説明

Fターム[4G075EC01]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置(構成要素) (2,898) | ノズル体 (426)

Fターム[4G075EC01]の下位に属するFターム

Fターム[4G075EC01]に分類される特許

61 - 80 / 295


酸化プロセスは:酸素及び希釈ガスを含む反応域に酸化可能名反応物、触媒、及び溶媒を有する液体反応混合物の小滴を導入するステップと;酸化生成物を生成に適切な反応温度及び適切な反応圧力において、酸素で反応物を酸化させるステップと;を含むことができる。この液体反応混合物は、酸化可能反応物として酸化可能置換基を有する芳香族原料を有することがある。この酸化可能反応物は、少なくとも一つのカルボン酸を有する芳香族化合物を含むことができる。例えば、この芳香族原料は、少なくとも酸化可能アルキル置換基を有するベンゼン環、少なくとも一の酸化可能アルキル置換基を有するフランヘテロ環、少なくとも一の酸化可能アルカリ置換基を有するナフタレン多環、それらの誘導体、及びそれらの混合体を含むことができる。
(もっと読む)


【課題】高いベクトルを有する加熱蒸気の製造や、食品、産業廃棄物の加熱処理による有価物への変換、亜臨界状態の形成、海水等の電解質を含有する水の淡水化工程において、特に好適に使用することができる簡便な加熱装置を提供する。
【解決方法】流路を通過する被加熱物を加熱する加熱装置であって、上記流路は、電気抵抗率が100μΩ・cm以上である高抵抗素材からなり、外部が断熱層で被覆された中空状の発熱パイプの中空部であり、上記発熱パイプ両端に設けられた電気接続端子を備え、上記発熱パイプに通電することによって、被加熱物を加熱する加熱水蒸気、亜臨界水又は加熱不活性ガスを得るための加熱装置。 (もっと読む)


ナノ粉末の生成および材料処理のためのプロセスおよび装置が、本明細書で説明されている。プラズマを発生させるためにプラズマトーチを備えるトーチ本体と、プラズマ放電を受け取るためにトーチ本体と流体連結し、さらに急冷部と流体連結している反応炉部と、反応炉部と熱的に連結している少なくとも1つの加熱要素とを備え、その少なくとも1つの加熱要素が反応炉部内の温度を選択的に調節すること可能にするプラズマ反応炉が、本明細書で説明されている。
(もっと読む)


【課題】装置を大型化することなく、処理効率を向上させることができる水処理装置を提供することを目的としている。
【解決手段】円筒型接地電極と、この円筒型接地電極の円筒中心軸に沿って張られた線状電圧印加電極とからなり、円筒型接地電極の円筒の開口端を上下方向に向けて処理室内に配置された少なくとも一対の電極対と、電極対の上方から被処理水を円筒型接地電極の内部に向かって水滴状にして噴射する噴射ノズルと、を備え、円筒型接地電極内でストリーマ放電を発生させて、ストリーマ放電によって生じる活性種によって被処理水中の処理対象物質を分解処理する水処理装置であって、円筒型接地電極と線状電圧印加電極の間に、噴射された水滴状の被処理水を衝突させて、被処理水の落下速度を落とす絶縁材料からなる障害物が設けられていることを特徴としている。 (もっと読む)


【課題】金属ロッドから成り、マイクロ波発生装置から導波管を介して伝搬されるマイクロ波を前記ロッドの一方側で受信し、他方端側では同心状に形成される接地側の電極との間で放電を行うことでプラズマを発生させるプラズマ電極において、長寿命化を図る。
【解決手段】ロッド状のプラズマ電極40の上方側のアンテナ41の部分が導波管20の導波空間Hに配置されてマイクロ波を受信する一方、前記プラズマ電極40の下方側が内側電極42となり、それに外側電極31が同心状に配置され、それらの間の内部空間32にガス供給孔35から供給される処理ガスを前記マイクロ波でプラズマ化するプラズマ発生ノズル30において、前記内側電極42の下方端421にセラミック溶射層49を形成する。したがって、前記セラミック溶射層49が前記下方端421に密着して該下方端421を安定して覆い、前記放電に対して、金属基材の蒸発や酸化を抑えることができる。 (もっと読む)


試料から少なくとも所定の一種の細胞(C1)を分離するためのマイクロ流体システムである。システム(1)は、所定種類の細胞(C1)の少なくとも一部を試料のさらなる細胞(C2)に対して実質的に選択的に主チャンバ(4)から回収チャンバ(5)に移動させるための分離ユニット(3)を備えている。2つの弁(9,10)が、主チャンバ(4)の上流および下流に配置されており、2つの弁(11,12)が回収チャンバ(5)の上流および下流に配置されている。制御アセンブリ(23)は、前述の弁(9,10,11、2)を管理するように、設計されている。提案されているこのシステム(1)は、高度の再現性および正確さで細胞を分離することができる。
(もっと読む)


【課題】本発明は、熱変換反応密閉容器を提供する。
【解決手段】本発明の熱変換反応密閉容器は、ユーティリティが設置されているベースプレートと、ベースプレートとの間に密閉されたホットゾーンを形成するベッセルと、ホットゾーンに配置されるヒータと、ホットゾーンに反応ガスを供給及び排出する流入孔と流出孔、及び、流入孔を介してホットゾーンに供給される反応ガスがベッセルに伝達される熱エネルギを吸収してベッセルの温度を冷却させるとともに、加熱された状態で上記ホットゾーンに供給されるようにベッセルの内側に形成される熱交換部を含む。これにより、ベッセルの内側に設けられた熱交換部を介して反応ガスがホットゾーンに供給される過程において、ホットゾーンのヒータからベッセルに伝達され、外部に損失される熱エネルギをホットゾーンに供給される反応ガスが吸収するため、ベッセルは限界温度以上に加熱されることが防止される。
(もっと読む)


COを帯水層又は枯渇した炭化水素貯蔵層(211)を貫通する少なくとも一つの注入井(202)を介して注入する方法であり、注入井は注入井と密閉係合する注入管(203)を備える。注入管は、COが注入される帯水層又は貯蔵層のインターバルで又は真上で終結し、注入管は液体注入制御バルブ(208)をその底面又は近くに備え、バルブ上の圧力が予め設定された圧力値より低い場合には閉じられ、バルブ上の圧力が予め設定された圧力値以上の場合には開き又は再び開き、予め設定された圧力値が、注入管のCOを液体又は超臨界状態に維持するように選択されている。 (もっと読む)


プラズマ反応器(100)は、複数のマイクロ波プラズマノズル(105)と共通反応チャンバー(102)を有する。イオン化される材料を含む流体は、プラズマノズル(105)に供給される。ノズル内で発生するプラズマが入口を通って供給されて反応チャンバー(102)内に捕集されるように各プラズマノズル(105)は反応チャンバー(102)の入口に接続している。上記プラズマ反応器は、複数のプラズマノズルのそれぞれを同時に使用することで規模の拡大を可能にする。従って、多種多様な供給材料の処理における使用や商業規模での使用に適している。 (もっと読む)


媒体の外面に組み込まれた流体分散流路を有する不規則な方向を向いたセラミックの媒体の床を含む容器が開示される。流路は流体を取り込みかつ向け直し、それによって容器内の流体の分散を向上させる。
(もっと読む)


【課題】地球温暖化の原因の一つであり、温室効果ガスの中で最も影響の大きい二酸化炭素の排出を抑制する方法を提供する。
【解決手段】燃焼により生成する温室効果ガスである二酸化炭素を含むガス2中に二酸化炭素と反応する酸化カルシウム粉体1を混入させ、高電圧化学反応機3を通過させることで二酸化炭素と該酸化カルシウムとを化学反応させ、生成した炭酸カルシウム粉体4を同じ高電圧の電場で集塵し、二酸化炭素処理後ガス5を排出する。 (もっと読む)


本発明は、小粒径を有する、医薬的作用物質として活性な物質粒子であって、当該粒子は、溶媒−非溶媒による沈殿をイン・サイチュ噴霧乾燥プロセスと組み合わせることにより製造される粒子に関する。医薬的作用物質として活性な物質は、水溶性の溶媒、特にエタノールの中に分散され、溶解するまで、送込みラインの中で、加圧下で、その溶媒の沸点を超えて加熱される。この溶液は、微細な液ジェットとして、ガスが浸透したマイクロリアクターの中で微細な水ジェットと衝突し、このように生じた微細なミストは、これにより非常に急速に蒸発する。有機溶媒は最初に蒸発し、次に水が蒸発する。この水は表面改質剤を含むことができる。 (もっと読む)


溶融塩処理システム及び方法が、溶融塩反応器に流動可能に接続されている1つ又は複数の管状導管であって、パイプ又はシャフトを、該パイプ又はシャフトとの間の環状空間によって隔てた状態で内部に同心状に収容している、1つ又は複数の管状導管と、ガスを環状空間へ給送するように接続されている1つ又は複数のガス源とを含むことができる。システムは、オフガスを受け取るように溶融塩反応器オフガス出口に流動可能に接続されている洗浄機構と、洗浄機構からの流出物を加熱するように構成されている第1の加熱機構と、加熱機構からの流出物を受け取るように流動可能に接続されているろ過機構とを含むことができる。オーバーフロー導管が、溶融塩反応器オーバーフロー出口に流動可能に接続されて、該溶融塩反応器オーバーフロー出口からの溶融塩を受け取ると共に溶融塩を塩回収容器へ排出することができ、ブロワー又は他のガスムーバーが、溶融塩反応器及び回収容器に接続されて、低温ガスがオーバーフロー出口を通して溶融塩反応器へ逆流することを防止することができる。 (もっと読む)


【課題】多量の二酸化炭素を海洋中層へ溶解希釈させる海洋隔離技術の船舶曳航方式に適用され、指定された放出サイトの海洋中層を有効に利用して二酸化炭素を溶解させる二酸化炭素海洋隔離方法を提供すること。
【解決手段】船舶Snに曳航されるパイプラインPnの放出ノズルNnから海洋中層へ二酸化炭素を放流して溶解希釈させる二酸化炭素海洋隔離方法であって、パイプラインPnから海洋中層へ放流される二酸化炭素の放流深度を鉛直方向に分散させた。 (もっと読む)


【課題】従来は困難であった微細でかつ粒度分布幅の狭いナノ粒子を高効率に生成可能とする微粒子の製造方法、並びにこの方法の実施に用い得る微粒子の製造装置を提供する。
【解決手段】微粒子製造用原料としての一種以上の粒子を分散させて熱プラズマ炎中に供給し、前記微粒子製造用原料粒子を蒸発させ気相状態の混合物とし、この混合物を冷却して、微粒子を製造する方法において、前記熱プラズマ炎の発生装置として変調誘導熱プラズマ装置を用い、この変調誘導熱プラズマ装置のコイル電流の振幅変調を所定時間間隔で繰り返させる。 (もっと読む)


体積が1m〜10mであり、高さが1m〜10mである反応器チャンバと、反応物質を供給するための反応器ノズルとを有することを特徴とするフレーム反応器を開示する。 (もっと読む)


気液交換の方法及び装置であって、上方が閉鎖されている1つの気液交換容器(8)を含み、気液交換容器は、前後両端が吸気パイプ(7)及び排気パイプ(6)に接続され、吸気端に気体阻止板(2)が、排気端に液体阻止板(1)が取り付けられ、気液交換容器内に液体が充填されており、液体の上方に形成された気流通路が吸気パイプ(7)及び排気パイプ(6)と連通される。気流が吸気パイプ(7)から気液交換容器(8)に進入するときに、高速な気流が形成され、高速な気流は下方の液体表面から液体を離脱させて気流通路内の空間に噴流し、それにより液幕が形成され、気体が液幕を通過し、且つ液体と十分に接触し、気相と液相との間のエネルギー交換及び物質交換が行われ、一部の液体が液体阻止板(1)に到達する時に液体阻止板に止められ、それにより2次液幕が形成され、交換後の気流が液体阻止板の下の空気排出口から排出される。 (もっと読む)


【課題】処理しようとする水溶液を含有する塩から不溶性化合物を形成するための反応器を備える装置を提供すること。
【解決手段】反応器は、装置の外にある電源及び磁気誘導源に接続され、該反応器の側面付近に一方が他方の反対側に挿入されている一対の電極と、反応器の外に位置する周波数発生器に接続され、反応器内に一方が他方の反対側に、前記第1の電極対に隣接して挿入されている第2の電極対と、反応器の外に位置し、電源及び磁気誘導源に接続されているらせん状導電要素と、可能な限り毛細管が前記反応器の底部近くにあるように、前記電源の陰極に接続されている前記電極に隣接して位置する前記毛細管を通って反応器に入る、吹込みポンプ及び光子放出体によって生じる光子化空気噴射と、反応器の外に位置する電磁場発生器及び調整可能な周波数発生器と、反応器中央に位置する可変速パドル撹拌手段とを備える。 (もっと読む)


【課題】
本願発明は、ナノレベルの粒子径を持った固形粒子を容易に製造する方法を提供することを目的とする。
【解決手段】
本発明の固形粒子の製造装置は、外部空間と隔絶するチャンバーと当該チャンバー内に配置した一軸回転盤と、この回転盤の一端にある受け面と、この受け面に前記原材料を供給する原料供給機構と、前記受け面に供給された原材料を薄膜化し、その外周縁から煙化飛散させるように遠心力を前記回転盤に与える回転機構と、少なくとも前記受け面の外周縁及びそれよりも回転中心に近い側の温度を前記揮発性溶媒の揮発温度未満とし、それより外側の温度を前記揮発性溶媒の揮発温度以上にするチャンバー内温度調整機構が設けられていることを特徴とする。 (もっと読む)


ガス洗浄装置及びガス洗浄方法が提供される。本発明によるガス洗浄装置は、 反応ガスが流入される反応管と、反応管と連結され、流入された反応ガスをプラズマ化させる反応器と、反応器内のプラズマに水を注入するための水注入部とを備え、別途のヒーターを使用せず、プラズマの熱源を利用して水を蒸気化させるため、非常に経済的なガス洗浄が可能である。さらに、プラズマ化した反応ガスが排出される最適の領域で水を直接蒸気化させて反応ガスを洗浄するため、ガス洗浄の効率も向上する。
(もっと読む)


61 - 80 / 295