説明

Fターム[2G060AA15]の内容

電気的手段による材料の調査、分析 (24,887) | センサが接しているもの (2,861) | 固体 (880) | 生命体 (230)

Fターム[2G060AA15]の下位に属するFターム

Fターム[2G060AA15]に分類される特許

21 - 40 / 210


【課題】ナノ細孔を通って移動する分子のモノマーを配向させる特性解析デバイス及び特性解析方法を提供することにより従来の分子特性解析技術の速度コトロール及び配向コントロールの問題を解決する。
【解決手段】ナノ細孔を通る電気的に荷電した分子の移動をコントロールするための方法であって、以下のステップ:ナノ細孔12の分子入口とナノ細孔の分子出口との間にナノ細孔を横切って分子移動電圧を印加し;分子入口と分子出口との間での、ナノ細孔を通る分子の遅い前進のために、ナノ細孔に配置された少なくとも1つの電気プローブに、移動電圧に対し第1の電圧バイアスを印加し;及び分子を、分子入口と分子出口との間で、ナノ細孔を通って分子を前進させるために、ナノ細孔に配置された少なくとも1つの電気プローブに、移動電圧に対し第2の電圧バイアスを印加すること、を含むことを特徴とする。 (もっと読む)


【課題】 細胞・細菌・ウイルスを1個単位で定量することができるデバイス,測定装置,測定方法を提供する
【解決手段】 細胞・細菌・ウイルスといった測定対象と同程度の大きさとした電極を複数配置したセンサを用いて,各電極について電極近傍の測定対象の有無を検出し,測定対象を検出した電極の数を足し合わせることで,センサ上に存在する測定対象の量を測定する。 (もっと読む)


【課題】目視形態検査以外の方法で卵の評価を可能にすること。
【解決手段】卵(53)が浸漬されたチェンバー(11)内の溶液に接触する第1の電極(42)と、プローブ本体(27)と、卵(53)の細胞内に注入可能な精子(52)を含む溶液が収容可能な精子収容部(27a)と、卵(53)の細胞内に刺し入れ可能な刺し入れ部(28a)と、精子収容部(27a)に一端が配置された第2の電極(32)と、前記第2の電極の他端を精子収容部(27a)の外に導出する電極導出部(29b)と、プローブ本体(27)に形成され且つ精子を開口(28b)から押し出す圧力を付与するインジェクタ(21)に接続される接続部(29c)と、を有するプローブ(26)と、を備えた人工授精装置(1)。 (もっと読む)


【課題】 試料中の目的物質を精度よく分離し、検出することが可能な誘電泳動装置及び目的物質の検出方法を提供する。
【解決手段】 誘電泳動のためのキャビティ10には、キャビティ10内において凝集体38を貯留する試料貯留部12と、キャビティ10内において凝集体38を誘導する凝集体誘導部14とを備える。試料貯留部12の近傍には、目的物質30a、及び/又は、凝集体38をキャビティ10内に導入する第1の導入口18を備える。凝集体誘導部14の近傍には、誘電泳動のための媒体36をキャビティ10内に導入する第2の導入口20を備える。 (もっと読む)


【課題】本発明は、極性を持った検体の極性に応じた電気生理測定の実現及び、同一の検体の異なる領域を同時に電気生理測定することを目的とする。
【解決手段】この目的を達成するため、本発明の電気生理測定デバイスは検体を含む溶液を流すための内壁を有する流路溝4が形成された基板1と、この流路溝4に検体を捕捉させるための検体捕捉部6と、検体の電気生理現象を測定するためにこの流路溝4に検体を含まない溶液を連通させる導通孔5とを備え、前記検体捕捉部6に、流路溝4に導入された検体自身のもつ極性を配向させるように当該検体を捕捉させ、この検体の極性に応じて電気生理測定をすることとした。これにより本発明は、細胞の細胞膜上の極性に応じて細胞電気生理測定を効率良く計測することができる。 (もっと読む)


【課題】雑菌などによる培養体の汚染を回避しつつインピーダンス測定時間を短縮する。
【解決手段】下端が作用電極16と接触する柱状電極5と各ウェル4に下端が進入する参照電極6および対電極7とが取り付けられた蓋体3、並びに蓋体3で上部開口部が閉塞されるウェル4が複数配設された容器本体2を備えた培養容器1と、出力端子36a,36b間に交流電圧Vmを出力し入力端子36c,36d間のインピーダンスを測定する測定装置36と、インキュベータ31内に配設された培養容器1の蓋体3における各柱状電極5、各参照電極6および各対電極7に対応するプローブ33bが立設されたプローブヘッド33と、プローブヘッド33用の接離動機構34と、任意のウェル4内に進入する対電極7および参照電極6を出力端子36aと入力端子36cとに接続し、柱状電極5を出力端子36bおよび入力端子36dに接続する切替部35とを備えている。 (もっと読む)


本発明は電子機器を検査し、システムの少なくとも1つの変数を決定する方法及び装置に関し、その方法は、以下のステップを有する:
a)変数の期待最小値及び/又は最大値を定義するステップ;
b)システムの変数を登録し、その登録された変数に応じて、電子機器によって電気信号を生成するステップ;
c)生成された電気信号のパラメータ(X,Y)の少なくとも1つの値(x,y)を検出するステップ;
d)システムの変数の定義された最小値及び/又は最大値に応じて、パラメータ(X,Y)の期待される最小値及び/又は最大値を定義するステップ;
e)パラメータ(X,Y)の検出値がパラメータに対して定義された最小値よりも大きく及び/又は最大値よりも小さいことを検査するステップ;及び、
f)ステップe)の結果に基づいて、電子機器の故障が存在するかどうかを決定するするステップ。
(もっと読む)


【解決手段】
生体分子を化学的不活性材料のシートの微視的孔の中に濃縮する工程と、当該開口部を制限する工程と、当該孔を通る電流又は当該孔開口部付近の蛍光を測定する工程とを含む、生体分子の検出方法。前記電流又は蛍光は分子が孔から拡散するにつれて変化し、拡散速度の尺度を与え、それによって分子の存在及び特性を検出する。相互作用する分子の場合、相互作用しない分子よりも拡散速度が遅くなると予想され、分子相互作用が測定される。孔の集団にキャップをし、質量分析計に挿入することで分子の同定が可能である。 (もっと読む)


本発明は、微小物体20、23、33を空間的に操作するための方法に関し、前記方法は、開口19を持つ先端と内部を長手方向に延びる微小流路15とを有し、微小流路が先端の開口に流体接続されて成るカンチレバー12を用意するステップと、カンチレバーを保持しかつカンチレバーを予め定められた空間経路に沿って移動させるための懸吊手段を用意するステップと、カンチレバー内の微小流路に予め定められた圧力を加えるための加圧手段を用意するステップと、先端の開口が微小物体に隣接するように微小物体にカンチレバーの先端を移動させるステップと、カンチレバーの先端の外側の圧力に対して微小流路内の圧力を低減させることによって、カンチレバーにより微小物体をピックアップするステップと、カンチレバーを用いて微小物体を予め定められた空間経路に沿って移動させるステップとを含む。 (もっと読む)


バイオセンサの試験チャンバの充填十分性を、試験チャンバの静電容量を測定することによって決定するための方法及びシステムが提供される。 (もっと読む)


本発明は、ポリマーおよび/またはポリマー単位を分析するための組成物、デバイス、および方法を含む。ポリマーは、DNA、RNA、多糖類またはペプチドのようなホモポリマーまたはヘテロポリマーであってもよい。デバイスは、ポリマーが通過することができるトンネルギャップを形成する電極を備えている。電極は、電極に結合した試薬で官能基化されており、この試薬は、ポリマー単位と一時的な結合を生成することが可能である。試薬と上述の単位との間に一時的な結合が生成すると、検出可能な信号が作り出され、この信号を使用し、ポリマーを分析する。
(もっと読む)


本発明は、細胞変異の無標識による検出と分類、特に、細胞球状体の生成と特性解析及び細胞球状体の状態のリアルタイム観察のための統合型培養・測定装置に関し、a)培養チャンバープレート用の取付機器と、b)取付機器内の微小電極用接点と接続された増幅器ボードと、c)増幅器ボードと培養チャンバープレート用の取付機器を上に載せたロータリーシェーカーと、d)増幅器ボード及びロータリーシェーカーと接続された制御ユニットとが配備されており、この制御ユニットによって、データの記録と解析並びにロータリーシェーカーの動きの制御が可能である。培養チャンバープレーは、複数の培養リザーバーを備えており、各培養リザーバーの底部が一つの微小空洞を形成し、各微小空洞が微小空洞の壁面に複数の微小電極を備えている。取付機器は複数の微小電極用接点を有する。本発明では、有利には、球状体の自動的な生成、培養及び特徴解析、並びに組織サンプルの培養と特徴解析が可能である。
(もっと読む)


脂質二重層に埋め込まれたナノ細孔内の分子を操作するための技法を述べる。一例では、脂質二重層にわたって獲得用電気的刺激レベルが印加され、ここで、ナノ細孔を含有する脂質二重層の領域は抵抗によって特徴付けられ、獲得用電気的刺激レベルは、周囲の流体からナノ細孔に分子を引き込む傾向があり、ナノ細孔内への分子の少なくとも一部の獲得により生じる脂質二重層の抵抗値の変化が検出され、獲得用電気的刺激レベルが保持用電気的刺激レベルに変えられ、獲得用電気的刺激レベルが保持用電気的刺激レベルに変化した後に分子の一部がナノ細孔に残る。 (もっと読む)


【課題】多重材料物体を電気ネットワークの形で表現し解析する方法を提供すること。
【解決手段】多重材料物体の特性を決定するための方法(12)を提供する。本方法は、多重材料物体を取り囲む電極に個々の電気信号パターンをもつ印加電気信号組を提供することによって回転電界を発生させるステップ(122)を含む。本方法はさらに、印加した各電気信号パターンに対応する電極から電気信号の計測電気信号を取得するステップ(124)を含む。電気ネットワークは、印加電気信号組、計測電気信号組及び印加電気信号組の逆行列に基づいて決定される。本方法はさらに、電気ネットワークを解析することによって多重材料物体の特性を決定するステップ(128)を含む。 (もっと読む)


1つの態様は、血液または他の体液中の、グルコース濃度などの検体濃度を検出する方法に関する。この方法は、比較的低い印加電位差で、リニアな誘導電流応答を生み出すメディエータシステムを備える電気化学的テストストリップを利用する。交流電流の励起信号は、テストストリップ中の血液に印加される。交流電流の励起信号は、低周波信号、および低周波信号よりも高い周波数を有する高周波信号を備える。グルコース濃度は、低周波信号に対する低周波応答を測定し、高周波信号に対する高周波応答を測定し、低周波応答に基づいてグルコース濃度を推定し、また高周波応答に基づいて、1つまたは2つ以上の、誤差を引き起こす変化性の物に対してグルコース濃度を補正することによって決定される。
(もっと読む)


本発明者らは、半導体/金属界面を有する金属半導体ハイブリッド(MSH)構造において、異常光コンダクタンス(EOC)現象、および好ましくは逆EOC(I−EOC)現象に基づいて室温で機能する、好ましくはナノスケール寸法の、新規な高性能光学センサを開示する。このような設計は、ベア半導体によって示されることのない、効率的な光子検知を示す。例示的実施形態を用いる実験において、ヘリウム−ネオンレーザ放射を用いる超高空間分解能4点光コンダクタンス測定は、250nm装置について、観測された最大測定値が9460%という、著しく大きい光コンダクタンス性能を明らかにした。このような例示的EOC装置はまた、632nm照射で5.06×1011cm√Hz/Wよりも高い固有検出能、および40dBの高い動的応答を実証しており、このようなセンサを広範囲な実際的応用に対して技術的に優位にする。
(もっと読む)


検知及び/又は駆動のための電子デバイスは、生体細胞(40)が付着するデバイス表面を備え、センサ及び/又はアクチュエータ(25)と、チャネルポート(21)を持つアクセスチャネル(20)とをさらに備え、前記チャネルポートは前記表面に設置される。アクセスチャネル(20)は、生体細胞(40)がアクセスチャネル(20)に進入して、センサ(25)へのアクセスを提供できるように設計される。特に、細胞(40)は、アクセスチャネル(20)に進入することによって突起部分(41)を形成し、この部分が検知される。アクセスチャネル(20)には、センサ(25)が存在する特定のセンサポートを設けてもよい。デバイスは、例えば、エレクトロポレーション治療において、ニューロンなどの生体細胞を検知または駆動するため使用できる。
(もっと読む)


【課題】数十年間、蛍光ベース技術は、光子束をデジタル特徴に変換するのに光電子増倍管又は電荷結合素子(CCD)カメラなどの光検出器に依存してきた。ほぼすべてのそのような機器はこれらのタイプの1つ又は複数の検出器を包含している。しかし、そのような検出器は高価であり、追加の装置を必要とする。
【解決手段】
本発明は、蛍光、発光、化学発光、又は燐光の特徴を、金属含有表面から伝導及び放出される電気信号の形態で検出する検出システム及び方法に関する。したがって、本発明は、高価な検出器を必要とすることなく蛍光をデジタルで直接的に検出するのを可能にする。 (もっと読む)


分子を特性評価及び/又は操作するためのシステム(100)について説明している。そのシステムは特に、生体分子に適するが、本発明はそれに限定されない。システム(100)は、分子の通過に適したナノ構造(120)を有する基板(110)を備える。そのシステムはさらに、ナノ構造(120)を分子通過させるための手段(210)及びナノ構造(120)でプラズモン力場を印加することにより、粒子の通過速度に影響を与えるように適合したプラズモン力場発生手段(130)を含む。対応する方法についても説明している。
(もっと読む)


本発明は、試料における複数種の検体の同時検出および/または定量化のための、または、複数種の試料における検体の同時検出および/または定量化のための、システムを開示するものであり、微小電極(11a,11b,11c,11d)の配列を備える多電極チップ(10)と、多電極チップ(10)を収容する溝(21)と、前記溝(21)に挿入された後の多電極チップ(10)における微小電極(11a,11b,11c,11d)の各々に流体試料を通過させることを可能とする単一流路(22)と、を備える単一流路セル(20)と、多電極チップ(10)を囲う溝(31)と、多電極チップ(10)における電極(11a,11b,11c,11d)の各々に、いくつかの試料を独立して通過させることを可能とするいくつかの独立した流路(32a,32b,32c,32d)と、を備える多流路セル(30)と、を備える。
(もっと読む)


21 - 40 / 210