説明

Fターム[5F103DD01]の内容

半導体装置を構成する物質の物理的析出 (6,900) | 析出物質 (905) | 3−5族化合物 (251)

Fターム[5F103DD01]の下位に属するFターム

Fターム[5F103DD01]に分類される特許

141 - 160 / 173


【課題】生産性に優れるとともに、優れた発光特性を備えたIII族窒化物化合物半導体発光素子の製造方法、及びIII族窒化物化合物半導体発光素子、並びにランプを提供する。
【解決手段】基板11上に、III族元素としてGaを含むIII族窒化物化合物半導体からなる半導体層をスパッタ法によって成膜する工程を含む製造方法であり、半導体層をスパッタ法で成膜する際に、基板11に印加するバイアス値を0.1W/cm以上とする。 (もっと読む)


【課題】GaNに格子定数の近い基板を用い,大型で良質のGaNエピタキシャの結晶を得る。
【解決手段】素子基板は、遷移金属二ホウ化物のホウ素面にアルミニウム含有膜を介して窒化物半導体膜をエピタキシャル成長させて形成されてなることを特徴とする構成。素子基板の製造方法であって、遷移金属二ホウ化物のホウ素面に、アルミニウム膜をエピタキシャル成長させ、次に、窒化物半導体膜をエピタキシャル成長させることを特徴とする構成。 (もっと読む)


【課題】ウェハの面内でピーク波長のばらつきを小さくしたIII族窒化物半導体発光素子の製造方法を提供する。
【解決手段】ピーク波長が490〜550nmの光を発するIII族窒化物半導体発光素子の製造方法であって、少なくとも基板2上にスパッタ法を用いてIII族窒化物半導体からなるバッファ層3を形成し、その上に有機金属化学気相堆積(MOCVD)法を用いて発光領域を含むIII族窒化物半導体からなる半導体積層構造1aを形成する。 (もっと読む)


【課題】MBEやスパッタなどのラジカル化、プラズマ化または原子化された窒素源を用いたIII族窒化物半導体層の成膜法において、ドーパント元素の反応を抑制し、効率良くドーパントをドーピングする方法を提供すること。
【解決手段】ドーパント元素のみを供給するプロセスと、III族元素を含む化合物と窒素原料を同時に供給するプロセスを交互に繰り返すことからなる第一の工程を含む、ラジカル化、プラズマ化または原子化された窒素源を用いたIII族窒化物化合物半導体層の成長方法。 (もっと読む)


(AlN)x(SiC)(1-x)のような金属―有機アロイ薄膜の上に、バッファーなしに、半導体結晶を成長させる基板及び方法が開示されている。出発材料としてAlNとSiC粉末を用いた蒸着法により、SiC基板の上に(AlN)x(SiC)(1-x)アロイ薄膜は形成されることができる。(AlN)x(SiC)(1-x)アロイ薄膜は、GaNまたはSiCのエピタキシャル成長のためのより良い格子整合を与え、よりよい格子整合と相性によりエピタキシャルに成長されたGaNにおける欠陥を減少させる。
(もっと読む)


【課題】GaNナノコラムから成るパワーデバイス用のpn接合ダイオードの提供を目的とする。
【解決手段】パワーデバイス用のpn接合ダイオード1aであって、第1電極4aと、第1電極4aの表面に立設されており第1導電型を示す複数の第1ナノコラム部6aと、複数の第1ナノコラム部6aの各端部に設けられており第2導電型を示す複数の第2ナノコラム部8aと、複数の第2ナノコラム部8a上に設けられており第2導電型を示す半導体部12aと、半導体部12a上に設けられた第2電極14aとを備え、第1ナノコラム部6a及び第2ナノコラム部8aは、GaNから成る。 (もっと読む)


【課題】生産性とキャリア濃度が向上し、低抵抗n型AlN半導体結晶を得ることを目的とし、短波長発光素子やパワーデバイスを実現することを目的とする。
【解決手段】本発明によれば、AlN結晶のAl原子の一部を、IIIa族元素(Sc,Y,
La等)又は/及びIIIb族元素(B,Ga,In等)で置換し、隣接する窒素(N)1原
子を酸素(O)原子で置換することにより、浅い不純物準位が形成され、低抵抗n型AlN結晶を得ることができる。特にIIIa族元素又は/及びIIIb族元素の合計濃度(C3A)が1×1018cm-3以上であり、O濃度(Co)が、0.01C3A<Co<1.5C3Aである
ことが好ましい。またAlN結晶の製造方法としては、CVD法、MBE法や昇華法等公知の方法に採用できる。 (もっと読む)


本発明はIII−V族半導体の製造方法に関するものである。本発明によれば、前記方法は、電子アクセプタであるp型ドーパントで、原子価xが0と1の間に含まれる数を表す、一般式AlxGa1-xNの半導体をドーピングする、少なくとも一つのドーピング過程と、価電子帯の構造を変えることのできる共ドーパントによる共ドーピング過程とから成る。本発明は、半導体、ならびに電子産業または光電子産業におけるその使用にも関するものである。本発明はさらに、かかる半導体を使用するデバイスならびにダイオードに関するものである。 (もっと読む)


【課題】 真性に近い単結晶GaN膜を有し、かつこの膜をn形又はp形に選択的にドー
プした半導体デバイスを提供する。
【解決手段】 次の要素を有する半導体デバイス:基板であって、この基板は、(100)シリコン、(111)シリコン、(0001)サファイア、(11−20)サファイア、(1−102)サファイア、(111)ヒ化ガリウム、(100)ヒ化ガリウム、酸化マグネシウム、酸化亜鉛、および炭化シリコンからなる群から選択される物質からなる;約200Å〜約500Åの厚さを有する非単結晶バッファ層であって、このバッファ層は前記基板の上に成長した第一の物質を含み、この第一の物質は窒化ガリウムを含む;および前記バッファ層の上に成長した第一の成長層であって、この第一の成長層は窒化ガリウムと第一のドープ物質を含む。 (もっと読む)


InP基板並びにII−VI及びIII−V材料の交番層を含む層状構造体が提供される。II−VI及びIII−V材料の交番層は、典型的にはInP基板に格子整合しているか又はシュードモルフィックである。典型的には、II−VI材料は、CdZnSe、CdMgZnSe、BeZnTe、又はBeMgZnTe合金から選択され、及び最も典型的にはCdZn1−xSeであり、ここでxは0.55〜0.57である。典型的には、III−V材料は、InAlAs又はAlInGaAs合金から選択され、及び最も典型的には、InP又はInAl1−yAsであり、ここでyは0.53〜0.57である。層状構造体は、1以上の分布ブラッグ反射器(DBR)を形成することができる。別の態様では、本発明は、InP基板及びエピタキシャル半導体材料の15層対以下を含む95%以上の反射率を有する分布ブラッグ反射器(DBR)を含む層状構造体を提供する。別の態様では、本発明は、層状構造体を含むレーザー又は光検知器を提供する。
(もっと読む)


【課題】最表面が立方晶窒化ガリウムからなる窒化ガリウム層又は最表面が六方晶窒化ガリウムからなる窒化ガリウム層を表層部に有した酸化ガリウム単結晶複合体の選択的製造方法、及び窒化物半導体膜の製造方法を提供する。
【解決手段】酸化ガリウム単結晶からなる基板の表層部に窒化ガリウム層を有する酸化ガリウム単結晶複合体の製造方法であって、上記基板の表面を窒素プラズマで窒化処理して窒化ガリウム層を形成する際に窒化処理の時間を制御することで、反射高速電子線回折によって測定される窒化ガリウム層の最表面が立方晶窒化ガリウムからなる窒化ガリウム層又は六方晶窒化ガリウムからなる窒化ガリウム層を選択的に製造する酸化ガリウム単結晶複合体の製造方法、及びこの複合体の表面に窒化物半導体膜を成長させる窒化物半導体膜の製造方法である。 (もっと読む)


【課題】 半導体結晶成長処理されるべき基板を保持する基板ホルダが、大気に曝されることを防止し、基板ホルダに付着する堆積物を除去することによって、基板ホルダおよび堆積物が半導体結晶を成長させる際の酸素汚染源となることを防止し、特性に優れた半導体結晶を得る。
【解決手段】 半導体結晶の成長が完了した基板27の取外された基板ホルダ28が、基板導入室22の所定位置から取出されるとき、半導体結晶成長の過程において基板ホルダ28に付着した堆積物を基板ホルダ処理室26で除去するとき、および堆積物が除去された基板ホルダ28を基板導入室22の所定位置にセッティングするとき、のいずれのときにおいても、基板ホルダ28は、不活性ガス雰囲気または真空雰囲気中で取り扱われる。 (もっと読む)


【課題】同一の分子線材料を有する分子線セルを複数有する分子線エピタキシャル装置の稼動率を向上させ、かつ、成膜において高い再現性を実現する、分子線エピタキシャル装置の制御装置を提供する。
【解決手段】分子線エピタキシャル装置100の制御装置118は、同一の分子線材料105を有する複数の分子線セル107について、各分子線セル107内の分子線材料105の残量を求める残量算出部405と、次回の成膜における各層での同一の分子線材料105の合計の消費量を等しくしたまま、上記各分子線セル107における設定を変更したものについて、次回の成膜後の当該各分子線セル107に残存する分子線材料105の予測消費時間を算出する予測消費時間算出部406と、上記予測消費時間の差が小さくなるように、次回の成膜での上記各分子線セル107における設定を決定するセル設定決定部407とを備えている。 (もっと読む)


【課題】 不純物を低減して、リン分子を分子線として照射することができる分子線源および分子線源使用方法を提供する
【解決手段】 充填空間11に赤リン材料を充填し、充填空間11と精製空間12とを連通させた状態で、充填部21を第1気化温度t1gに加熱して充填空間11に存在する赤リンを昇華して、精製空間12に白リンを凝縮する。次に精製空間12と貯留空間13とを連通させた状態で、精製部22を第1気化温度t1gよりも低い第2気化温度t2gに加熱して精製空間12に存在する白リンを気化して、貯留空間13に白リンを凝縮する。このようにして貯留空間13に生成した白リンを分子線の照射材料として用いて、リン分子線を照射する。 (もっと読む)


【課題】III族窒化物系化合物半導体発光素子の静電耐圧を向上させること。
【解決手段】スパッタリングによって形成したAlNバッファ層の上に、GaN層を2μm厚程形成すると、その表面は平均約0.9nm程の凹凸が生じる。GaN層にドナーをドープした場合は、この凹凸が余り改善されない。一方、GaN層にアクセプタをドープした場合は、凹凸が1/2程度に改善されることが見出された。この改善により、静電耐圧も向上する。 (もっと読む)


【課題】炭化珪素層等のイオン結合度が小さく共有結合性の強い材料からなる半導体層上に、欠陥密度が小さく良質な、GaN等のイオン結合性の大きな半導体層を形成する方法を提供する。
【解決手段】第1のイオン結合度を有する第1の半導体層102の表面に、第1のイオン結合度よりも大きな第2のイオン結合度を有する第2の半導体層103を形成する半導体層形成方法において、第2の半導体層103を形成する側に在る第1の半導体層102の表面に、真空中で電子を照射しながら、第2の半導体層103を形成する。第1の半導体層102は炭化珪素半導体から構成され、第2の半導体層103はIII族窒化物半導体から構成されている。 (もっと読む)


【課題】Gaを供給してAlN(窒化アルミニウム)を成長させることにより、AlNの貫通転位を少なくし、結晶性の良いAlNを得る方法を提供する。
【解決手段】AlN層4の成長は、SiC基板2の基板温度が850℃、Gaの供給量が、0〜1.4×10−4Pa、Alの供給量が4.5×10−5Pa、Nの供給量が電力180ワットで、Nの流量が0.19sccmとされる。この条件において、AlN層4は、500nmの厚さ成長させられる。AlおよびGaの供給には、クヌードセンセルを用いた金属AlおよびGaの昇華、Nの供給には、RFプラズマ銃による窒素プラズマを用いた。また、N/Al比は、1よりわずかに小さい条件とした。なお、Gaの照射は、AlN層4の最初の10nmのみであり、AlN層4が10nm成長した時点で、Gaの供給量はゼロとされる。AlN層4が成長する間、AlおよびNの供給量は一定である。 (もっと読む)


【課題】 昇華法により窒化物単結晶を製造する際に、得られる単結晶に欠陥が導入されないにようにして、その結果、良質で、大口径の単結晶を効率よく製造することのできる製造方法を提供する。
【解決手段】 加熱炉1内で窒化アルミニウムの原料粉末9を加熱して昇華させ、種結晶7上で窒化アルミニウムを成長させるに当たり、前記窒化アルミニウムの原料粉末9に、平均粒径10μm以上のもの又は比表面積0.02m/g以下のものを用いる。 (もっと読む)


基板;基板表面に堆積されアルミニウム/反応性窒化物(Al/N)流束の比1未満を有する第1の窒化アルミニウム(AlN)層;及び第1のAlN層表面に堆積され1より大きいAl/反応性N流束の比を有する第2のAlN層を含む半導体構造。基板はシリコンの化合物であり、ここで、第1のAlN層は、シリコンを実質的に含まない。
(もっと読む)


a)分子線エピタキシ法(molecular beam epitaxy:MBE)を用いて、立方晶III-V族基板上にエピタキシャルIII族窒化物材料を成長させるステップと、b)前記III族窒化物基板が立方晶III族窒化物自立基板として残るように、前記III-V族基板を除去するステップと、を含む立方晶III族窒化物自立バルク基板の製造方法。III族窒化物デバイスの製造のための立方晶III族窒化物自立バルク基板。 (もっと読む)


141 - 160 / 173