコントロールプロセッサ、イメージプロセッサ、及びイメージメモリを有するコンピュータシステム930で制御される。コンピュータシステム930は、キーボードやポインテイングデバイスあるいは他の人的操作による適切な装置の如き入出力装置934を有するワークステーション932及びディスプレイ936と通信し合う。コントロールプロセッサ930は、一次電子ビーム910を制御するPEビーム制御部940、検出器918に適切な二次電子ビームを提供するためにコラム902の焦点・フィルタリング要素を制御するSE光学系制御部942、ウエハー912への一次ビーム910の照射を制御するPEアライメント・偏向制御部944、バキュームポンプ926を制御するためのバキュームポンプ制御部946及びハンドラー制御部952のような制御回路とバス938を介して通信する。コントロールプロセッサ930はまた、撮像電子回路部920からバス938を介して撮像データを、記憶、処理及びイメージ分析のために受信する。シングルコラムシステムに比べてより大きなスループットを提供するためには、マルチコラムシステムが考慮されても良い。図10は、ウエハー912の複数領域を同時に検査することを可能にするe−ビームコラム1010、1015、1020の列1005を有するマルチコラムe−ビームウエハー検査システム1000を概略的に示す。
【0084】
図10には3つのサブユニットを含むマルチコラム装置が示されている。当業者であれば理解できるように、他の適切な数を適用することができる。例えば、5、10、あるいは15の電子ビームを配列することができる。
【0085】
更に、互いに隣接する複数の列に配置することができる。これにより、試料へのアレイ状の電子ビーム照射が実現される。分離された荷電粒子ビームのための十分なスペースを確保するために、例えば2つの列を互いに隣接するように配置することができる。スペース上の制約が無い場合には、3、5あるいは他の適切な数の列が適用されても良い。
【0086】
複数のサブコラムを直線状、アレイ状あるいは他のパターンに配置するために、シングルビームコラムの場合のようにシングル電子ビームに個別に作用する幾つかのコンポーネントが組合わされても良い。かくして、1つのエミッターアレイがすべての電子ビームを放射するか、あるいは1つの対物レンズがマルチビーム装置のすべてのビームを焦点合わせする。それらの例を以下に示す。
【0087】
対物レンズに関しては、例えば本願と同じ出願人によるヨーロッパ出願Nr.02 02 8345に開示されているようなマルチビームレンズを提供することが適切であると思われる。これにより、1つの励磁コイルを有する複合静電磁気レンズが用いられる。一例が図11に示されている。
【0088】
以下の要素が図11に見られる。光学システム10は磁気レンズ要素を含む。この磁気レンズ要素は励磁コイル15を含む。このコイルの直径は約100mm〜1000mmであり、100mm〜400mmが好ましい。これにより、コイル直径は、通常、光学システムにより焦点合わせされた電子ビーム12の数に基づく。
【0089】
更に、上部ポールピース16及び下部ポールピース17がある。これらのポールピースは、パーマロイあるいはμメタルのような磁気導電材料で作られるのが好ましい。磁気レンズ要素に加えて、静電レンズ要素がある。レンズシステムは、複数の電子ビーム12用の複数のサブレンズとして説明される。図11の実施例においては、静電レンズ要素の静電液浸サブレンズの各々は、上部電極18及び下部電極19を含む。これらの電極は、非磁性導電材料で作られるべきである。静電要素及び磁気要素に設けられた開口14は、各電子ビーム12が異なる開口を用いる光学システムを通過することができるような方法でオーバーラップする。
【0090】
光学システム10の焦点合わせを制御するために、上部電極18用のコントローラ7、下部電極8用のコントローラ8、及び励磁コイル用のコントローラ9が備えられる。
【0091】
図11の光学システム10の機能を以下に説明する。光軸11を持つ複数の電子ビーム12は例えば試料13上に焦点合わせされる。焦点合わせ磁界が励磁コイル15によりポールピースに誘導される。コントローラ9は励磁コイル15を駆動する。励磁コイルに近接して冷却ユニット(図示せず)が配置され得る。ポールピースは、焦点合わせ磁界を電子ビームのための開口14に導く。これらの開口は、上部ポールピース16及び下部ポールピース17に設けられる。開口14内における焦点磁界により、電子ビームが焦点合わせされる。静電レンズにより電子ビーム12を更に焦点合わせするために、第1の電極18及び第2の電極19が設けられる。コントローラ7、8により電極18、19に異なる電位がそれぞれ印加される。
【0092】
他の手段によれば、コントローラ7、8は、サブレンズ用の共通の上部あるいは下部電極のいずれにも接続することができ、あるいはこれらは少なくとも複数の電極あるいは電極のセットを独立して制御することができる。
【0093】
図1に見ることができように、光学システム10は電子ビーム12を試料13に焦点合わせする。光学システム10が対物レンズとして用いられるのであれば、荷電粒子は試料に衝突する前に減速されるように、電極18、19に、それぞれ電位が与えられるのが好ましい。かくして、電子及び他の負の荷電粒子のために、上部電極18は、下部電極19に比べてより正の電位にされるべきである。
【0094】
図11に示される開口は、異なったパターンで配置され得る。その例が図12a〜図12cに示されている。上部ポールピースの領域16aは円形に描かれている。下部ポールピースはこの図では上部ポールピースの下に配置されている。ポールピースは励磁コイル15aで囲まれている。励磁コイルは磁界を発生する。ポールピースは、磁界を開口14に導く。更に、電極18aが示されている。電極に設けられた、光学システムを通る開口は、ポールピースにおける開口とオーバーラップする。
【0095】
開口14の1つを通過する電子ビームは、静電レンズの電界及び磁気レンズの磁界により焦点合わせされる。これにより、レンズの磁気及び静電要素は対称な焦点合わせ場を可能にするように配置されるのが好ましい。
【0096】
図12aでは、開口14は一列に設けられている。かくして、各開口14の少なくとも2つの方向(図12aの下側及び上側)には隣接する開口は存在しない。それゆえ、磁界は直接開口に導かれる。これらの2つの側に関しては、他の要素あるいは開口の干渉は存在しない。
【0097】
図12bは、他の実施例を示している。ここでは、2列の開口が設けられている。一般的には、複数列の開口はm×nマトリクスを形成する。上の列は下の列の存在による影響を受けると思われ、逆もまた同様である。かくして、付加的な開口32を追加することが好ましいと思われる。これらの付加的な開口32は、電子ビームをじゃましたり、焦点合わせしたりするためには用いられない。しかしながら、各開口14が隣接した同じような影響エリアを持つので、開口14に導かれた磁界の均一性が増加される。付加的な開口32(”ダミー”開口)は、図12a〜図12cに示されたすべての実施例に使用され得る。ダミー開口の他の幾何学的配置及びサイズは本発明の権利範囲内である。
【0098】
図12cは、光学システムの更に他の実施例を示す。図12cの開口14は、ダイヤモンド状パターンを形成する四重幾何学配置で設けられている。高次の対称性が実現される。
【0099】
1つ以上の一次電子ビームを焦点合わせするための配置の他の例が図13に示されている。光学システム180は、励磁コイル15、上部及び下部ポールピース52及び54を含む。更に、各電子ビーム12のための撮像特性を個別に調整するために設けられた手段がある。これらの手段は、小さな磁気コイル102である。静電レンズ要素は、上部電極18と下部電極19を含む。更に、インレンズ偏向器152のために偏向ユニットが設けられる。かくして、電子ビーム12bは試料13をスキャンすることができる。二次粒子は、一次電子ビームのために使用される同じ開口14を通して光学システムを通過する。光学システム180の実施例は、複合軸・ラジアルギャップ磁気レンズ要素を使用する。静電レンズ要素は、上部電極18及び下部平面電極72で実現される。レンズ要素変動の微調整は、小さな磁気コイル102により達成される。光学システムの上方で光軸11をたどる電子ビーム12bは、インレンズ偏向電極152のグループにより偏向される。
【0100】
複数ビームを配列する他の実施例が図14に示されている。ここでは、付加的なマルチ開口が各ビームのために設けられる。かくして、異なる開口が偏向器を用いて選択され得る。本願と同じ出願人によるヨーロッパ出願Nr03 00 6716に開示されているように、マルチ開口の開口選択に関する細部が用いられても良い。
【0101】
装置130は、ハウジング131及び試料チャンバー135を有する。ハウジングは試料チャンバーと同じくバキュームポートを通して排気される。試料チャンバー内には、試料を独立して2つの方向に移動させることができる試料ステージ136上に試料13が置かれている。試料の制御のために、移動制御ユニット136´が試料ステージ136に接続されている。4つの電子ビーム12の各々は、固有の光軸11を有する。ビームはエミッターアレイ132から放射される。エミッターアレイは、制御ユニット132´で制御される。つまり、ビーム電流、アノード電位及び試料13をスキャンする電子ビームの予想同期が制御される。各電子ビームのためのアインツェルレンズモジュールを含むマルチレンズシステム133は、4つの荷電粒子ビームのためのコンデンサーレンズとして使用される。レンズシステム133はコントロールユニット133´で制御される。
【0102】
一般的に、図14の実施例の参照無しで、シングルビームあるいはマルチビームコラムは、各一次電子ビームのために少なくとも2つの焦点要素を有する。複数のレンズ(あるいは少なくとも1つの)の利点は、レンズ間に高電位(ビーム昇圧電位)を加えるべき電子ビームを許容する液浸レンズにある。更に、1つの代案によれば、複合ガンコンデンサーレンズは放射されたビームを整形するのに好ましい。
【0103】
試料13上に電子ビームを焦点合わせするためには、すべての電子ビームのために磁気静電複合レンズ134が使用される。これにより、磁気サブレンズが共通の励磁コイルを占有し、各々の電子ビームのために静電サブレンズが複合レンズに一体化される。磁気静電複合レンズの要素は、コントロールユニット134´で制御される。
【0104】
図14では、静電レンズ133及び磁気静電複合レンズ134が使用される。代わりに、2つの静電レンズをコンデンサーレンズ及び対物レンズとして用いることができる。これに代えて、2つの磁気静電複合レンズをコンデンサーレンズ及び対物レンズとして用いることができる。しかしながら、コンデンサーレンズを必要とせず、1つだけのマルチビームレンズを用いることも可能である。これにより、静電レンズあるいは磁気静電複合レンズを用いることができる。
【0105】
更に、近接電極82及びそれらのコントロールユニット82´が設けられ、4つの電子ビームの各々に対応する抽出フィールドが実現される。加えて、各々の電子ビーム12のために、ビーム昇圧電位を提供するための電極137が設けられる。
【0106】
上記の要素の他に、偏向スイッチシステムが各々の電子ビームのために設けられる。
【0107】
図3a〜図3dに示される磁気偏向システムとは逆に、4つの偏向器の組合わせを、エミッターサブユニットの光軸に共通である対物レンズサブユニットの光軸のために使用できる。第1の偏向ステージ14は、開口ユニット41内で使用される開口の種類に基づいて電子ビーム12を左あるいは右に偏向する。各々の電子ビームのために、開口ユニット41は、高電流測定モード用の大きな開口と高分解能測定モード用の小さな開口を有する。
【0108】
二次電子は、各々の電子ビームのために設けられるセクター425により一次電子ビームから分離される。図14の概略図におけるビーム分離は、図面の平面内に示されている。これは、作図をより簡単にするためになされている。通常、ビーム分離、つまり検出ユニットの配置は、図面の平面に直交する方向で実現される。
【0109】
二次電子の検出のために、焦点・フィルタリング光学系916が設けられる。各偏向ステージ14はコントロールユニット14´で制御されるのに対し、すべての検出ユニットはコントローラ16´/44´で制御される。
【0110】
ヨーロッパ出願Nr02 02 8346による図15を参照してマルチビーム対物レンズの他の実施例を説明する。ここでは、共通の励磁コイルを占有するマルチビーム磁気レンズが以下のように修正されている。
【0111】
図15に示される実施例においては、5個の個別のレンズモジュール100が設けられている。各々のモジュールは、2つの平坦な側面を持つシリンダー状の磁気導電材料回路23を有する。磁気材料回路の中央には開口22が設けられている。開口22を通して光軸22に沿って運ばれる電子ビームは磁気レンズ場により焦点合わせされる。磁気レンズ場は、電流106a、106bにより誘起される。
【0112】
個々のレンズモジュールは光軸に関して対称の2つの平面を有する。クロストークにより部分的に歪みを受けるかもしれないので、モジュールの対称を維持するために、モジュールの間にはギャップがある。これに代えて、このようなギャップには非磁性材料が充填されても良い。
【0113】
図15において、レンズモジュール100は、開口22に与えられる磁気フラックスを整形するように作られる。それゆえ、付加的な穴82が設けられ、これにより開口22に与えられる磁場が修正される。付加的な穴82を用いることにより、電子ビームの焦点合わせを要求に応じて提供することができる。
【0114】
上に示された、異なったマルチレンズタイプに関しては、磁気あるいは複合静電−磁気レンズがすべての実施例に使用されても良い。複合レンズ及び静電レンズ(磁気レンズ要素の無い)には液浸タイプが使用されても良い。これにより、試料への電子の衝突エネルギーを制御することができる。
【図面の簡単な説明】
【0115】
【図1】従来例による検出スキームを概略的に示す図である。
【図2a】ウィーンフィルタタイプの分離ユニットを持つ、本発明によるシステムを概略的に示す。
【図2b】ウィーンフィルタタイプの分離ユニットで実現される他のビーム通路を概略的に示す。
【図2c】ウィーンフィルタタイプの分離ユニットで実現される他のビーム通路を概略的に示す。
【図3a】磁気ダイポールビーム分離ユニットを持つ、本発明による実施例を概略的に示す。
【図3b】磁気ダイポールビーム分離ユニットを持つ、本発明による実施例を概略的に示す。
【図3c】磁気ダイポールビーム分離ユニットを持つ、本発明による実施例を概略的に示す。
【図3d】磁気ダイポールビーム分離ユニットを持つ、本発明による実施例を概略的に示す。
【図4a】本発明による荷電粒子ユニットを概略的に示す側面図である。
【図4b】本発明による荷電粒子ユニットを概略的に示す側面図である。
【図4c】本発明の他の実施例を概略的に示す側面図である。
【図5】半球状のセクターを含む他の実施例を概略的に示す側面図である。
【図6】鞍点電位フィルタの電位を組合わせて概略的に示す側面図である。
【図7】本発明による実施例における二次ビーム光学系のビーム通路を示す。
【図8】本発明による実施例における二次ビーム光学系のビーム通路を示す。
【図9】本発明による荷電粒子ビーム装置を概略的に示す側面図である。
【図10】本発明による荷電粒子マルチビーム装置を概略的に示す側面図である。
【図11】本発明によるマルチビーム装置に用いることのできる対物レンズを概略的に示す側面図である。
【図12a】本発明によるマルチビーム装置に用いることのできる対物レンズの上面及び対応するビームパターンを概略的に示す図である。
【図12b】本発明によるマルチビーム装置に用いることのできる対物レンズの上面及び対応するビームパターンを概略的に示す図である。
【図12c】本発明によるマルチビーム装置に用いることのできる対物レンズの上面及び対応するビームパターンを概略的に示す図である。
【図13】本発明によるマルチビーム装置に用いることのできる対物レンズを概略的に示す側面図である。
【図14】本発明による荷電粒子マルチビーム装置を概略的に示す側面図である。
【図15】本発明による荷電粒子マルチビーム装置を概略的に示す斜視図である。
【符号の説明】
【0116】
205 エミッター
215 ウィーンタイプ運動量分散フィルタ
220 対物レンズ
240 電子検出器

【特許請求の範囲】
【請求項1】
荷電粒子ビームの荷電粒子を偏向及びエネルギー選択するための荷電粒子ユニットにおいて、
荷電粒子ビームの偏向及び焦点合わせをするための二重焦点セクターユニット(470;425,450;914)と、
電位鞍点を形成するためのエネルギーフィルタ(460;560;916)とを含むことにより、荷電粒子ビームの荷電粒子がそのエネルギーに応じて前記電位鞍点で方向転換されることを特徴とする荷電粒子ユニット。
【請求項2】
請求項1による荷電粒子ユニットにおいて、前記二重焦点セクターユニットは、第1の大きさに焦点合わせをするためのセクター(435)と四極ユニット(445)と第2の方向に焦点合わせをするためのシリンダーレンズあるいはサイドプレートを含むことを特徴とする荷電粒子ユニット。
【請求項3】
請求項1による荷電粒子ユニットにおいて、前記二重焦点セクターユニットは、半球状セクター(470)を含むことを特徴とする荷電粒子ユニット。
【請求項4】
請求項1から3のいずれか1項による荷電粒子ユニットにおいて、前記二重焦点セクターユニットは、荷電粒子ビームを前記エネルギーフィルタ(460;560;916)内に焦点合わせするようにされることを特徴とする荷電粒子ユニット。
【請求項5】
請求項1から4のいずれか1項による荷電粒子ユニットにおいて、前記二重焦点セクターユニットは、荷電粒子ビームを焦点合わせするための追加のレンズユニット(450;550)を含むことを特徴とする荷電粒子ユニット。
【請求項6】
請求項1から5のいずれか1項による荷電粒子ユニットにおいて、前記追加のレンズユニットは、アインツェルレンズを含むことを特徴とする荷電粒子ユニット。
【請求項7】
請求項1から6のいずれか1項による荷電粒子ユニットにおいて、前記エネルギーフィルタは、荷電粒子ビームを通過させるための1つの開口を持つバイアスされた電極を有することを特徴とする荷電粒子ユニット。
【請求項8】
請求項1から7のいずれか1項による荷電粒子ユニットにおいて、前記エネルギーフィルタ(460;560;916)は、バイアスされたシリンダーの形態で備えられることを特徴とする荷電粒子ユニット。
【請求項9】
請求項8による荷電粒子ユニットにおいて、前記バイアスされたシリンダーは、少なくとも100μmの長さと100μm〜20mmの間の開口径を有することを特徴とする荷電粒子ユニット。
【請求項10】
請求項1から9のいずれか1項による荷電粒子ユニットにおいて、前記エネルギーフィルタは、荷電粒子ビームの焦点位置近傍においてその進行方向に沿って配置されていることを特徴とする荷電粒子ユニット。
【請求項11】
請求項1から10のいずれか1項による荷電粒子ユニットを含む二次荷電粒子検出装置であって、
前記荷電粒子ビームは、一次荷電粒子ビームの衝突時に試料(225;530)から放射された二次荷電粒子のビームであり、
更に、前記エネルギーフィルタを通過した荷電粒子ビームの入射に応じた検出信号を出力するための検出器(465;565;918)を含むことを特徴とする二次荷電粒子検出装置。
【請求項12】
請求項11による二次荷電粒子検出装置において、更に、前記二次荷電粒子を加速するための加速ユニットを含むことを特徴とする二次荷電粒子検出装置。
【請求項13】
請求項11あるいは12による二次荷電粒子検出装置において、更に、一次荷電粒子ビームから二次荷電粒子ビームを分離するための分離ユニット(215;320;906)を含むことを特徴とする二次荷電粒子検出装置。
【請求項14】
請求項13による二次荷電粒子検出装置において、前記分離ユニットは、磁気ダイポール要素の形態で備えられることを特徴とする二次荷電粒子検出装置。
【請求項15】
請求項13による二次荷電粒子検出装置において、前記分離ユニットは、ウィーンフィルタの形態で備えられることを特徴とする二次荷電粒子検出装置。
【請求項16】
一次荷電粒子ビームを生成するための荷電粒子ビーム源(205;305;904)と、
前記一次荷電粒子ビームを試料上に焦点合わせするための第1の焦点要素(220;325;415;525;134)と、
請求項11から15のいずれか1項による荷電粒子検出装置とを含むことを特徴とする荷電粒子ビーム装置。
【請求項17】
請求項16による荷電粒子ビーム装置を少なくとも2つ含むことを特徴とする荷電粒子マルチビーム装置。
【請求項18】
請求項16による荷電粒子ビーム装置を少なくとも5つ含むことを特徴とする荷電粒子マルチビーム装置。
【請求項19】
請求項17あるいは18による荷電粒子マルチビーム装置において、
複数の前記荷電粒子ビーム装置が、荷電粒子ビームの列を提供するように配置されることを特徴とする荷電粒子マルチビーム装置。
【請求項20】
請求項17から19のいずれか1項による荷電粒子マルチビーム装置において、
複数の前記荷電粒子ビーム装置が、アレイ状の荷電粒子ビームを提供するように配置されることを特徴とする荷電粒子マルチビーム装置。
【請求項21】
請求項17から20のいずれか1項による荷電粒子マルチビーム装置において、
複数の一次荷電粒子ビームが、複数の荷電粒子ビーム源により生成され、
前記複数の荷電粒子ビーム源は1つのエミッターアレイとして一体化されていることを特徴とする荷電粒子マルチビーム装置。
【請求項22】
請求項17から21のいずれか1項による荷電粒子マルチビーム装置において、
複数の一次荷電粒子ビームは、複数の第1の焦点要素により焦点合わせされ、
前記複数の第1の焦点要素は1つのマルチビーム対物レンズ(134)として一体化されていることを特徴とする荷電粒子マルチビーム装置。
【請求項23】
請求項17から22のいずれか1項による荷電粒子マルチビーム装置において、
前記複数の一次荷電粒子ビームの各々のために少なくとも2つの開口を持つマルチ開口ユニットが備えられると共に、前記複数の一次荷電粒子ビームの各々のために前記少なくとも2つの開口の1つが選択可能にされていることを特徴とする荷電粒子マルチビーム装置。
【請求項24】
荷電粒子ビームを偏向及びフィルタリングする方法であって、
荷電粒子の発散が低減されるように二重焦点セクターユニット(470;425;450;914)によって荷電粒子を偏向させることにより荷電粒子がビームを形成するようにし、
エネルギーフィルタ(460;560;916)によって前記ビームの荷電粒子の一部をフィルタリングすることによりビームが相互に作用しあうような電位鞍点を形成し、これによりしきい値より低いエネルギーの一部の荷電粒子が排除されるようにしたことを特徴とする方法。
【請求項25】
二次荷電粒子のビームを検出する方法であって、
一次荷電粒子のビームから二次荷電粒子のビームを分離し、
請求項24による方法により前記二次荷電粒子のビームを偏向及びフィルタリングし、前記しきい値より高いエネルギーの一部の二次荷電粒子を検出することを特徴とする方法。
【請求項26】
請求項25による方法において、更に、加速ユニットにより前記二次荷電粒子を加速することを特徴とする方法。
【請求項27】
請求項25あるいは26による方法において、前記フィルタのバイアスされたチューブ内に焦点が形成されるように焦点合わせが行われることを特徴とする方法。

【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図2c】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図3c】
image rotate

【図3d】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図4c】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12a】
image rotate

【図12b】
image rotate

【図12c】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2006−190653(P2006−190653A)
【公開日】平成18年7月20日(2006.7.20)
【国際特許分類】
【外国語出願】
【出願番号】特願2005−329684(P2005−329684)
【出願日】平成17年11月15日(2005.11.15)
【出願人】(505229830)アイシーティ,インテグレイテッド サーキット テスティング ゲゼルシャフト フュア ハーブライタープリューフテックニック ミット ベシュレンクテル ハフツング (6)
【Fターム(参考)】