説明

セルロースアシレートフィルムおよびその製造方法、光学補償シート、偏光板ならびに液晶表示装置

【課題】 高レターデーションで、ヘイズや偏光解消性が低減されたセルロースアシレートフィルムを提供すること。
【解決手段】 第1の添加剤、第2の添加剤およびマット剤を含有するセルロースアシレートフィルムであって、前記マット剤近傍における前記第1の添加剤の濃度が前記第2の添加剤の濃度より大きいことを特徴とするセルロースアシレートフィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学補償シート、偏光板および液晶表示装置に関し、詳しくは光学特性に優れたセルロースアシレートフィルムからなる光学補償シートおよびそれを用いた偏光板と液晶表示装置に関する。
【背景技術】
【0002】
セルロースアシレートフィルムは適度な透水性を有し、光学的等方性が高い(レターデーション値が低い)ことから、液晶表示装置向けの偏光板保護フィルムとして広く利用されてきた。
近年、セルロースアシレートフィルムに位相差を付与し、偏光板保護フィルムとしての機能に加えて、光学補償機能も併せ持たせる方法が提案されている。例えば、特許文献1には、平面性の高いトリアジン型化合物をセルロースアシレートに添加し、レターデーションを発現させる方法が開示されている。しかし、近年液晶テレビ用途を中心に高品位の表示装置が求められるにつれて、光学補償フィルムに対して、より精微なレターデーション制御が必要となってきており、さらにレターデーション発現性の高い添加剤(以下レターデーション発現剤という)が求められていた。
【0003】
一方、従来セルロースアシレートフィルムの製造においてはすべり性確保の目的でシリカ等のマット剤を有機溶剤中に分散して添加することが一般的であるが、マット剤が製膜工程において凝集を起こし、異物故障を引き起こすという問題が生じていた。これに対し特許文献2には、マット剤近傍の添加剤含有量をフィルム全体の添加剤含有量よりも多くすることにより、ヘイズを低減させる方法が開示されている。
しかし、これらの方法ではヘイズの改良効果が不十分であり、特に光学補償フィルムを液晶表示装置に用いた場合にコントラストが低下する問題を有しており、改良が求められていた。
【特許文献1】特開2003−344655号公報
【特許文献2】特開2003−301049号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的は、高レターデーションで、ヘイズや偏光解消性が低減されたセルロースアシレートフィルムを提供することである。
本発明の別の目的は、前記セルロースアシレートフィルムを含む光学補償シートにより、表示品位の高い偏光板および液晶表示装置を提供することである。
【課題を解決するための手段】
【0005】
本発明の発明者らは、前記のような従来技術の問題は主にマット剤として用いている二酸化ケイ素の微粒子の周りに疎水的な添加剤が吸着され、これを核として凝集物が発生するため起こることを見出した。
この事実を踏まえ、本発明の発明者は鋭意検討の結果、まず最初にマット剤と凝集物を形成しにくい親水的な添加剤を加えた後、マット剤と凝集物を形成しやすい疎水的な添加剤を加えることで凝集物の発生を抑制できることを見出した。
【0006】
本発明は具体的には下記構成からなる。
[1] 第1の添加剤、第2の添加剤およびマット剤を含有するセルロースアシレートフィルムであって、前記マット剤近傍における前記第1の添加剤の濃度が前記第2の添加剤の濃度より大きいことを特徴とするセルロースアシレートフィルム。
[2] 第1の添加剤の溶液とマット剤の溶液とを混合した後、これに第2の添加剤の溶液を混合し、さらにこれにセルロースアシレート溶液を混合して、得られる液を流延して製膜する工程を有することを特徴とするセルロースアシレートフィルムの製造方法。
[3] 流延後、3〜100%の延伸倍率で延伸する工程を有することを特徴とする[2]に記載の製造方法。
[4] [2]または[3]に記載の方法で製造されたことを特徴とするセルロースアシレートフィルム。
[5] 前記第1の添加剤のlogPが前記第2の添加剤のlogPよりも小さいこと(ここで、Pはオクタノール−水系での分配係数を表す)を特徴とする[1]または[4]に記載のセルロースアシレートフィルム。
[6] 前記第1の添加剤が紫外線吸収剤であり、前記第2の添加剤がレターデーション発現剤であることを特徴とする[1]、[4]および[5]のいずれか一項に記載のセルロースアシレートフィルム。
[7] 前記レターデーション発現剤が下記一般式(1)で表される化合物であることを特徴とする[6]に記載のセルロースアシレートフィルム。
【化1】

(式中、Ar1、Ar2およびAr3はそれぞれ独立にアリール基または芳香族ヘテロ環を表し、L1およびL2はそれぞれ独立に単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2とL2は同一であっても異なっていても良い。)
[8] 前記一般式(1)で表される化合物が下記一般式(2)で表される化合物であることを特徴とする[7]に記載のセルロースアシレートフィルム。
【化2】

(式中、R11、R12、R13、R14、R15、R16、R21、R22、R23およびR24はそれぞれ独立に水素原子または置換基を表す。Ar2はアリール基または芳香族ヘテロ環を表し、L2およびL3はそれぞれ独立に単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2とL2は同一であっても異なっていても良い。)
[9] 前記紫外線吸収剤が一般式(III)で表される化合物であることを特徴とする[6]〜[8]のいずれか1項に記載のセルロースアシレートフィルム。
【化3】

(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。Xは置換基を表し、Yは酸素原子、硫黄原子または窒素原子を表す。XYは水素原子であっても良い。)
[10] 前記紫外線吸収剤が一般式(IV)で示される化合物であることを特徴とする[6]〜[8]のいずれか一項に記載のセルロースアシレートフィルム。
【化4】

(式中、R1、R2、R3、R4およびR5はそれぞれ独立に一価の有機基を表し、R1、R2およびR3の少なくとも1つは総炭素数10〜20の無置換の分岐または直鎖のアルキル基を表す。)
[11] 前記紫外線吸収剤が一般式(V)で表される化合物であることを特徴とする[6]〜[8]のいずれか一項に記載のセルロースアシレートフィルム。
【化5】

(式中、R1、R2、R4およびR5はそれぞれ独立に一価の有機基を表し、R6は分岐のアルキル基を表す。)
[12] 前記紫外線吸収剤が一般式(VII)で表されることを特徴とする[6]〜[8]のいずれか一項に記載のセルロースアシレートフィルム。
一般式(VII) Q1−Q2−OH
(式中、Q1は1,3,5−トリアジン環を表し、Q2は芳香族環を表す。)
[13] 前記マット剤の一次平均粒子サイズが1nm〜20nmであることを特徴とする[1]および[4]〜[12]のいずれか一項に記載のセルロースアシレートフィルム。
[14] 面内のレターデーション値(Re)が20〜200nmであり、厚さ方向のレターデーション値(Rth)が70〜400nmであることを特徴とする[1]および[4]〜[13]のいずれか一項に記載のセルロースアシレートフィルム。
[15] 面内のレターデーション値(Re)と厚さ方向のレターデーション値(Rth)との比(Re/Rth比)が0.1〜0.8であることを特徴とする[1]および[4]〜[14]のいずれか1項に記載のセルロースアシレートフィルム。
[16] ヘイズが0.1%〜1.0%であることを特徴とする[1]および[4]〜[15]のいずれか一項に記載のセルロースアシレートフィルム。
[17] 互いにクロスニコルに配置された2枚の偏光板に前記セルロースアシレートフィルムを挟んだ際の輝度を、互いにパラニコルに配置された2枚の偏光板に前記セルロースアシレートフィルムを挟んだ際の輝度で除した後に100倍することにより求められる光漏れ率が0.01%〜0.30%であることを特徴とする[1]および[4]〜[16]のいずれか一項に記載のセルロースアシレートフィルム。
[18] [1]および[4]〜[17]のいずれか一項に記載のセルロースアシレートフィルムを含むことを特徴とする光学補償シート。
[19] [1]および[4]〜[17]のいずれか一項に記載のセルロースアシレートフィルム上に光学異方性層を有することを特徴とする光学補償シート。
[20] 偏光膜およびその両側に配置された二枚の透明保護膜からなる偏光板であって、透明保護膜の少なくとも一方が、[18]または[19]に記載の光学補償シートであることを特徴とする偏光板。
[21] 液晶セルおよびその両側に配置された2枚の偏光板からなる液晶表示装置であって、少なくとも1枚の偏光板が[20]に記載の偏光板であることを特徴とする液晶表示装置。
[22] 表示モードがVAモードであることを特徴とする[21]の液晶表示装置。
[23] 表示モードがOCBモードであることを特徴とする[21]の液晶表示装置。
【発明の効果】
【0007】
本発明のセルロースアシレートフィルムは、透明性に優れ、高レターデーションで、ヘイズや偏光解消性が低いという特徴を有しており、光学補償シートとして有用である。また、本発明の製造方法によれば、このようなセルロースアシレートフィルムを効率よく製造することができる。また、本発明の偏光板は、このようなセルロースアシレートフィルムを用いているため、偏光板の構成要素の数を増加することなく、偏光板に光学補償機能を追加することに成功している。さらに、これらの光学補償シートや偏光板を用いて作製した本発明の液晶表示装置は、表示品位が高い。
【発明を実施するための最良の形態】
【0008】
以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
【0009】
本発明のセルロースアシレートフィルムは、第1の添加剤、第2の添加剤およびマット剤を含有するセルロースアシレートフィルムであって、前記マット剤近傍における前記第1の添加剤の濃度が前記第2の添加剤の濃度より大きいことを特徴とする。また本発明は第1の添加剤の溶液とマット剤の溶液とを混合した後、これに第2の添加剤の溶液を混合し、さらにこれにセルロースアシレート溶液を混合して、得られる液を流延して製膜することを特徴とするセルロースアシレートフィルムの製造方法に関するものであり、該製造方法によって製造されたことを特徴とするセルロースアシレートフィルムに関する。
【0010】
上記第1の添加剤、第2の添加剤としてはセルロースアシレートフィルムに含有される添加剤であればよく、特に限定されるものではないが、例えばレタデーション発現剤、紫外線吸収剤、可塑剤、レタデーション低減剤、染料、マット剤などを用いることができる。
上記第一の添加剤として好ましくは紫外吸収剤であって、さらに好ましくは後述する一般式(III)〜(VI)で表される紫外吸収剤である。第二の添加剤として好ましくはレタデーション発現剤であって、一般式(1)あるいは一般式(2)で表されるレタデーション発現剤であることがさらに好ましい。
【0011】
また前記「マット剤近傍」とはマット剤粒子表面から距離にして約0.2μm以内の領域を意味する。マット剤粒子表面から距離にして約0.2μm以内における第一の添加剤の濃度を第二の添加剤の濃度より大きくすることによって本発明の効果を得ることができる。
【0012】
(レターデーション発現剤)
本発明のセルロースアシレートフィルムに使用されるレタデーション発現剤について説明する。セルロースアシレート100質量部に対し、レタデーション発現剤は0.01〜20質量部添加することが好ましく、0.1〜20質量部添加することがより好ましく、0.5〜20質量部添加することがさらに好ましい。
レターデーション発現剤は、セルロースアシレートに添加することによってセルロースアシレートフィルムのレターデーションを上昇させる機能を有するものであれば、その種類は特に制限されない。好ましいレターデーション発現剤は、一般式(1)で表される化合物である。そこで、以下において一般式(1)で表される化合物について詳細に説明する。
【0013】
一般式(1)中、Ar1、Ar2およびAr3はそれぞれ独立にアリール基または芳香族ヘテロ環を表し、L1およびL2はそれぞれ独立に単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2、L2は同一であっても異なっていても良い。
Ar1、Ar2およびAr3はそれぞれ独立にアリール基または芳香族ヘテロ環を表し、Ar1、Ar2およびAr3で表されるアリール基として好ましくは炭素数6〜30のアリール基であり、単環であってもよいし、さらに他の環と縮合環を形成してもよい。また、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
一般式(1)中、Ar1、Ar2およびAr3で表されるアリール基としてより好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えばフェニル基、p−メチルフェニル基、ナフチル基などが挙げられる。
【0014】
一般式(1)中、Ar1、Ar2およびAr3で表される芳香族ヘテロ環としては酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環であればいずれのヘテロ環でもよいが、好ましくは5ないし6員環の酸素原子、窒素原子あるいは硫黄原子のうち少なくとも1つを含む芳香族ヘテロ環である。また、可能な場合にはさらに置換基を有してもよい。置換基としては後述の置換基Tが適用できる。
【0015】
一般式(1)中、Ar1、Ar2およびAr3で表される芳香族ヘテロ環の具体例としては、例えば、フラン環、ピロール環、チオフェン環、イミダゾール環、ピラゾール環、ピリジン環、ピラジン環、ピリダジン環、トリアゾール環、トリアジン環、インドール環、インダゾール環、プリン環、チアゾリン環、チアゾール環、チアジアゾール環、オキサゾリン環、オキサゾール環、オキサジアゾール環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キナゾリン環、シンノリン環、プテリジン環、アクリジン環、フェナントロリン環、フェナジン環、テトラゾール環、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環、テトラザインデン環、ピロロトリアゾール環、ピラゾロトリアゾール環などが挙げられる。芳香族ヘテロ環として好ましくは、ベンズイミダゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンゾトリアゾール環である。
【0016】
一般式(1)中、L1およびL2は単結合または2価の連結基を表し、2価の連結基の例として好ましくは、−NR7−(R7は水素原子、置換基を有していても良いアルキル基またはアリール基を表す)で表される基、−SO2−、−CO−、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、−O−、−S−、−SO−およびこれらの2価基を2つ以上組み合わせて得られる基を挙げることができ、その中でより好ましいものは−O−、−CO−、−SO2NR7−、−NR7SO2−、−CONR7−、−NR7CO−、−COO−、および−OCO−、アルキニレン基であり、最も好ましくは−CONR7−、−NR7CO−、−COO−、および−OCO−、アルキニレン基である。
【0017】
一般式(1)で表される化合物において、Ar2はL1およびL2と結合するがAr2がフェニレン基である場合、L1−Ar2−L2およびL2−Ar2−L2はそれぞれパラ位(1,4−位)の関係にあることが最も好ましい。
【0018】
nは3以上の整数を表し、好ましくは3〜7であり、より好ましくは3〜5である。
【0019】
一般式(1)で表される化合物のうち好ましいものは一般式(2)で表される化合物である。ここで一般式(2)について詳しく説明する。
【0020】
11、R12、R13、R14、R15、R16、R21、R22、R23およびR24はそれぞれ独立に水素原子または置換基を表す。Ar2はアリール基または芳香族ヘテロ環を表し、L2およびL3は単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2、L2は同一であっても異なっていても良い。
【0021】
Ar2、L2、およびnは一般式(1)の例と同一であり、L3は単結合または2価の連結基を表し、2価の連結基の例として好ましくは、−NR7−(R7は水素原子、置換基を有していても良いアルキル基またはアリール基を表す)で表される基、アルキレン基、置換アルキレン基、−O−、およびこれらの2価基を2つ以上組み合わせて得られる基であり、その中でもより好ましいものは−O−、−NR7−、−NR7SO2−、および−NR7CO−である。
【0022】
11、R12、R13、R14、R15およびR16はそれぞれ独立に水素原子または置換基を表し、好ましくは水素原子、アルキル基、アリール基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基など)、炭素数6〜12のアリール基(例えばフェニル基、ナフチル基)であり、さらに好ましくは炭素数1〜4のアルキル基である。
【0023】
22、R23およびR24はそれぞれ独立に水素原子または置換基を表し、好ましくは、水素原子、アルキル基、アルコキシ基、水酸基であり、より好ましくは、水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基)である。
【0024】
以下に前述の置換基Tについて説明する。
置換基Tとして好ましくはハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1〜30のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1.2.2]ヘプタン−2−イル、ビシクロ[2.2.2]オクタン−3−イル)、アルケニル基(好ましくは炭素数2〜30の置換または無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素数3〜30の置換もしくは無置換のシクロアルケニル基、つまり、炭素数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル基、2−シクロヘキセン−1−イル基)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数5〜30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2.2.1]ヘプト−2−エン−1−イル、ビシクロ[2.2.2]オクト−2−エン−4−イル)、アルキニル基(好ましくは、炭素数2〜30の置換または無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数6〜30の置換もしくは無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3〜30の5もしくは6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換もしくは無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−t−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、シリルオキシ基(好ましくは、炭素数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素数2〜30の置換もしくは無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2〜30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6〜30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素数1〜30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素数2〜30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7〜30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、アミノ基(好ましくは、アミノ基、炭素数1〜30の置換もしくは無置換のアルキルアミノ基、炭素数6〜30の置換もしくは無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1〜30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6〜30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素数1〜30の置換もしくは無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7〜30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p-クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、スルファモイルアミノ基(好ましくは、炭素数0〜30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキルおよびアリールスルホニルアミノ基(好ましくは炭素数1〜30の置換もしくは無置換のアルキルスルホニルアミノ基、炭素数6〜30の置換もしくは無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、メルカプト基、アルキルチオ基(好ましくは、炭素数1〜30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素数6〜30の置換もしくは無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素数2〜30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、スルファモイル基(好ましくは炭素数0〜30の置換もしくは無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N'−フェニルカルバモイル)スルファモイル基)、スルホ基、アルキルおよびアリールスルフィニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルフィニル基、6〜30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキルおよびアリールスルホニル基(好ましくは、炭素数1〜30の置換または無置換のアルキルスルホニル基、6〜30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、アシル基(好ましくはホルミル基、炭素数2〜30の置換または無置換のアルキルカルボニル基、炭素数7〜30の置換もしくは無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素数7〜30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素数2〜30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、t−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素数1〜30の置換もしくは無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、アリールおよびヘテロ環アゾ基(好ましくは炭素数6〜30の置換もしくは無置換のアリールアゾ基、炭素数3〜30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素数2〜30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素数2〜30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素数2〜30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素数2〜30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素数3〜30の置換もしくは無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル、フェニルジメチルシリル基)を表わす。 上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていても良い。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0025】
以下に一般式(1)および一般式(2)で表される化合物に関して具体例を挙げて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
【0026】
【化6】

【0027】
【化7】

【0028】
【化8】

【0029】
【化9】

【0030】
【化10】

【0031】
【化11】

【0032】
【化12】

【0033】
【化13】

【0034】
【化14】

【0035】
【化15】

【0036】
【化16】

【0037】
【化17】

【0038】
【化18】

【0039】
【化19】

【0040】
【化20】

【0041】
【化21】

【0042】
(紫外線吸収剤)
本発明のセルロースアシレートフィルムに使用される紫外線吸収剤について説明する。紫外線吸収剤は、好ましくは、液晶セルを紫外光から守るため、偏光板保護膜として使用するフィルムに使用する。本発明では、紫外線吸収剤を使用することで、さらに、高Reを保ったままRth値のみを低下させる。また、マット剤の凝集を防いで、透明性に優れたフィルムを作製することができる。
紫外線吸収剤は、セルロースアシレート100質量部に対して、0.1〜20質量部添加し、0.1〜15質量部添加することが好ましく、0.1〜10質量部添加することがさらに好ましい。
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられ、380nmにおける透過率が8%以下であることが好ましい。
本発明に好ましく用いられる紫外線吸収剤の具体例としては、一般式(III)〜(VI)で示される化合物が好ましく、前記一般式(IV)で表される化合物において、R4、R5のうち少なくとも1つの置換基がハロゲン原子である化合物、およびR4、R5の置換基のいずれもがハロゲン原子でない化合物が特に好ましい。また、上記のハロゲン原子を有する紫外線吸収剤:ハロゲン原子を有しない紫外線吸収剤を質量比で、20:80〜80:20の範囲で用いることも好ましい。
【0043】
【化22】

(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。Xは置換基を表し、Yは酸素原子、硫黄原子または窒素原子を表す。XYは水素原子であっても良い。)
【0044】
【化23】

(式中、R1、R2、R3、R4およびR5はそれぞれ独立に一価の有機基であり、R1、R2およびR3の少なくとも1つは総炭素数10〜20の無置換の分岐または直鎖のアルキル基である。)
【0045】
【化24】

(式中、R1、R2、R4およびR5はそれぞれ独立に一価の有機基であり、R6は分岐のアルキル基である。)
【0046】
また、特開2003−315549号公報に記載されているように、一般式(VI)で示される化合物も好ましく使用することができる。
【0047】
【化25】

(式中、R0およびR1はそれぞれ独立に水素原子、炭素数1〜25のアルキル基、炭素数7〜9のフェニルアルキル基、無置換または炭素数1〜4のアルキル基置換のフェニル基、置換または無置換のオキシカルボニル基、もしくは置換または無置換のアミノカルボニル基を表す。R2〜R5およびR19〜R23はそれぞれ独立に水素原子、もしくは炭素数2〜20の置換または無置換のアルキル基を表す。)
【0048】
さらには、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。
【0049】
一般式(III)で示される化合物としては、例えば、ベンゾフェノン系化合物が挙げられる。
【0050】
また、ベンゾトリアゾール系紫外線吸収剤としての具体例を下記に列記するが、本発明で用いることができるベンゾトリアゾール系紫外線吸収剤はこれらに限定されない。2−(2'−ヒドロキシ−5'−メチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−メチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2'−ヒドロキシ−3'−(3'',4'',5'',6''−テトラヒドロフタルイミドメチル)−5'−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−メチルフェニル)−5−クロロベンゾトリアゾール、2,4−ジヒドロキシベンゾフェノン、2,2'−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)、(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、(2(2'−ヒドロキシ−3',5'−ジ−tert−アミルフェニル)−5−クロロベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N'−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトなどが挙げられる。特に(2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2(2'−ヒドロキシ−3',5'−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、(2(2'−ヒドロキシ−3',5'−ジ−tert−アミルフェニル)−5−クロロベンゾトリアゾール、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N'−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジンなどのヒドラジン系の金属不活性剤やトリス(2,4−ジ−tert−ブチルフェニル)フォスファイトなどの燐系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースアシレートに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmが更に好ましい。
【0051】
次に下記一般式(VII)で表される紫外線吸収剤について詳しく説明する。
一般式(VII) Q1−Q2−OH
(式中、Q1は1,3,5−トリアジン環、Q2は芳香族環を表す。)

一般式(VII)としてさらに好ましくは下記一般式(VII−A)で表される化合物である。
【0052】
【化26】

【0053】
(VII−A)式中さらに好ましくは、R1 は炭素原子数1〜18のアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;フェニル基、OH、炭素原子数1〜18のアルコキシ基、炭素原子数5〜12のシクロアルコキシ基、炭素原子数3〜18のアルケニルオキシ基、ハロゲン原子、−COOH、−COOR4 、−O−CO−R5 、−O−CO−O−R6 、−CO−NH2 、−CO−NHR7 、−CO−N(R7 )(R8 )、CN、NH2 、NHR7 、−N(R7 )(R8 )、−NH−CO−R5 、フェノキシ基、炭素原子数1〜18のアルキル基で置換されたフェノキシ基、フェニル−炭素原子数1〜4のアルコキシ基、炭素原子数6〜15のビシクロアルコキシ基、炭素原子数6〜15のビシクロアルキルアルコキシ基、炭素原子数6〜15のビシクロアルケニルアルコキシ基、または炭素原子数6〜15のトリシクロアルコキシ基で置換された炭素原子数1〜18のアルキル基;OH、炭素原子数1〜4のアルキル基、炭素原子数2〜6のアルケニル基または−O−CO−R5 で置換された炭素原子数5〜12のシクロアルキル基;グリシジル基;−CO−R9 または−SO2 −R10を表すか;あるいはR1 は1以上の酸素原子で中断されたおよび/またはOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換された炭素原子数3〜50のアルキル基を表すか;あるいはR1は−A;−CH2−CH(XA)−CH2−O−R12;−CR13R'13−(CH2m−X−A;−CH2−CH(OA)−R14;−CH2−CH(OH)−CH2−XA;
【化27】

−CR15R'15−C(=CH2)−R"15;−CR13R'13−(CH2m−CO−X−A;−CR13R'13−(CH2m−CO−O−CR15R'15−C(=CH2)−R"15または−CO−O−CR15R'15−C(=CH2)−R"15(式中、Aは−CO−CR16=CH−R17を表す。)で表される定義の一つを表し;基R2は、互いに独立して、炭素原子数6〜18のアルキル基;炭素原子数2〜6のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;COOR4;CN;−NH−CO−R5;ハロゲン原子;トリフルオロメチル基;−O−R3を表し;R3はR1に対して与えられた定義を表し;R4は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表すか;あるいはR4は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R5はH;炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;炭素原子数5〜12のシクロアルキル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルケニル基;炭素原子数6〜15のトリシクロアルキル基を表し;R6はH;炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表し;R7およびR8は互いに独立して炭素原子数1〜12のアルキル基;炭素原子数3〜12のアルコキシアルキル基;炭素原子数4〜16のジアルキルアミノアルキル基を表すか;または炭素原子数5〜12のシクロアルキル基を表し;あるいはR7およびR8は一緒になって炭素原子数3〜9のアルキレン基、炭素原子数3〜9のオキサアルキレン基または炭素原子数3〜9のアザアルキレン基を表し;R9は炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;フェニル基;炭素原子数5〜12のシクロアルキル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルキルアルキル基、炭素原子数6〜15のビシクロアルケニル基;または炭素原子数6〜15のトリシクロアルキル基を表し;R10は炭素原子数1〜12のアルキル基;フェニル基;ナフチル基;または炭素原子数7〜14のアルキルフェニル基を表し;基R11は互いに独立してH;炭素原子数1〜18のアルキル基;炭素原子数3〜6のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;ハロゲン原子;炭素原子数1〜18のアルコキシ基を表し;R12は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数3〜8のアルケノキシ基、ハロゲン原子またはトリフルオロメチル基で1〜3回置換されたフェニル基を表すか;または炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数6〜15のトリシクロアルキル基;炭素原子数6〜15のビシクロアルキル基;炭素原子数6〜15のビシクロアルキルアルキル基;炭素原子数6〜15のビシクロアルケニルアルキル基;−CO−R5を表し;またはR12は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R13およびR'13は互いに独立してH;炭素原子数1〜18のアルキル基;フェニル基を表し;R14は炭素原子数1〜18のアルキル基;炭素原子数3〜12のアルコキシアルキル基;フェニル基;フェニル−炭素原子数1〜4のアルキル基を表し;R15、R'15およびR"15は互いに独立してHまたはCH3を表し;R16はH;−CH2−COO−R4;炭素原子数1〜4のアルキル基;またはCNを表し;R17はH;−COOR4;炭素原子数1〜17のアルキル基;またはフェニル基を表し;Xは−NH−;−NR7−;−O−;−NH−(CH2p−NH−;または−O−(CH2q−NH−を表し;および指数mは数0−19を表し;nは数1−8を表し;pは数0〜4を表し;qは数2〜4を表す;但し一般式(VII−A)中、R1、R2およびR11の少なくとも1つが2個以上の炭素原子を含む、である。
【0054】
さらに一般式(VII−A)の化合物を説明する。
アルキル基としての基R1〜R10、R12〜R14、R16およびR17は、枝分かれもしくは枝分かれされたアルキル基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、第二ブチル基、イソブチル基、第三ブチル基、2−エチルブチル基、n−ペンチル基、イソペンチル基、1−メチルペンチル基、1,3−ジメチルブチル基、n−ヘキシル基、1−メチルヘキシル基、n−ヘプチル基、イソヘプチル基、1,1,3,3−テトラメチルブチル基、1−メチルヘプチル基、3−メチルヘプチル基、n−オクチル基、2−エチルヘキシル基、1,1,3−トリメチルヘキシル基、1,1,3,3−テトラメチルペンチル基、ノニル基、デシル基、ウンデシル基、1−メチルウンデシル基、ドデシル基、1,1,3,3,5,5−ヘキサメチルヘキシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基またはオクタデシル基である。
【0055】
炭素原子数5〜12のシクロアルキル基としてのR1、R3〜R9およびR12は例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基である。好ましいのもはシクロペンチル基、シクロヘキシル基、シクロオクチル基およびシクロドデシル基である。
【0056】
アルケニル基としてのR6、R9、R11およびR12は特にアリル基、イソプロペニル基、2−ブテニル基、3−ブテニル基、イソブテニル基、n−ペンタ−2,4−ジエチル基、3−メチル−ブテ−2−エニル基、n−オクテ−2−エニル基、n−ドデセ−2−エニル基、イソ−ドデセニル基、n−ドデセ−2−エニル基およびn−オクタデセ−4−エニル基が含まれる。
【0057】
置換されたアルキル基、シクロアルキル基またはフェニル基の置換基の数は1または2以上であり、結合している炭素原子において(α−位において)または他の炭素原子において置換基をもつことができ;置換基がヘテロ原子によって(例えばアルコキシ基)結合する場合、その置換基の結合位置は好ましくはα−位以外であり、また、置換されたアルキル基の炭素数は好ましくは2以上、より好ましくは3以上である。2以上の置換基は好ましくは異なる炭素原子と結合する。
【0058】
−O−、−NH−、−NR7−、−S−により中断されたアルキル基はこれらの基の1以上で中断されていてもよく、それぞれの場合一般に一つの結合中に1つの基が挿入されており、およびヘテロ−ヘテロ結合、例えばO−O、S−S、NH−NH等は生じず;中断されたアルキル基がさらに置換されている場合、置換基は一般にヘテロ原子に対してα位にない。1つの基の中で2以上の−O−、−NH−、−NR7−、−S−のタイプの中断する基が生じる場合、それらは一般に同一である。
【0059】
アリール基は、一般に芳香族炭化水素基であり、例えばフェニル基、ビフェニルイル基またはナフチル基であり、好ましくはフェニル基およびビフェニルイル基である。アルアルキルは一般にアリール基、特にフェニル基により置換されたアルキル基であり;従って炭素原子数7〜20のアルアルキルは、例えばベンジル基、α−メチルベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基およびフェニルヘキシル基を含み;炭素原子数7〜11のフェニルアルキル基は好ましくはベンジル基、α−メチルベンジル基およびα,α−ジメチルベンジル基である。
【0060】
アルキルフェニル基およびアルキルフェノキシ基はそれぞれアルキル基で置換されたフェニル基またはフェノキシ基である。
【0061】
ハロゲン置換基となるハロゲン原子はフッ素原子、塩素原子、臭素原子、またはヨウ素原子であり、より好ましいものはフッ素原子または塩素原子であり特に塩素原子であることが好ましい。
【0062】
炭素原子数1〜20のアルキレン基は例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等である。ここにアルキル鎖はまた枝分かれでき、例えばイソプロピレン基である。
【0063】
炭素原子数4〜12のシクロアルケニル基は、例えば、2−シクロブテニ−2−イル基、2−シクロペンテニ−1−イル基、2,4−シクロペンタジエニ−1−イル基、2−シクロヘキセ−1−イル基、2−シクロヘプテニ−1−イル基、または2−シクロオクテニ−1−イル基である。
【0064】
炭素原子数6〜15のビシクロアルキル基は、例えば、ボルニル基、ノルボルニル基、[2.2.2]ビシクロオクチル基である。ボルニル基およびノルボルニル基、特にボルニル基およびノルボルニ−2−イル基が 好ましい。
【0065】
炭素原子数6〜15のビシクロアルコキシ基は、例えばボルニルオキシ基またはノルボルニ−2−イルオキシ基である。
【0066】
炭素原子数6〜15のビシクロアルキル−アルキル基または−アルコキシ基は、ビシクロアルキル基で置換されたアルキル基またはアルコキシ基で、炭素原子の総数が6〜15であるものであり;具体例はノルボルナン−2−メチル基およびノルボルニル−2−メトキシ基である。
【0067】
炭素原子数6〜15のビシクロアルケニル基は、例えば、ノルボルネニル基、ノルボルナジエニル基である。好ましいものは、ノルボルネニル基、特にノルボルネ−5−エン基である。
【0068】
炭素原子数6〜15のビシクロアルケニルアルコキシ基は、ビシクロアルケニル基で置換されたアルコキシ基で、炭素原子の総数が6〜15であるものであり;例えばノルボルネ−5−エン−2−メトキシ基である。
【0069】
炭素原子数6〜15のトリシクロアルキル基は、例えば、1−アダマンチル基、2−アダマンチル基である。好ましいものは1−アダマンチル基である。
【0070】
炭素原子数6〜15のトリシクロアルコキシ基は、例えば、アダマンチルオキシ基である。炭素原子数3〜12のヘテロアリール基は、好ましくは、ピリジニル基、ピリミジニル基、トリアジニル基、ピロリル基、フラニル基、チオフェニルまたはキノリニル基である。
【0071】
式(VII−A)で表される化合物はさらに好ましくは、R1は炭素原子数1〜18のアルキル基;炭素原子数5〜12のシクロアルキル基;炭素原子数3〜12のアルケニル基;フェニル基;フェニル基、OH、炭素原子数1〜18のアルコキシ基、炭素原子数5〜12のシクロアルコキシ基、炭素原子数3〜18のアルケニルオキシ基、ハロゲン原子、−COOH、−COOR4、−O−CO−R5、−O−CO−O−R6、−CO−NH2、−CO−NHR7、−CO−N(R7)(R8)、CN、NH2、NHR7、−N(R7)(R8)、−NH−CO−R5、フェノキシ基、炭素原子数1〜18のアルキル基で置換されたフェノキシ基、フェニル−炭素原子数1〜4のアルコキシ基、ボルニルオキシ基、ノルボルニ−2−イルオキシ基、ノルボルニル−2−メトキシ基、ノルボルネ−5−エン−2−メトキシ基、アダマンチルオキシ基で置換された炭素原子数1〜18のアルキル基;OH、炭素原子数1〜4のアルキル基、炭素原子数2〜6のアルケニル基および/または−O−CO−R5で置換された炭素原子数5〜12のシクロアルキル基;グリシジル基;−CO−R9または−SO2−R10を表すか;あるいはR1は1以上の酸素原子で中断されたおよび/またはOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換された炭素原子数3〜50のアルキル基を表すか;あるいはR1は−A;−CH2−CH(XA)−CH2−O−R12;−CR13R'13−(CH2m−X−A;−CH2−CH(OA)−R14;−CH2−CH(OH)−CH2−XA;
【0072】
【化28】

−CR15R'15−C(=CH2)−R"15;−CR13R'13−(CH2m−CO−X−A;−CR13R'13−(CH2m−CO−O−CR15R'15−C(=CH2)−R"15または−CO−O−CR15R'15−C(=CH2)−R"15(式中、Aは−CO−CR16=CH−R17を表す。)で表される定義の一つを表し;基R2は炭素原子数6〜18のアルキル基;炭素原子数2〜6のアルケニル基;フェニル基;−O−R3または−NH−CO−R5を表し;ならびに基R3は互いに独立してR1に対して与えられた定義を表し;R4は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表すか;あるいはR4は1以上の−O−、−NH−、−NR7−、−S−で中断されおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R5はH;炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;炭素原子数5〜12のシクロアルキル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;ノルボルニ−2−イル基;ノルボルネ−5−エニ−2−イル基;アダマンチル基を表し;R6はH;炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基を表し;R7およびR8は互いに独立して炭素原子数1〜12のアルキル基;炭素原子数3〜12のアルコキシアルキル基;炭素原子数4〜16のジアルキルアミノアルキル基を表すか;または炭素原子数5〜12のシクロアルキル基を表し;あるいはR7およびR8は一緒になって炭素原子数3〜9のアルキレン基;炭素原子数3〜9のオキサアルキレン基または炭素原子数3〜9のアザアルキレン基を表し;R9は炭素原子数1〜18のアルキル基;炭素原子数2〜18のアルケニル基;フェニル基;炭素原子数5〜12のシクロアルキル基;炭素原子数7〜11のフェニルアルキル基;ノルボルニ−2−イル基;ノルボルネ−5−エニ−2−イル基;アダマンチル基を表し;R10は炭素原子数1〜12のアルキル基;フェニル基;ナフチル基;または炭素原子数7〜14のアルキルフェニル基を表し;基R11は互いに独立してH;炭素原子数1〜18のアルキル基;または炭素原子数7〜11のフェニルアルキル基を表し;R12は炭素原子数1〜18のアルキル基;炭素原子数3〜18のアルケニル基;フェニル基;炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数3〜8のアルケノキシ基、ハロゲン原子またはトリフルオロメチル基で1〜3回置換されたフェニル基を表すか;または炭素原子数7〜11のフェニルアルキル基;炭素原子数5〜12のシクロアルキル基;1−アダマンチル基;2−アダマンチル基;ノルボルニル基;ノルボルナン−2−メチル−;−CO−R5を表し;またはR12は1以上の−O−、−NH−、−NR7−、−S−で中断されたおよびOH、フェノキシ基もしくは炭素原子数7〜18のアルキルフェノキシ基で置換されていてもよい、炭素原子数3〜50のアルキル基を表し;R13およびR'13は互いに独立してH;炭素原子数1〜18のアルキル基;フェニル基を表し;R14は炭素原子数1〜18のアルキル基;炭素原子数3〜12のアルコキシアルキル基;フェニル基;フェニル−炭素原子数1〜4のアルキル基を表し;R15、R'15およびR"15は互いに独立してHまたはCH3を表し;R16はH;−CH2−COO−R4;炭素原子数1〜4のアルキル基;またはCNを表し;R17はH;−COOR4;炭素原子数1〜17のアルキル基;またはフェニル基を表し;Xは−NH−;−NR7−;−O−;−NH−(CH2p−NH−;または−O−(CH2q−NH−を表し;および指数mは数0−19を表し;nは数1−8を表し;pは数0−4を表し;qは数2−4を表す、である。
【0073】
一般式(VII)および(VII−A)で表される化合物は慣用の方法により、例えば欧州特許第434608号公報またはH.BrunettiおよびC.E.Luthi, Helv. Chim.Acta 55, 1566(1972) による刊行物に示される方法に従ってまたはそれと同様に、相当するフェノールへのハロトリアジンのフリーデル−クラフツ付加によって、公知の化合物と同様に得ることができる。
【0074】
次に、一般式(VII)および(VII−A)で表される化合物の好ましい例を下記に示すが、本発明で用いることができる化合物はこれらの具体例に限定されるものではない。
【0075】
【化29】

【0076】
【化30】

【0077】
また、その他にも旭電化、プラスチック用添加剤概要、「アデカスタブ」のカタログにある光安定剤も使用できる。チバ・スペシャル・ケミカルズのチヌビン製品案内にある光安定剤、紫外線吸収剤も使用できる。SHIPROKASEI KAISYAのカタログにあるSEESORB、SEENOX、SEETECなども使用できる。城北化学工業のUV吸収剤、酸化防止剤も使用することができる。共同薬品のVIOSORB、吉富製薬の紫外線吸収剤も使用することができる。
【0078】
また、さらには、特開2001−187825号公報に記載のように、ベンゾトリアゾール系で融点が20℃以下である紫外線吸収化合物、分子内にエステル基を有する紫外線吸収化合物を使用すること、融点が20℃以下である紫外線吸収化合物と融点が20℃より高い紫外線吸収化合物とを併用すること、ベンゾトリアゾール系で9.2以上の分配係数を有する紫外線吸収剤を使用することも好ましい。
なかでも特に、融点が20℃以下である紫外線吸収化合物や、9.2以上の分配係数を有する紫外線吸収剤を使用すると、Rth値の低下効果が大きくなり、好ましい。また、分配係数が9.2以上の紫外線吸収剤を使用すると、疎水性が高いため、フィルム製膜時のブリードアウトを抑制する効果もあり好ましい。分配係数は、9.3以上であることがさらに好ましい。
分配係数とは以下の式で定義できるオクタノールと水の分配率を表す。
logPo/wPo/w=So/Sw
上式において、Soは25℃でn−オクタノール中での該有機化合物の溶解度であり、Swは25℃で純水中での該有機化合物の溶解度である。
これらはこの通りにn−オクタノールと水を用いて測定することもできるが、本発明においては、これら分配係数は、logP値推算プログラム(Daylight Chemical Information Systems社のPC Modelsに組み込まれたCLOGPプログラム)を使用して推算値を求めることができる。
【0079】
本発明では、0.1g/リットルの濃度で溶媒に溶解し1cm角のセルで溶媒のみの試料を比較として分光吸収スペクトルを測定したときの透過率が50%となる波長が、392〜420nmの範囲にある分光吸収スペクトルを有する紫外線吸収剤および該波長が360〜390nmの範囲にある分光吸収スペクトルを有する紫外線吸収剤を使用することも好ましい。
【0080】
なお、紫外線吸収剤の添加は予めセルロースアシレートの混合溶液を作製するときに添加してもよいが、セルロースアシレートのドープを予め作製し、流延までのいずれかの時点で添加されてもよい。後者の場合、セルロースアシレートを溶剤に溶解させたドープ液と、紫外線吸収剤と少量のセルロースアシレートとを溶解させた溶液をインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。後添加する紫外線吸収剤には、同時にマット剤を混合しても良いし、そのレターデーション制御剤、可塑剤、劣化防止剤、剥離促進剤等の添加物を混合しても良い。インラインミキサーを用いる場合、高圧下で濃縮溶解することが好ましく、加圧容器の種類は特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器はそのほか圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく例えば30〜150℃の範囲に設定するのが好適である。又、圧力は設定温度で、溶剤が沸騰しないように調整される。溶解後は冷却しながら容器から取り出すか、または容器からポンプ等で抜き出して熱交換器などで冷却し、これを製膜に供する。このときの冷却温度は常温まで冷却してもよいが、沸点より5〜10℃低い温度まで冷却し、その温度のままキャスティングを行うほうが、ドープ粘度を低減できるためより好ましい。
【0081】
(logP)
本発明においては第1の添加剤のlogPが第2の添加剤のlogPよりも小さいことが好ましい。LogPにおけるPとはオクタノール−水系での分配係数を表し、n−オクタノールと水を用いて測定することもできるが、本発明においては、これら分配係数は、logP値推算プログラム(Daylight Chemical Information Systems 社のPC Modelsに組み込まれたCLOGPプログラム)を使用して推算値を求めることができる。
【0082】
すなわち、第1の添加剤溶液と第2の添加剤溶液のlogPは下記の関係を満たすことが好ましい。
第1の添加剤のlogP<第2の添加剤のlogP
さらに好ましくは、下記の関係を満たすことが好ましい。
第1の添加剤のlogP+1<第2添加剤のlogP
【0083】
(マット剤微粒子)
本発明のセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。これらの微粒子の中ではケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子サイズが1nm〜20nmであり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径は1nm〜20nmであることが好ましく、5nm〜16nmと小さいものがフィルムのヘイズを下げることができて、より好ましい。見かけ比重は90〜200g/リットルが好ましく、100〜200g/リットルがさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
【0084】
これらの微粒子は、通常平均粒子サイズが0.05〜2.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.05〜2.0μmの凹凸を形成させる。2次平均粒子サイズは0.05μm〜1.0μmが好ましく、0.1μm〜0.7μmがさらに好ましく、0.1μm〜0.4μmが最も好ましい。1次、2次粒子サイズはフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒子サイズとした。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子サイズとする。
【0085】
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976およびR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
【0086】
これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムのヘイズを低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。
【0087】
本発明で用いるマット剤は以下の方法により調製することが好ましい。すなわち、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意したセルロースアシレート濃度が5質量%未満で分子量200〜2000の第1の添加剤溶液に加えて攪拌溶解した後、さらに第2の添加剤溶液を加えて攪拌溶解した後、さらにメインのセルロースアシレートドープ液と混合する方法が好ましい。
【0088】
マット剤の表面は疎水化処理されているため、疎水的な添加剤が添加されると、マット剤の表面に添加剤が吸着され、これを核として、添加剤の凝集物が発生しやすい。相対的に親水的な添加剤を予めマット剤分散液と混合したのち、疎水的な添加剤を混合することにより、マット剤表面での添加剤の凝集を抑制することができ、ヘイズが低く、液晶表示装置に組み込んだ際の黒表示における光漏れが少なく好ましい。
【0089】
マット剤分散剤と添加剤溶液の混合、およびセルロースアシレート液との混合にはインラインミキサーを使用することが好ましい。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が同量の添加量に対する濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は0.001〜1.0質量%が好ましく、0.005〜0.5質量%が更に好ましく、0.01〜0.1質量%が最も好ましい。
【0090】
(セルロースアシレート)
本発明のセルロースアシレートフィルムに用いられるセルロースアシレートの原料綿は、公知の原料を用いることができる(例えば、発明協会公開技法2001−1745)。また、セルロースアシレートの合成も公知の方法で行なうことができる(例えば、右田他、木材化学180〜190頁(共立出版、1968年))。セルロースアシレートの粘度平均重合度は200〜700が好ましく250〜500が更に好ましく250〜350が最も好ましい。また、本発明に使用するセルロースエステルは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.5〜5.0であることが好ましく、2.0〜4.5であることがさらに好ましく、3.0〜4.0であることが最も好ましい。
【0091】
該セルロースアシレートのアシル基は、特に制限は無いが、アセチル基、プロピオニル基、ブチリル基を用いることが好ましく、特にアセチル基が好ましい。全アシル基の置換度は1.5〜3.0が好ましく、2.7〜3.0がさらに好ましく、2.8〜2.95が特に好ましい。本明細書において、アシル基の置換度とは、ASTM D817に従って算出した値である。
【0092】
アシル基がアセチル基であることが最も好ましく、アシル基がアセチル基であるセルロースアセテートを用いる場合には、酢化度が59.0〜62.5%が好ましく、59.0〜61.5%がさらに好ましい。酢化度がこの範囲にあると、流延時の搬送テンションによってReが所望の値より大きくなることもなく、面内ばらつきも少なく、温湿度によってレターデーション値の変化も少ない。
6位のアシル基の置換度は、Re、Rthのばらつきを抑制する観点から、0.9以上が好ましい。
【0093】
また、セルロースの水酸基を炭素原子数が2以上のアシル基で置換して得られたセルロースアシレートからなるフィルムにおいて、2位のアシル基の置換度をDS2、3位のアシル基の置換度をDS3、6位のアシル基の置換度をDS6とする時、下記式(III)および(IV)を満たすことが好ましい。
(III) 2.0≦DS2+DS3+DS6≦3.0
(IV) 0.310≦DS6/(DS2+DS3+DS6)
【0094】
また、セルロースアシレートが、セルロースの水酸基がアセチル基および炭素原子数が3〜22のアシル基で置換されたセルロースアシレートからなり、かつ該セルロースアシレートのアセチル基の置換度Aおよび炭素原子数が3〜22のアシル基の置換度Bが、下記式(V)を満たすことが好ましい。
式(V):2.0≦A+B≦3.0
【0095】
(セルロースアシレートフィルムの製造方法)
次に本発明のセルロースアシレートフィルムの製造方法について説明する。
本発明の製造方法は、第1の添加剤の溶液とマット剤の溶液とを混合した後、これに第2の添加剤の溶液を混合し、さらにこれにセルロースアシレート溶液を混合して、得られる液を流延して製膜する工程を有することを特徴とする。上記のうち第一の添加剤、第二添加剤とは、前述の第一の添加剤、第二添加剤と同義である。
【0096】
本発明の製造方法では、ソルベントキャスト法によりセルロースアシレートフィルムを製造することが好ましい。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。エーテル、ケトンおよびエステルは、環状構造を有していてもよい。エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その炭素原子数は、いずれかの官能基を有する化合物の規定範囲内であればよい。
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。
ハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
二種類以上の有機溶媒を混合して用いてもよい。
【0097】
セルロースアシレート溶液は、一般的な方法で調製することができる。一般的な方法とは、0℃以上の温度(常温または高温)で、処理することを意味する。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整する。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを攪拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で攪拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
【0098】
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は攪拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に攪拌翼を設けて、これを用いて攪拌することが好ましい。攪拌翼は、容器の壁付近に達する長さのものが好ましい。攪拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
【0099】
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にもセルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアシレートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では最初に、室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。
セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
【0100】
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。このように冷却すると、セルロースアシレートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
【0101】
さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアセテートが溶解する。昇温は、室温中に放置するだけでもよし、温浴中で加温してもよい。
加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
【0102】
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時の減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
なお、セルロースアシレート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量測定(DSC)によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保存する必要がある。ただし、この疑似相転移温度は、セルロースアシレートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
【0103】
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセルロースアシレテートフィルムを製造する。
ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延および乾燥方法については、米国特許第2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号、同2,739,070号、英国特許第640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号、同62−115035号の各公報に記載がある。
ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100から160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
【0104】
セルロースアシレートフィルムには、機械的物性を改良するため、または乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステルまたはカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルフォスフェート(TPP)およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)およびO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEPおよびDPPが特に好ましい。
可塑剤の添加量は、セルロースエステルの量の0.1〜25質量%であることが好ましく、1〜20質量%であることがさらに好ましく、3〜15質量%であることが最も好ましい。
【0105】
セルロースアシレートフィルムには、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、劣化防止剤添加による効果が発現し、フィルム表面への劣化防止剤のブリードアウト(滲み出し)を抑制する観点から、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
【0106】
(セルロースアシレートフィルムの延伸処理)
セルロースアシレートフィルムは、延伸処理によりレターデーションを調整することができる。延伸倍率は、3〜100%であることが好ましい。
延伸方法は請求の範囲を逸脱しない範囲で既存の方法を用いることができるが、面内の均一性の観点から特にテンター延伸が好ましく用いられる。本発明のセルロースアシレートフィルムは少なくとも100cm以上の幅であることが好ましく、全幅のRe値のばらつきが±5nmであることが好ましく、±3nmであることが更に好ましい。また、Rth値のバラツキは±10nmが好ましく、±5nmであることが更に好ましい。また、長さ方向のRe値、およびRth値のバラツキも幅方向のバラツキの範囲内であることが好ましい。
また延伸処理は製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理しても良い。前者の場合には残留溶剤量を含んだ状態で延伸を行っても良く、延伸開始時の残留溶剤量が2〜50%であることが好ましい。延伸開始時の残留溶剤量とは、テンター延伸であれば、ウェブ(生乾きのドープ)の両端をクリップで掴み始めた時の残留溶剤量のことであり、5〜50%で延伸を開始することがさらに好ましく、10〜45%で延伸を開始することが特に好ましい。なお、残留溶剤量は下記式で計算する。
残留溶剤量=100×{(ウェブ中の溶剤量)/(ウェブの全体量)}
また、この際、フィルムを長手方向に搬送しながら長手方向と直交する方向に延伸して該フィルムの遅相軸が該フィルムの長尺方向に対して直交するようにすることが好ましい。
延伸温度は延伸時の残留溶剤量と膜厚によって適当な条件を選ぶことができる。
残留溶剤を含む状態で延伸した場合には、延伸後に乾燥させることが好ましい。乾燥方法は前記フィルムの製膜に記載の方法に準じて行うことができる。
延伸後のセルロースアシレートフィルムの厚さは、110μm以下、好ましくは40〜110μmであり、より好ましくは60〜110μmであり、80〜110μmであることが最も好ましい。この膜厚は本発明の光学補償シートの膜厚に相当する。
【0107】
(380nmにおける透過率)
本発明のセルロースアシレートフィルムは、380nmにおける透過率が8%以下であることが好ましく、5%以下がさらに好ましい。380nmにおける透過率の低い光学フィルムが偏光板を作製したときの耐光性に優れるため好ましい。
380nmにおける透過率は、例えば島津自記分光光度計UV3100を用い、フィルムの分光吸収スペクトルを測定し、380nmにおける透過率を求めることができる。
【0108】
(フィルムのレターデーション)
本明細書において、Re、Rthは各々、正面のリターデーションおよび厚さ方向のリターデーションを表す。ReはKOBRA 21ADH(王子計測機器(株)製)において波長590nmの光をフィルム法線方向に入射させて測定される。Rthは前記Re、正面の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長590nmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長590nmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
本発明では、セルロースアシレートフィルムのReレターデーション値を好ましくは20〜200nmに、そしてRthレターデーション値を好ましくは70〜400nmに調節する。また、本発明ではRe/Rth比を好ましくは0.1〜0.8に調節する。さらに好ましくは、Reレターデーション値を30〜100nmに、Rthレターデーション値を100〜300nm、そしてRe/Rth比を0.25〜0.6に調節する。これらの調整はレターデーション発現剤の種類、添加量およびセルロースアシレートフィルムの延伸条件により行うことができる。
【0109】
(ヘイズ)
本発明のセルロースアシレートフィルムは、例えば、ヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定した値が0〜1.0であることが好ましい。さらに好ましくは、0〜0.8である。
【0110】
([光漏れ率)
本発明のセルロースアシレートは偏光解消性ができるだけ低いことが好ましい。フィルムの偏光解消性は2枚の偏光板に挟んで一定の輝度の光を照射した際の輝度から求められる光漏れ率により評価することができる。光漏れ率(%)は、(互いにクロスニコルに配置された2枚の偏光板にフィルムを挟んだ際の輝度)/(互いにパラニコルに配置された2枚の偏光板にフィルムを挟んだ際の輝度)×100により求められる。
本発明のセルロースアシレートフィルムの光漏れ率は0.01%〜0.50%が好ましく、0.05%〜0.30%がさらに好ましい。
【0111】
(面状故障)
本発明のセルロースアシレートフィルムは、例えば、セルロースエステルフィルムをサンプリングし、得られたフィルムの両端部30cm幅、長さ1m上に存在する30μm以上の異物あるいは凝集物の数を数えて求めた値が0〜50であることが好ましい。さらに好ましくは0〜40、特に好ましくは0〜30である。
【0112】
(透湿度)
本発明のセルロースアシレートフィルムの透湿度、例えば、試料70mmΦを25℃・相対湿度90%で24時間調湿し、透湿試験装置(KK−709007、東洋精機(株))にてJIS Z−0208に従って、単位面積あたりの水分量を算出(g/m2)し、
透湿度=調湿後質量−調湿前質量
で求めることができる。25℃・相対湿度90%での透湿度は20g/m2・24hr〜250g/m2・24hrであることが好ましく、さらには20g/m2・24hr〜230g/m2・24hrであることが特に好ましい。
【0113】
(セルロースアシレートフィルムの表面処理)
セルロースアシレートフィルムの表面エネルギーを55〜75mN/mとするには、表面処理を施すことが好ましい。表面処理の例として、ケン化処理、プラズマ処理、火炎処理、および紫外線照射処理が挙げられる。ケン化処理には、酸ケン化処理およびアルカリケン化処理が含まれる。プラズマ処理にはコロナ放電処理およびグロー放電処理が含まれる。フィルムの平面性を保つために、これらの表面処理においては、セルロースアシレートフィルムの温度をガラス転移温度(Tg)以下、具体的には150℃以下とすることが好ましい。これらの表面処理後のセルロースアセテートフィルムの表面エネルギーは55〜75mN/mであることが好ましくい。
グロー放電処理は、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体は、上記のような条件においてプラズマ励起される気体であり、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類およびそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)30頁〜32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000keV下で20〜500kGyの照射エネルギーが用いられ、より好ましくは30〜500keV下で20〜300kGyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。
【0114】
アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液の槽に直接浸漬する方法または鹸化液をセルロースアシレートフィルム塗布する方法で実施することが好ましい。塗布方法としては、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法およびE型塗布法を挙げることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液の透明支持体に対して塗布するために濡れ性が良く、また鹸化液溶媒によって透明支持体表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒〜5分が好ましく、5秒〜5分がさらに好ましく、20秒〜3分が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。
【0115】
これらの方法で得られた固体の表面エネルギーは「ぬれの基礎と応用」(リアライズ社 1989.12.10発行)に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本発明のセルロースアシレートフィルムの場合、接触角法を用いることが好ましい。具体的には、表面エネルギーが既知である2種類の溶液をセルロースアシレートフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。
【0116】
セルロースアシレートフィルムに上記の表面処理を実施することにより、フィルムの表面エネルギーが55〜75mN/mであるセルロースアシレートフィルムを得ることができる。このセルロースアシレートフィルムを偏光板の透明保護膜とすることにより、偏光膜とセルロースアシレートフィルムの接着性を向上させることができる。また、本発明のセルロースアシレートフィルムをOCBモードの液晶表示装置に用いる場合、本発明の光学補償シートは、セルロースアシレートフィルム上に配向膜を形成し、その上に円盤状化合物もしくは棒状液晶化合物を含む光学異方性層を設けても良い。光学異方性層は、配向膜上に円盤状化合物(もしくは棒状液晶化合物)を配向させ、その配向状態を固定することにより形成する。このようにセルロースアシレートフィルム上に光学異方性層を設ける場合、従来ではセルロースアシレートフィルムと配向膜との接着性を確保するために、両者の間にゼラチン下塗り層を設ける必要があったが、本発明の、表面エネルギーが55〜75mN/mであるセルロースアシレートフィルムを用いることにより、ゼラチン下塗り層を不要とすることができる。
【0117】
[セルロースアシレートフィルムを用いた光学材料]
(光学補償シート)
以上説明した少なくとも一種のレターデーション発現剤を含んで延伸され、上記レターデーション値Re、Rth、およびRe/Rth比を満たし、膜厚が40μm〜110μmのセルロースアシレートフィルムは、一枚だけで光学補償シートとして機能する。
本発明のセルロースアシレートフィルムは、光学補償シートとして用いることが好ましい。
【0118】
(偏光板)
偏光板は、偏光膜およびその両側に配置された二枚の透明保護膜からなる。一方の保護膜として、上記のセルロースアシレートフィルムからなる光学補償シートを用いることができる。他方の保護膜は、通常のセルロースアセテートフィルムを用いてもよい。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜および染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
セルロースアシレートフィルムからなる光学補償シートの遅相軸と偏光膜の透過軸とは、実質的に平行になるように配置する。
【0119】
(反射防止層)
偏光板の、液晶セルと反対側に配置される透明保護膜には反射防止層を設けることが好ましい。特に本発明では、(1)透明保護膜上に少なくとも光散乱層と低屈折率層がこの順で積層した反射防止層、または、(2)透明保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられる。以下にそれらの好ましい例を順に記載する。
【0120】
(1)透明保護膜上に光散乱層と低屈折率層を設けた反射防止層
本発明の光散乱層には、マット粒子が分散しており、光散乱層のマット粒子以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.35〜1.49の範囲にあることが好ましい。本発明においては光散乱層は、防眩性とハードコート性を兼ね備えており、1層でもよいし、複数層、例えば2層〜4層で構成されていてもよい。
【0121】
反射防止層は、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成され、好ましい。また、C光源下での反射光の色味がa*値−2〜2、b*値−3〜3、380nm〜780nmの範囲内での反射率の最小値と最大値の比0.5〜0.99であることで、反射光の色味がニュートラルとなり、好ましい。またC光源下での透過光のb*値が0〜3とすることで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。また、面光源上と本発明の反射防止フィルムの間に120μm×40μmの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。
【0122】
本発明の反射防止層は、その光学特性として、鏡面反射率2.5%以下、透過率90%以上、60度光沢度70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%以下であることが最も好ましい。ヘイズ20%〜50%、内部ヘイズ/全ヘイズ値0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20%〜50%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5〜5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成され、好ましい。
【0123】
<低屈折率層>
反射防止フィルムの低屈折率層の屈折率は、1.20〜1.49であり、好ましくは1.30〜1.44の範囲にある。さらに、低屈折率層は下記数式(VI)を満たすことが低反射率化の点で好ましい。
数式(VI)
(m/4)×0.7<n1d1<(m/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
【0124】
本発明の低屈折率層を形成する素材について以下に説明する。
本発明の低屈折率層には、低屈折率バインダーとして、含フッ素ポリマーを含む。フッ素ポリマーとしては動摩擦係数0.03〜0.20、水に対する接触角90〜120°、純水の滑落角が70°以下の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。本発明の反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難く、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
【0125】
低屈折率層に用いられる含フッ素ポリマーとしてはパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
【0126】
含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
【0127】
架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
【0128】
また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
【0129】
上記のポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。
【0130】
<光散乱層>
光散乱層は、表面散乱および/または内部散乱による光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。従って、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、および必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。
【0131】
光散乱層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が不足となる。
【0132】
散乱層のバインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、および窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。
【0133】
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、上記のエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。
【0134】
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
【0135】
これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。
【0136】
ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することができる。
【0137】
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
【0138】
光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒子サイズが1〜10μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子が含有される。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。
マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
【0139】
また、粒子サイズの異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子サイズのマット粒子で防眩性を付与し、より小さな粒子サイズのマット粒子で別の光学特性を付与することが可能である。
【0140】
さらに、上記マット粒子の粒子サイズ分布としては単分散であることが最も好ましく、各粒子の粒子サイズは、それぞれ同一に近ければ近いほど良い。例えば平均粒子サイズよりも20%以上粒子サイズが大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子サイズ分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
【0141】
上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2となるように光散乱層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
【0142】
光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒子サイズが0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒子サイズは前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理またはチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒子サイズが光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
【0143】
光散乱層のバインダーおよび無機フィラーの混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を上記範囲とするには、バインダーおよび無機フィラーの種類および量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
【0144】
光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。
【0145】
(2)透明保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層
基体上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
又、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層および低屈折率層からなってもよい。
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等が挙げられる。又、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例えば、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。又膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
【0146】
<高屈折率層および中屈折率層>
反射防止膜の高い屈折率を有する層は、平均粒子サイズ100nm以下の高屈折率の無機化合物超微粒子およびマトリックスバインダーを少なくとも含有する硬化性膜から成る。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような超微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(特開2001−166104号公報等)、特定の分散剤併用(例えば、特開平11−153703号公報、米国特許第6,210,858号明細書、特開2002−2776069号公報等)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に、ラジカル重合性および/またはカチオン重合性の重合性基を少なくとも2個以上含有の多官能性化合物含有組成物、加水分解性基を含有の有機金属化合物およびその部分縮合体組成物から選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
又、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
高屈折率層の屈折率は、一般に1.70〜2.20である。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。また、厚さは5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
【0147】
<低屈折率層>
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55である。好ましくは1.30〜1.50である。
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
例えば、特開平9−222503号公報段落[0018]〜[0026]、同11−38202号公報段落[0019]〜[0030]、特開2001−40284号公報段落[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造をを有するものが好ましい。例えば、反応性シリコーン(例えば、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋または重合性基を有する含フッ素および/またはシロキサンのポリマーの架橋または重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより実施することが好ましい。
【0148】
また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
【0149】
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
【0150】
(3)反射防止層の他の層
さらに、ハードコート層、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
【0151】
<ハードコート層>
ハードコート層は、反射防止層を設けた透明保護膜に物理強度を付与するために、透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。
ハードコート層は、光および/または熱の硬化性化合物の架橋反応、または、重合反応により形成されることが好ましい。
硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。
ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第O0/46617号パンフレット等記載のものが挙げられる。
【0152】
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。
ハードコート層は、平均粒子サイズ0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
【0153】
<帯電防止層>
帯電防止層を設ける場合には体積抵抗率が10-8(Ωcm-3)以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8(Ωcm-3)の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色しているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が着色してしまい好ましくない。着色のない金属酸化物を形成する金属としてZn,Ti,Al,In,Si,Mg,Ba,Mo,W,またはVをあげることができ、これれを主成分とした金属酸化物を用いることが好ましい。具体的な例としては、ZnO,TiO2,SnO2,Al23,In23,SiO2,MgO,BaO,MoO3,V25等、あるいはこれらの複合酸化物がよく、特にZnO,TiO2,およびSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl,In等の添加物、SnO2に対してはSb,Nb,ハロゲン元素等の添加、またTiO2に対してはNb,TA等の添加が効果的である。更にまた、特公昭59−6235号公報に記載の如く、他の結晶性金属粒子あるいは繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用しても良い。尚、体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできないが、体積抵抗値で10-8(Ωcm-3)以下の導電性を確保するためには、該導電層が概ね10-10(Ω/□)以下の表面抵抗値を有していればよく更に好ましくは10-8(Ω/□)である。導電層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、本明細書に記載の積層フィルムを形成する途中の段階で測定することができる。
【0154】
[液晶表示装置]
本発明のセルロースアシレートフィルムを用いた偏光板は、液晶表示装置に有利に用いられる。本発明の偏光板は、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、OCBモードまたはVAモードに好ましく用いることができる。
【0155】
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置である。OCBモードの液晶セルは、米国特許第4,583,825号、同5,410,422号の各明細書に開示されている。棒状液晶分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
【0156】
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
OCBモードおよびVAモードの液晶表示装置は、液晶セルおよびその両側に二枚の偏光板を配置してもよいし、VAモードの場合、偏光板をセルのバックライト側に配置してもよい。液晶セルは、二枚の電極基板の間に液晶を担持している。
【実施例】
【0157】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
【0158】
[実施例1] セルロースアシレートフィルム101の作製
<セルロースアセテート溶液の調製>
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液01を調製した。

―――――――――――――――――――――――――――――――――
セルロースアシレート溶液01の組成
―――――――――――――――――――――――――――――――――
アセチル化度2.86のセルロースアセテート 100.0質量部
トリフェニルフォスフェート(可塑剤) 8.0質量部
ビフェニルフォスフェート(可塑剤) 4.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
―――――――――――――――――――――――――――――――――
【0159】
<マット剤溶液11の調製>
下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤溶液を調製した

――――――――――――――――――――――――――――――――
マット剤溶液11の組成
――――――――――――――――――――――――――――――――
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液01 10.3質量部
――――――――――――――――――――――――――――――――
【0160】
<レターデーション発現剤21溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、レターデーション発現剤溶液を調製した。

―――――――――――――――――――――――――――――――
レターデーション発現剤溶液21の組成
―――――――――――――――――――――――――――――――
レターデーション発現剤(A−7) 10.9質量部
レターデーション発現剤(B−12) 9.0質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液01 12.8質量部
―――――――――――――――――――――――――――――――
【0161】
<紫外線吸収剤溶液31の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、レターデーション発現剤溶液を調製した。

―――――――――――――――――――――――――――――――
紫外線吸収剤溶液31の組成
―――――――――――――――――――――――――――――――
紫外線吸収剤(UV−19) 10.0質量部
メチレンクロリド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液01 12.8質量部
―――――――――――――――――――――――――――――――
【0162】
上記マット剤溶液を1.3質量部と紫外線吸収剤溶液1.4質量部をそれぞれを濾過後にインラインミキサーを用いて混合したのち、さらにレターデーション発現剤溶液6.2質量部を濾過後にインラインミキサーを用いて混合し、さらにセルロースアシレート溶液01を91.1質量部加えて、インラインミキサーを用いて混合し、バンド流延機を用いて流延した。残留溶剤含量38%でフィルムをバンドから剥離し、140℃の雰囲気温度でフィルムをテンターを用いて延伸倍率20%で横延伸したのち、130℃で30秒間保持した。延伸開始時の残留溶剤含量は10%であった。その後、クリップを外して130℃で40分間乾燥させ、セルロースアシレートフィルム101を製造した。作製されたセルロースアシレートフィルム101の残留溶剤量は0.1%であり、膜厚は81μmであった。
【0163】
[実施例2] セルロースアシレートフィルム102〜107の作製
レターデーション発現剤の種類、量および紫外線吸収剤の種類、添加量、および延伸倍率を表1のものに変更した以外はセルロースアシレートフィルム101と同様にしてセルロースアシレートフィルム102〜107を作製した。
【0164】
【化31】

【0165】
【化32】

【0166】
[比較例1〜3] セルロースアシレートフィルム201〜203の作製
実施例1のセルロースアシレートフィルム101の作製において紫外線吸収剤溶液31を添加しなかったこと以外は実施例1と同様にして、比較例のセルロースアシレートフィルム201を作製した。同様に、実施例2のセルロースアシレートフィルム104と106の作製において紫外線吸収剤溶液31を添加しなかったこと以外は実施例2と同様にして、比較例のセルロースアシレートフィルム202と203を作製した。
【0167】
【表1】

【0168】
[試験例1] セルロースアシレートフィルムの物性値の比較
(添加剤のlogP)
使用したレターデーション発現剤と紫外線吸収剤のlogPの値を表2に示す。これらの値はlogP値推算プログラム(Daylight Chemical Information Systems社のPC Modelsに組み込まれたCLOGPプログラム)を使用して求めた。
【0169】
【表2】

【0170】
(フィルム物性値の測定)
作製した各セルロースアセテートフィルムについて、KOBRA(21ADH、王子計測機器(株)製)を用いて、波長590nmにおけるReレターデーション値およびRthレターデーション値を測定した。
また、ヘイズと光漏れ率を以下のとおり測定した。結果を表3に示す。
【0171】
(1)ヘイズ
ヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定した。
【0172】
(2)光漏れ率
フィルムを2枚の偏光板の間に挟んで、遠藤科学(株)製フラットイルミネーターにより光を照射した。照射光の輝度は880cd/m2であった。2枚の偏光板をクロスニコルに配置した場合、およびパラニコルに配置した場合のそれぞれについて、(株)TOPON製スペクトロラジオメーターSR−3により、輝度を測定した。(互いにクロスニコルに配置された2枚の偏光板にフィルムを挟んだ際の輝度)/(互いにパラニコルに配置された2枚の偏光板にフィルムを挟んだ際の輝度)×100を計算することにより、光漏れ率(%)を求めた。
【0173】
【表3】

【0174】
表3の結果から本発明のセルロースアシレートフィルムはヘイズが低く、偏光解消が小さく好ましいことがわかった。
【0175】
[実施例3] 偏光板101の作製
(セルロースアシレートフィルムの鹸化処理)
実施例1で作製されたセルロースアシレートフィルム101を、1.3mol/Lの水酸化ナトリウム水溶液に、55℃で2分間浸漬し、次いで室温の水洗浴槽中で洗浄し、30℃で0.05mol/Lの硫酸を用いて中和した後、再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、セルロースアシレートフィルム101の表面を鹸化し、以下の偏光板試料作製に供した。
【0176】
また、市販のセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を同条件で鹸化し、以下の偏光板試料作製に供した。
【0177】
(偏光子の作製)
延伸したポリビニルアルコールフィルムに、ヨウ素を吸着させて偏光子を作製し、ポリビニルアルコール系接着剤を用いて、上記で鹸化処理したセルロースアシレートフィルム101を偏光子の片側に貼り付けた。偏光子の透過軸とセルロースアシレートフィルムの遅相軸とは平行になるように配置した。
さらに上記で鹸化処理したセルローストリアセテートフィルムを、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付けた。このようにして偏光板101を作製した。
【0178】
[実施例4] 偏光板102〜107の作製
セルロースアシレートフィルム102〜107についても実施例3と同様にして偏光板102〜107を作製した。
【0179】
[比較例4] 偏光板201〜203の作製
セルロースアシレートフィルム201〜203についても実施例3と同様にして偏光板201〜203を作製した。
【0180】
[実施例5] VA液晶表示装置の作製と評価1
(液晶セルの作製)
ポリビニルアルコール3質量%水溶液100質量部に、オクタデシルジメチルアンモニウムクロリド(カップリング剤)を1質量部添加した。これを、ITO電極付のガラス基板上にスピンコートし、160℃で熱処理した後、ラビング処理を施して、垂直配向膜を形成した。ラビング処理は、2枚のガラス基板において反対方向となるようにした。セルギャップ(d)が5μmとなるように2枚のガラス基板を向かい合わせた。セルギャップに、エステル系とエタン系を主成分とする液晶性化合物(Δn:0.08)を注入し、垂直配向液晶セルを作製した。Δnとdとの積は400nmであった。
【0181】
上記実施例4で作製した偏光板104を、25℃・相対湿度60%の温湿度条件で事前に調湿した後、防湿処理を施した袋に包装し、3日間放置した。袋はポリエチレンテレフタレート/アルミ/ポリエチレンの積層構造からなる包装材であり、透湿度は1×10-5g/m2・日以下であった。
【0182】
比較例4の偏光板202についても同様にして液晶表示装置を作製した。
本発明のセルロースアシレートフィルム104を含む偏光板104を使用した液晶表示装置は比較例のセルロースアシレートフィルム202を含む偏光板202を使用した液晶表示装置に対して、コントラストが高く、かつ輝点故障が少なく好ましいことがわかった。
【0183】
[実施例6] VA液晶表示装置の作製と評価2
図1の液晶表示装置を作製した。すなわち、観察方向(上)から上側偏光板、VAモード液晶セル(上基板、液晶層、下基板)、下側偏光板を積層し、さらにバックライト光源を配置した。以下の例では、上側偏光板に市販品の偏光板(HLC2−5618、(株)サンリッツ製)を用いて、下側偏光板に上で製造した偏光板を使用した。
【0184】
(液晶セルの作製)
液晶セルは、基板間のセルギャップを3.6μmとし、負の誘電率異方性を有する液晶材料(MLC6608、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のレターデーション(すなわち、記液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。
上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の上側偏光板30に、市販品のスーパーハイコントラスト品(HLC2−5618、(株)サンリッツ製)を、下側偏光板32に実施例3で作製した偏光板101を、本発明のセルロースアシレートフィルム101が液晶セル側となるように、粘着剤を介して、VAモードセル31の観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
【0185】
比較例4の偏光板201についても同様にして液晶表示装置を作製した。
本発明のセルロースアシレートフィルム101を含む偏光板101を使用した液晶表示装置は比較例のセルロースアシレートフィルム201を含む偏光板201を使用した液晶表示装置に対して、コントラストが高く、かつ輝点故障が少なく好ましいことがわかった。
【0186】
[実施例7] 光学補償機能を有する偏光板の作製
(1) 光学補償シートの作製
(セルロースアシレートフィルムの鹸化処理)
実施例2で作製したセルロースアシレートフィルム106上に、下記組成の液を5.2mL/m2塗布し、60℃で10秒間乾燥させた。フィルムの表面を流水で10秒洗浄し、25℃の空気を吹き付けることでフィルム表面を乾燥させた。
【0187】
(鹸化液の組成)
イソプロピルアルコール 818質量部
水 167質量部
プロピレングリコール 187質量部
日本エマルジョン(株)製"EMALEX" 10質量部
水酸化カリウム 67質量部
【0188】
(配向膜の形成)
鹸化処理したセルロースアシレートフィルム106の上に、下記の組成の塗布液を#14のワイヤーバーコーターで24mL/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、セルロースアシレートフィルム106の延伸方向(遅相軸とほぼ一致)と45゜の方向に、形成した膜にラビング処理を実施した。
【0189】
(配向膜塗布液の組成)
下記構造の変性ポリビニルアルコール 20質量部
水 360質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 1.0質量部
【0190】
【化33】

【0191】
(光学異方性層の形成)
配向膜上に、下記構造のディスコティック化合物91質量部、エチレンオキシド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)9質量部、セルロースアセテートブチレート(CAB531−1、イーストマン・ケミカル社製)1.5質量部、光重合開始剤(イルガキュア907、チバガイギー社製)3質量部、増感剤(カヤキュアーDETX、日本化薬(株)製)1質量部を、メチルエチルケトン214.2質量部に溶解した塗布液を、#3のワイヤーバーコーターで5.2mL/m2塗布した。これを金属の枠に貼り付けて、130℃の恒温槽中で2分間加熱し、ディスコティック化合物を配向させた。次に、90℃で120W/cm高圧水銀灯を用いて、1分間UV照射しディスコティック化合物を重合させた。その後、室温まで放冷した。このようにして、光学異方性層を形成し、光学補償シート106を得た。
【0192】
【化34】

【0193】
(光学補償シートの鹸化処理)
実施例3と同様にして光学補償シート106の鹸化処理を行った。
【0194】
(2) 偏光板の作製
(偏光子の作製)
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。次に、作製した光学補償シート106のセルロースアシレートフィルム106側を、ポリビニルアルコール系接着剤を用いて偏光子の片側に貼り付けた。セルロースアシレートフィルム106の遅相軸および偏光子の透過軸が平行になるように配置した。
【0195】
市販のセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を実施例3と同様に鹸化処理し、ポリビニルアルコール系接着剤を用いて、偏光子の反対側(光学補償シートを貼り付けなかった側)に貼り付けた。このようにして、偏光板106−2を作製した。
【0196】
[実施例8] 液晶表示装置の作製
(ベンド配向液晶セルの作製)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた2枚のガラス基板を、ラビング方向が平行となる配置で向かい合わせ、セルギャップを5.7μmに設定した。セルギャップにΔnが0.1396の液晶性化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。
【0197】
(液晶表示装置の作製)
作製したベンド配向セルを挟むように、楕円偏光板106−2を2枚貼り付けた。偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置した。
【0198】
本発明の偏光板を用いた液晶表示装置は、コントラストが高く、輝点欠陥が少なく好ましい画像を有していることがわかった。
【産業上の利用可能性】
【0199】
本発明は、透明性に優れ、液晶セルを光学的に補償するために充分な光学的異方性を有するセルロースアシレートフィルム、その効率の良い製造方法、および光学補償シートを提供する。
偏光板の保護膜は、一般にセルロースアセテートフィルムからなるが、本発明のフィルムを偏光板の一方の保護膜として用いると、偏光板の構成要素の数を増加することなく、偏光板に光学補償機能を追加することができる。
本発明の光学補償シートおよび本発明の光学補償シートを保護膜として用いた偏光板は、VAモードおよびOCBモードの液晶表示装置に、特に有利に用いることができる。
【図面の簡単な説明】
【0200】
【図1】本発明の液晶表示装置の一例を示す模式図である。
【符号の説明】
【0201】
30 上側偏光板
31 VAモード液晶セル
32 下側偏光板
33 セルロースアシレートフィルム
34 偏光子

【特許請求の範囲】
【請求項1】
第1の添加剤、第2の添加剤およびマット剤を含有するセルロースアシレートフィルムであって、前記マット剤近傍における前記第1の添加剤の濃度が前記第2の添加剤の濃度より大きいことを特徴とするセルロースアシレートフィルム。
【請求項2】
第1の添加剤の溶液とマット剤の溶液とを混合した後、これに第2の添加剤の溶液を混合し、さらにこれにセルロースアシレート溶液を混合して、得られる液を流延して製膜する工程を有することを特徴とするセルロースアシレートフィルムの製造方法。
【請求項3】
流延後、3〜100%の延伸倍率で延伸する工程を有することを特徴とする請求項2に記載の製造方法。
【請求項4】
請求項2または3に記載の方法で製造されたことを特徴とするセルロースアシレートフィルム。
【請求項5】
前記第1の添加剤のlogPが前記第2の添加剤のlogPよりも小さいこと(ここで、Pはオクタノール−水系での分配係数を表す)を特徴とする請求項1または4に記載のセルロースアシレートフィルム。
【請求項6】
前記第1の添加剤が紫外線吸収剤であり、前記第2の添加剤がレターデーション発現剤であることを特徴とする請求項1、4および5のいずれか一項に記載のセルロースアシレートフィルム。
【請求項7】
前記レターデーション発現剤が下記一般式(1)で表される化合物であることを特徴とする請求項6に記載のセルロースアシレートフィルム。
【化1】

(式中、Ar1、Ar2およびAr3はそれぞれ独立にアリール基または芳香族ヘテロ環を表し、L1およびL2はそれぞれ独立に単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2とL2は同一であっても異なっていても良い。)
【請求項8】
前記一般式(1)で表される化合物が下記一般式(2)で表される化合物であることを特徴とする請求項7に記載のセルロースアシレートフィルム。
【化2】

(式中、R11、R12、R13、R14、R15、R16、R21、R22、R23およびR24はそれぞれ独立に水素原子または置換基を表す。Ar2はアリール基または芳香族ヘテロ環を表し、L2およびL3はそれぞれ独立に単結合または2価の連結基を表す。nは3以上の整数を表し、それぞれAr2とL2は同一であっても異なっていても良い。)
【請求項9】
前記紫外線吸収剤が一般式(III)で表される化合物であることを特徴とする請求項6〜8のいずれか1項に記載のセルロースアシレートフィルム。
【化3】

(式中、Q1およびQ2はそれぞれ独立に芳香族環を表す。Xは置換基を表し、Yは酸素原子、硫黄原子または窒素原子を表す。XYは水素原子であっても良い。)
【請求項10】
前記紫外線吸収剤が一般式(IV)で示される化合物であることを特徴とする請求項6〜8のいずれか一項に記載のセルロースアシレートフィルム。
【化4】

(式中、R1、R2、R3、R4およびR5はそれぞれ独立に一価の有機基を表し、R1、R2およびR3の少なくとも1つは総炭素数10〜20の無置換の分岐または直鎖のアルキル基を表す。)
【請求項11】
前記紫外線吸収剤が一般式(V)で表される化合物であることを特徴とする請求項6〜8のいずれか一項に記載のセルロースアシレートフィルム。
【化5】

(式中、R1、R2、R4およびR5はそれぞれ独立に一価の有機基を表し、R6は分岐のアルキル基を表す。)
【請求項12】
前記紫外線吸収剤が一般式(VII)で表されることを特徴とする請求項6〜8のいずれか一項に記載のセルロースアシレートフィルム。
一般式(VII) Q1−Q2−OH
(式中、Q1は1,3,5−トリアジン環を表し、Q2は芳香族環を表す。)
【請求項13】
前記マット剤の一次平均粒子サイズが1nm〜20nmであることを特徴とする請求項1および4〜12のいずれか一項に記載のセルロースアシレートフィルム。
【請求項14】
面内のレターデーション値(Re)が20〜200nmであり、厚さ方向のレターデーション値(Rth)が70〜400nmであることを特徴とする請求項1および4〜13のいずれか一項に記載のセルロースアシレートフィルム。
【請求項15】
面内のレターデーション値(Re)と厚さ方向のレターデーション値(Rth)との比(Re/Rth比)が0.1〜0.8であることを特徴とする請求項1および4〜14のいずれか1項に記載のセルロースアシレートフィルム。
【請求項16】
ヘイズが0.1%〜1.0%であることを特徴とする請求項1および4〜15のいずれか一項に記載のセルロースアシレートフィルム。
【請求項17】
互いにクロスニコルに配置された2枚の偏光板に前記セルロースアシレートフィルムを挟んだ際の輝度を、互いにパラニコルに配置された2枚の偏光板に前記セルロースアシレートフィルムを挟んだ際の輝度で除した後に100倍することにより求められる光漏れ率が0.01%〜0.30%であることを特徴とする請求項1および4〜16のいずれか一項に記載のセルロースアシレートフィルム。
【請求項18】
請求項請求項1および4〜17のいずれか一項に記載のセルロースアシレートフィルムを含むことを特徴とする光学補償シート。
【請求項19】
請求項1および4〜17のいずれか一項に記載のセルロースアシレートフィルム上に光学異方性層を有することを特徴とする光学補償シート。
【請求項20】
偏光膜およびその両側に配置された二枚の透明保護膜からなる偏光板であって、透明保護膜の少なくとも一方が、請求項18または19に記載の光学補償シートであることを特徴とする偏光板。
【請求項21】
液晶セルおよびその両側に配置された2枚の偏光板からなる液晶表示装置であって、少なくとも1枚の偏光板が請求項20に記載の偏光板であることを特徴とする液晶表示装置。
【請求項22】
表示モードがVAモードであることを特徴とする請求項21の液晶表示装置。
【請求項23】
表示モードがOCBモードであることを特徴とする請求項21の液晶表示装置。


【図1】
image rotate


【公開番号】特開2006−299171(P2006−299171A)
【公開日】平成18年11月2日(2006.11.2)
【国際特許分類】
【出願番号】特願2005−125891(P2005−125891)
【出願日】平成17年4月25日(2005.4.25)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】