説明

ハイブリッド車両用動力伝達装置の制御装置

【課題】コースト走行中の燃費悪化を抑制することができるハイブリッド車両用動力伝達装置の制御装置を提供する。
【解決手段】運転者の要求制動力が大きくなり、運転者が変速ショックを感じにくい状態にある場合には、第2電動機MG2の回生トルクが付与された状態で変速が実行されても運転者が感じる違和感が少ない。従って、運転者の要求制動力が閾値以上である場合には、回生トルクを付与した状態で第1ブレーキB1および第2ブレーキB2の係合制御によって変速を進行させることで、運転者に与える違和感を抑制しつつ、第2電動機MG2による回生が実行されることで燃費を向上させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド車両の制御装置に係り、特に、コースト走行時の回生量を増大する技術に関する。
【背景技術】
【0002】
複数個の係合装置の係合状態が切り換えられることによって複数の変速比が段階的に成立させられる変速部と、その変速部の入力軸に連結された電動機とを備え、コースト走行中には前記電動機による回生トルクが付与される回生制御を実行可能なハイブリッド車両用動力伝達装置が知られている。例えば特許文献1の車両用動力伝達装置の制御装置がその一例である。特許文献1では、コーストダウンシフトを適切なタイミングで実行することで、コーストダウンシフト時の変速部の入力トルクの変化を抑制して変速ショックを抑制することが記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−269632号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、特許文献1では、コースト走行中の目標減速度が所定値以上のときには、変速部の入力トルクが零と判断されることよりも燃費向上を優先して変速を実行することが記載されている。具体的には、変速が開始されるダウンシフト点を回生効率が向上されるダウンシフト点へ変更することが記載されている。しかしながら、実際に変速が開始されると、変速過渡期は第2電動機による回転同期制御が実行されるため、回生制御は実施されない。従って、コースト走行中のダウンシフト過渡期において回生が実施されないため、燃費が悪化する問題があった。
【0005】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、コースト走行中の燃費悪化を抑制することができるハイブリッド車両用動力伝達装置の制御装置を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するための、第1発明の要旨とするところは、(a)複数個の係合装置の係合状態が切り換えられることによって複数の変速比が段階的に成立させられる変速部と、その変速部の入力軸に連結された電動機とを備え、コースト走行中には前記電動機による回生トルクが付与される回生制御を実行可能なハイブリッド車両用動力伝達装置の制御装置であって、(b)コースト走行中に前記変速部のダウン変速が判断された場合であって、前記運転者の要求制動力が、予め設定されている閾値以上である場合には、前記電動機の回生トルクを付与した状態で前記係合装置の係合制御によって変速を進行させるものである。
【発明の効果】
【0007】
このようにすれば、運転者の要求制動力が大きくなり、運転者が変速ショックを感じにくい状態にある場合には、電動機の回生トルクが付与された状態で変速が実行されても運転者が感じる違和感が少ない。従って、運転者の要求制動力が閾値以上である場合には、運転者が変速ショックを感じにくいものと判断し、回生トルクを付与した状態で係合装置の係合制御によって変速を進行させることで、運転者に与える違和感を抑制しつつ、電動機による回生が実行されることで燃費を向上させることができる。
【0008】
また、好適には、第2発明の要旨とするところは、第1発明のハイブリッド車両用動力伝達装置の制御装置において、前記要求制動力が、予め設定されている前記閾値に満たない場合には、前記電動機による前記入力軸の回転同期制御を実施して前記係合装置を係合する。このようにすれば、要求制動力が閾値に満たない場合には、運転者が変速ショックを感じやすいものと判断し、変速ショックが抑制される電動機による回転同期制御を伴う変速が実行される。従って、運転者が変速ショックを感じやすい場合には、変速ショックの少ない変速制御が実行されて運転者に与える違和感を抑制することができる。
【0009】
また、好適には、第3発明の要旨とするところは、第2発明のハイブリッド車両用動力伝達装置の制御装置において、車輪にホイールブレーキトルクを付与する制動装置を備え、運転者の前記要求制動力が達成されるように、前記ホイールブレーキトルクを付与することを特徴とする。このようにすれば、電動機による回生トルクが付与されない場合であっても、ホイールブレーキトルクを付与することで運転者の要求制動力を実現することができる。
【0010】
また、好適には、第4発明の要旨とするところは、第1発明乃至第3発明のいずれか1において、エンジンに動力伝達可能に連結された差動部を更に備え、前記変速部は、前記電動機と前記差動部の出力軸との間に設けられている。このようにすれば、エンジン、差動部、変速部、および電動機を備えた実用的な車両用動力伝達装置において、運転者の変速ショックを感じにくい状態にある場合には回生トルクを付与した状態で係合装置の係合制御によって変速を進行させることで、運転者の変速ショックによる違和感を抑制しつつ、電動機による回生を実行することで燃費を向上させる制御装置を提供することができる。
【0011】
また、好適には、第5発明の要旨とするところは、第4発明の車両用動力伝達装置の制御装置において、前記差動部は、前記エンジンに動力伝達可能に連結された差動機構とその差動機構に動力伝達可能に連結された差動用電動機とを有し、その差動用電動機の運転状態によって差動機構の差動状態が制御されることにより電気的な無段変速機として作動するものである。このようにすれば、電気的な無段変速機として機能する差動部を備える実用的な車両用動力伝達装置において、運転者の変速ショックを感じにくい状態にある場合には回生トルクを付与した状態で係合装置の係合制御によって変速を進行させることで、運転者の変速ショックによる違和感を抑制しつつ、電動機による回生を実行することで燃費を向上させる制御装置を提供することができる。
【図面の簡単な説明】
【0012】
【図1】本発明が適用されたハイブリッド車両用動力伝達装置を説明する概略構成図である。
【図2】差動機構として機能する遊星歯車装置の各回転要素の回転速度の相対的関係を表す共線図である。
【図3】自動変速機を構成しているラビニョ型遊星歯車機構についての各回転要素の相対的関係を表すための共線図である。
【図4】電子制御装置の制御機能の要部を説明する機能ブロック線図である。
【図5】予め記憶された関係から自動変速機の変速を判定する変速線図である。
【図6】電子制御装置の制御作動の要部、すなわち自動変速機のコーストダウン変速において運転者の変速ショックによる違和感を抑制しつつ、燃費を向上する制御作動を説明するためのフローチャートである。
【発明を実施するための形態】
【0013】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
【実施例】
【0014】
図1は、本発明が適用されたハイブリッド車両用動力伝達装置10(以下、動力伝達装置10と記載)を説明する概略構成図である。図1において、この動力伝達装置10では、車両において、主駆動源である第1駆動源12のトルクが出力部材として機能する車輪側出力軸(以下、出力軸という)14に伝達され、その出力軸14から差動歯車装置16を介して左右一対の駆動輪18(後輪)にトルクが伝達されるようになっている。また、この車両用動力伝達装置10には、走行のための駆動力を出力する力行制御およびエネルギを回収するための回生制御を選択的に実行可能な第2電動機MG2が自動変速機22(本発明の変速部に対応)を介して動力伝達可能に出力軸14に連結されている。したがって、第2電動機MG2から出力軸14へ伝達される出力トルクがその自動変速機22で設定される変速比γs(=第2電動機MG2の回転速度Nmg2/出力軸14の回転速度Nout)に応じて増減されるようになっている。
【0015】
第2電動機MG2と出力軸14(駆動輪18)との間の動力伝達経路に介挿されている自動変速機22は、変速比γsが「1」より大きい複数段を成立させることができるように構成されており、第2電動機MG2からトルクを出力する力行時にはそのトルクを増大させて出力軸14へ伝達することができるので、第2電動機MG2が一層低容量もしくは小型に構成される。これにより、例えば高車速に伴って出力軸14の回転速度Noutが増大した場合には、第2電動機MG2の運転効率を良好な状態に維持するために、変速比γsを小さくして第2電動機MG2の回転速度(以下、第2電動機回転速度という)Nmg2を低下させたり、また出力軸14の回転速度Noutが低下した場合には、変速比γsを大きくして第2電動機回転速度Nmg2を増大させる。
【0016】
上記第1駆動源12は、主動力源としてのエンジン24と、第1電動機MG1と、これらエンジン24と第1電動機MG1(本発明の差動用電動機に対応)との間でトルクを合成もしくは分配するための動力分配機構(差動機構)としての遊星歯車装置26とを主体として構成されている。上記エンジン24は、ガソリンエンジンやディーゼルエンジンなどの燃料を燃焼させて動力を出力する公知の内燃機関であって、マイクロコンピュータを主体とするエンジン制御用の電子制御装置(E−ECU)28によって、スロットル弁開度や吸入空気量、燃料供給量、点火時期などの運転状態が電気的に制御されるように構成されている。
【0017】
上記第1電動機MG1(差動用電動機)は、例えば同期電動機であって、駆動トルクを発生させる電動機としての機能と発電機としての機能とを選択的に生じるように構成され、インバータ30を介してバッテリー、コンデンサなどの蓄電装置32に接続されている。そして、マイクロコンピュータを主体とするモータジェネレータ制御用の電子制御装置(MG−ECU)28によってそのインバータ30が制御されることにより、第1電動機MG1の出力トルク(力行トルク)あるいは回生トルクが調節或いは設定されるようになっている。
【0018】
前記遊星歯車装置26は、サンギヤS0と、そのサンギヤS0に対して同心円上に配置されたリングギヤR0と、これらサンギヤS0およびリングギヤR0に噛み合うピニオンギヤP0を自転かつ公転自在に支持するキャリヤCA0とを三つの回転要素として備えて公知の差動作用を生じるシングルピニオン型の遊星歯車機構である。遊星歯車装置26はエンジン24および自動変速機22と同心に設けられている。遊星歯車装置26および自動変速機22は中心線に対して対称的に構成されているため、図1ではそれらの下半分が省略されている。
【0019】
本実施例では、エンジン24のクランク軸36はダンパー38を介して遊星歯車装置26のキャリヤCA0に連結されている。これに対してサンギヤS0には第1電動機MG1が連結され、リングギヤR0には出力軸14が連結されている。このキャリヤCA0は入力要素として機能し、サンギヤS0は反力要素として機能し、リングギヤR0は出力要素として機能している。
【0020】
差動機構として機能するシングルピニオン型の遊星歯車装置26の各回転要素の回転速度の相対的関係は、図2の共線図により示される。この共線図において、縦軸S0、縦軸CA0、および縦軸R0は、サンギヤS0の回転速度、キャリヤCA0の回転速度、およびリングギヤR0の回転速度をそれぞれ表す軸であり、縦軸S0、縦軸CA0、および縦軸R0の相互の間隔は、縦軸S0と縦軸CA0との間隔を1としたとき、縦軸CA0と縦軸R0との間隔がρ(サンギヤS0の歯数Zs/リングギヤR0の歯数Zr)となるように設定されたものである。
【0021】
上記遊星歯車装置26において、キャリヤCA0に入力されるエンジン24の出力トルクに対して、第1電動機MG1による反力トルクがサンギヤS0に入力されると、出力要素となっているリングギヤR0には、直達トルクが現れるので、第1電動機MG1は発電機として機能する。また、リングギヤR0の回転速度すなわち出力軸14の回転速度(出力軸回転速度)Noutが一定であるとき、第1電動機MG1の回転速度Nmg1を上下に変化させることにより、エンジン24の回転速度(エンジン回転速度)Neを連続的に(無段階に)変化させることができる。図2の破線は第1電動機MG1の回転速度Nmg1を実線に示す値から下げたときにエンジン回転速度Neが低下する状態を示している。すなわち、エンジン回転速度Neを例えば燃費が最もよい回転速度に設定する制御を、第1電動機MG1を制御することによって実行することができる。この種のハイブリッド形式は、機械分配式あるいはスプリットタイプと称され、遊星歯車装置26の差動状態が第1電動機MG1によって制御されることにより、遊星歯車装置26を電気的な無段変速機として作動させることができる。これら第1電動機MG1および遊星歯車装置26によって、第1電動機MG1によって遊星歯車装置26の差動状態が制御される本発明の差動部31が構成される。
【0022】
図1に戻って、自動変速機22は、第2電動機MG2と出力軸14との間に設けられており、一組のラビニョ型遊星歯車機構によって構成されている。すなわち自動変速機22では、第1サンギヤS1と第2サンギヤS2とが設けられており、その第1サンギヤS1にステップドピニオンP1の大径部が噛合するとともに、そのステップドピニオンP1がピニオンP2に噛合し、そのピニオンP2が前記各サンギヤS1、S2と同心に配置されたリングギヤR1(R2)に噛合している。上記各ピニオンP1、P2は、共通のキャリヤCA1(CA2)によって自転かつ公転自在にそれぞれ保持されている。また、第2サンギヤS2がピニオンP2に噛合している。
【0023】
前記第2電動機MG2(本発明の電動機に対応)は、前記モータジェネレータ制御用の電子制御装置(MG−ECU)28によりインバータ40を介して制御されることにより、電動機または発電機として機能させられ、アシスト用出力トルク(力行トルク)あるいは回生トルクが調節或いは設定される。第2サンギヤS2にはその第2電動機MG2が連結され、上記キャリヤCA1が出力軸14に連結されている。第1サンギヤS1とリングギヤR1とは、各ピニオンP1、P2と共にダブルピニオン型遊星歯車装置に相当する機構を構成し、また第2サンギヤS2とリングギヤR1とは、ピニオンP2と共にシングルピニオン型遊星歯車装置に相当する機構を構成している。
【0024】
そして、自動変速機22には、第1サンギヤS1を選択的に固定するためにその第1サンギヤS1と非回転部材であるハウジング42との間に設けられた第1ブレーキB1と、リングギヤR1を選択的に固定するためにそのリングギヤR1とハウジング42との間に設けられた第2ブレーキB2とが設けられている。これらのブレーキB1、B2は摩擦力によって制動力を生じるいわゆる摩擦係合装置であり、多板形式の係合装置あるいはバンド形式の係合装置を採用することができる。そして、これらのブレーキB1、B2は、それぞれ油圧シリンダ等のブレーキB1用油圧アクチュエータ、ブレーキB2用油圧アクチュエータにより発生させられる係合油圧に応じてそのトルク容量が連続的に変化するように構成されている。
【0025】
以上のように構成された自動変速機22は、第2サンギヤS2が入力要素として機能し、またキャリヤCA1が出力要素として機能し、第1ブレーキB1が係合させられると「1」より大きい変速比γshの高速段Hiが成立させられ、第1ブレーキB1に替えて第2ブレーキB2が係合させられるとその高速段Hiの変速比γshより大きい変速比γslの低速段Loが成立させられるように構成されている。すなわち、自動変速機22は、第1ブレーキB1および第2ブレーキB2の係合状態が切り換えられることによって、2段の変速比を段階的に成立可能な変速機で、これらの変速段HiおよびLoの間での変速は、車速Vや要求駆動力(もしくはアクセル操作量)などの走行状態に基づいて実行される。より具体的には、変速段領域を予めマップ(変速線図)として定めておき、検出された運転状態に応じていずれかの変速段を設定するように制御される。その制御を行うためのマイクロコンピュータを主体とした変速制御用の電子制御装置(T−ECU)28が設けられている。
【0026】
上記電子制御装置28は、例えばエンジン24を制御するためのエンジン制御用電子制御装置(E−ECU)、第1電動機MG1および第2電動機MG2を制御するためのMG制御用電子制御装置(MG−ECU)、および自動変速機22を制御するための変速制御用電子制御装置(T−ECU)を含んで構成されている。電子制御装置28には、第1電動機回転速度センサ41からの第1電動機回転速度Nmg1を表す信号、第2電動機回転速度センサ43からの第2電動機回転速度Nmg2を表す信号、出力軸回転速度センサ45からの車速Vに対応する出力軸回転速度Noutを表す信号、油圧スイッチ信号SW1からの第1ブレーキB1の係合油圧PB1を表す信号、油圧スイッチSW2からの第2ブレーキB2の係合油圧PB2を表す信号、操作位置センサSSからのシフトレバー35の操作位置を表す信号、アクセル操作量センサASからのアクセルペダル27の操作量(踏み込み量、ストローク量)を表す信号、ブレーキ操作量センサBSからのブレーキペダル29の操作量Bra(ブレーキペダル回転角、ストローク量)を表す信号等が供給される。その他、図示しないセンサ等から、蓄電装置32の充電電流または放電電流(以下、充放電電流或いは入出力電流という)Icdを表す信号、蓄電装置32の電圧Vbatを表す信号、蓄電装置32の充電容量(充電状態)SOCを表す信号、インバータ30の供給電力(供給電流)に基づく第1電動機MG1の力行トルクTmg1あるいは回生トルクTmg1を表す信号、インバータ40の供給電力(供給電流)に基づく第2電動機MG2の力行トルクTmg2あるいは回生トルクTmg2を表す信号などが、それぞれ供給される。なお、エンジン制御用電子制御装置(E−ECU)、MG制御用電子制御装置(MG−ECU)、変速制御用電子制御装置(T−ECU)は、必ずしも別体で構成されるものではなく、一体で構成されても構わない。
【0027】
図3は、上記自動変速機22を構成しているラビニョ型遊星歯車機構についての各回転要素の相互関係を表すために4本の縦軸S1、縦軸R1、縦軸CA1、および縦軸S2を有する共線図を示している。それら縦軸S1、縦軸R1、縦軸CA1、および縦軸S2は、第1サンギヤS1の回転速度、リングギヤR1の回転速度、キャリヤCA1の回転速度、および第2サンギヤS2の回転速度をそれぞれ示すためのものである。
【0028】
以上のように構成された自動変速機22では、第2ブレーキB2によってリングギヤR1が固定されると、低速段Loが設定され、第2電動機MG2の出力したアシストトルクがそのときの変速比γslに応じて増幅されて出力軸14に付加される。これに替えて、第1ブレーキB1によって第1サンギヤS1が固定されると、低速段Loの変速比γslよりも小さい変速比γshを有する高速段Hiが設定される。この高速段Hiにおける変速比γshも「1」より大きいので、第2電動機MG2の出力したアシストトルクがその変速比γshに応じて増大させられて出力軸14に付加される。
【0029】
また、各車輪(前輪および後輪)には、それぞれ油圧によって作動されるよく知られたディスクブレーキからなる制動装置48が設けられている。制動装置48は、各車輪独立してブレーキ油圧が制御されることによって、運転者の要求制動力Tbに応じたホイールブレーキトルクを前輪および後輪に付与することで、その要求制動力Tbを実現することができる。なお、本実施例では、後述するように第2電動機MG2の回生制御によっても制動力を発生させることができる。そこで、上記制動装置48による制動力と第2電動機MG2の回生制御による制動力との和が運転者の要求制動力Tbとなるように、それぞれの制動力が好適に配分される協調ブレーキ制御が実行される。
【0030】
図4は、電子制御装置28の制御機能の要部を説明する機能ブロック線図である。図4において、ハイブリッド駆動制御手段60は、例えば、キーがキースロットに挿入された後、ブレーキペダルが操作された状態でパワースイッチが操作されることにより制御が起動されると、アクセル操作量に基づいて運転者の要求出力を算出し、低燃費で排ガス量の少ない運転となるようにエンジン24および/または第2電動機MG2から要求出力を発生させる。例えば、エンジン24を停止し専ら第2電動機MG2を駆動源とするモータ走行モード、エンジン24の動力で第1電動機MG1により発電を行いながら第2電動機MG2を駆動源として走行する充電走行モード、エンジン24の動力を機械的に駆動輪18に伝えて走行するエンジン走行モード等を、走行状態に応じて切り換える。
【0031】
上記ハイブリッド駆動制御手段60は、エンジン24が最適燃費曲線上で作動するように第1電動機MG1によってエンジン回転速度Neを制御する。また、第2電動機MG2を駆動してトルクアシストする場合、車速Vが遅い状態では自動変速機22を低速段Loに設定して出力軸14に付加するトルクを大きくし、車速Vが増大した状態では自動変速機22を高速段Hiに設定して第2電動機回転速度Nmg2を相対的に低下させて損失を低減し、効率の良いトルクアシストを実行させる。さらに、アクセルペダル27を踏み込まない減速走行時、所謂コースト走行時には車両の有する慣性エネルギーで第2電動機MG2から回生トルクを付与した状態で回転駆動することにより電力として回生(発電)する回生制御を実行する。このとき、車両には、前記回生トルクに応じた制動力が発生する。
【0032】
また、後進走行は、例えば自動変速機22を低速段Loとした状態で、第2電動機MG2を逆方向へ回転駆動することによって達成される。この時、第1駆動源12の第1電動機MG1は空転状態とされ、エンジン24の作動状態に関係なく出力軸14が逆回転することを許容する。
【0033】
前記エンジン走行モードにおける制御を一例としてより具体的に説明すると、ハイブリッド駆動制御手段60は、動力性能や燃費向上などのために、エンジン24を効率のよい作動域で作動させる一方で、エンジン24と第2電動機MG2との駆動力の配分や第1電動機MG1の発電による反力を最適になるよう制御する。
【0034】
例えば、ハイブリッド駆動制御手段60は、予め記憶された駆動力マップから運転者の出力要求量としてのアクセル操作量や車速などに基づいて目標駆動力関連値例えば要求出力軸トルクTR(要求駆動トルクに相当)を決定し、その要求出力軸トルクTRから充電要求値等を考慮して要求出力軸パワーを算出し、その要求出力軸パワーが得られるように伝達損失、補機負荷、第2電動機MG2のアシストトルクや自動変速機22の変速段等を考慮して目標エンジンパワーを算出し、例えばエンジン回転速度とエンジントルクとで構成される二次元座標内において運転性と燃費性とを両立するように予め実験的に求められて記憶されたエンジンの最適燃費率曲線(燃費マップ、関係)に沿ってエンジン24を作動させつつ上記目標エンジンパワーが得られるエンジン回転速度とエンジントルクとなるように、エンジン24を制御すると共に第1電動機MG1の発電量を制御する。
【0035】
ハイブリッド駆動制御手段60は、第1電動機MG1により発電された電気エネルギをインバータ30、40を通して蓄電装置32や第2電動機MG2へ供給するので、エンジン24の動力の主要部は機械的に出力軸14へ伝達されるが、エンジン24の動力の一部は第1電動機MG1の発電のために消費されてそこで電気エネルギに変換され、インバータ30、40を通してその電気エネルギが第2電動機MG2へ供給され、その第2電動機MG2が駆動されて第2電動機MG2から出力軸14へ伝達される。この電気エネルギの発生から第2電動機MG2で消費されるまでに関連する機器により、エンジン24の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。なお、ハイブリッド駆動制御手段60は、電気パスによる電気エネルギ以外に、蓄電装置32からインバータ40を介して直接的に電気エネルギを第2電動機MG2へ供給してその第2電動機MG2を駆動することが可能である。
【0036】
変速制御手段66は、例えば図5に示す予め記憶された車速Vおよびアクセル開度Accから構成される変速線図(変速マップ)から、実際の車速Vおよびアクセル開度Accに基づいて自動変速機22の変速を判断し、その判断結果に基づいて決定された変速段に切り換えるように第1ブレーキB1および第2ブレーキB2を制御する変速処理を実施する。図5において、実線は低速段Loから高速段Hiへ切り換えるアップシフト線(アップ線)であり、一点鎖線は高速段Hiから低速段Loへ切り換えるダウンシフト線(ダウン線)であって、アップシフトとダウンシフトとの間に所定のヒステリシスが設けられている。これらの実線および一点鎖線で示す変速線は変速規則に相当するものであり、これ等の変速線に従って変速が行われる。すなわち、変速制御手段66は、図5に示す変速線図に基づいて自動変速機22の変速を判断する変速判断手段を機能的に備えている。
【0037】
そして、前記変速制御手段66は、前記決定した変速段に切り換えるための変速指令を自動変速機22の油圧制御回路50へ出力する。油圧制御回路50は、その変速指令に従って、油圧制御回路50に備えられる図示しないリニヤソレノイド弁を駆動して第1ブレーキB1および第2ブレーキB2のそれぞれの係合状態を切り換える。例えば、低速段Lo(第2ブレーキB2係合)で走行中に、車両の走行状態がアップシフト線を通過すると、第2ブレーキB2が開放されると共に、第1ブレーキB1が係合される変速制御が実施される。また、高速段Hi(第1ブレーキ係合)で走行中に、車両の走行状態がダウンシフト線を通過すると、第1ブレーキB1が開放されると共に、第2ブレーキB2が係合される変速制御が実施される。
【0038】
また、アクセルペダル27を踏み込まない状態での惰性走行、或いはブレーキペダル29を踏み込む減速走行を実行することによって、車速Vが低下して図5に示すダウンシフト線を通過すると、高速段Hiから低速段Loへのダウン変速制御、所謂コーストダウン変速が開始される。
【0039】
従来において実行されていたコーストダウン変速の具体的な制御態様について説明する。変速制御手段66は、コースト走行(減速走行)においてダウンシフト線を跨いだことを判断すると、それまでに実施されていた第2電動機MG2による回生制御を中止し、自動変速機22の動力伝達経路を遮断した状態で、第2サンギヤS2に連結されている自動変速機22の入力軸64(図1参照)の回転速度Nin(以下、入力軸回転速度Nin)を、第2電動機MG2から力行トルクを出力することによって変速後の入力軸回転速度Ninに同期する回転同期制御を実行する。
【0040】
以下、第2電動機MG2による回転同期制御について説明する。第2電動機MG2による回転同期制御では、先ず、開放側摩擦係合装置である第1ブレーキB1の係合油圧を急激に低下させて開放すると共に、第2ブレーキB2を係合が開始される直前の状態、所謂パック詰め状態に相当する待機圧で維持した状態とすることで、自動変速機22を動力伝達遮断状態(ニュートラル状態)とする。そして、この状態で自動変速機22の入力軸回転速度Ninが自動変速機22の変速後に設定される目標同期回転速度Npとなるように第2電動機MG2の回転速度Nmg2が同期制御される。なお、目標同期回転速度Npは、変速開始時の出力軸14の回転速度Noutと低速段Loの変速比γslとの積で算出される。変速制御手段66は、入力軸回転速度Nin(第2電動機回転速度Nmg2)と目標同期回転速度Npとの偏差δを逐次算出し、算出された偏差δに基づいて、第2電動機MG2の出力トルクTmg2のフィードバック制御を実行する。これに従い、入力軸回転速度Nin(第2電動機回転速度Nmg2)が目標同期回転速度Npに追従するように変化する。そして、回転同期制御が終了すると、変速制御手段66は、自動変速機22の係合側摩擦係合装置である第2ブレーキB2の係合油圧を急激に引き上げて第2ブレーキB2の係合を完了させる。このように回転同期制御されることにより、ダウン変速時の変速ショックが抑制される。
【0041】
また、変速制御手段66は、ダウン変速中のブレーキペダル29の操作量Braに基づく運転者の要求制動力Tbを、車輪にホイールブレーキトルクを付与する制動装置48によって発生させる。これより、変速中における運転者の要求制動力Tbも確保されるので、運転者に与える違和感を与えることも抑制される。
【0042】
上記のように変速制御される場合、変速中の変速ショックは抑制されるものの、第2電動機MG2は回転同期制御のために力行トルクが出力される状態にあるため、変速中の第2電動機MG2による回生制御は実行されない。従って、燃費が悪化する問題があった。ところで、ブレーキペダル29が大きく踏み込まれるなどして運転者の要求制動力Tbが大きくなるに従って、運転者は変速時に発生する変速ショックを感じにくくなる。そこで、本実施例では、運転者の要求制動力Tbが後述する閾値α以上となる場合には、第2電動機MG2の回生トルクを出力した状態で、係合装置である第1ブレーキB1および第2ブレーキB2を掴み替える係合制御によってダウン変速を実行する。なお、この変速制御は、上述した第2電動機MG2の回転同期制御を伴う変速制御に比べて変速ショックは大きくなるものの、第2電動機MG2による回生(発電)が可能となる。
【0043】
変速制御手段66は、運転者の要求制動力Tbが大きい場合、すなわち要求制動力Tbが後述する閾値α以上である場合、第1ブレーキB1および第2ブレーキB2の係合油圧を、車速Vや運転者の要求制動力Tb等に基づいて、それぞれ最適な係合油圧およびタイミングで制御して第1ブレーキB1および第2ブレーキB2を掴み替える係合制御を実行する。このとき、第2電動機MG2は回生トルクを出力しており、この回生トルクおよび自動変速機22のトルク伝達容量に基づいて回生(発電)させられる。また、この回生によって車両には制動力が付与される。なお、運転者の要求制動力Tbがこの回生による制動力で賄えない場合、制動装置48を補助的に作動させて要求制動力Tbを発生させる。
【0044】
上記要求制動力Tbは、図4に示す要求制動力算出手段68によって算出される。要求制動力算出手段68は、運転者のブレーキペダル29の操作量Bra(ブレーキペダル回転角、ストローク量)や車速Vなどに基づいて、予め定められたマップや計算式等を用いて運転者の要求制動力Tbを算出する。
【0045】
変速方法判断手段70は、要求制動力算出手段68によって算出された要求制動力Tbが、予め設定されている閾値α以上であるか否かを判断する。要求制動力Tbが閾値α以上である場合、運転者が変速ショックを感じにくい状態であると判断し、第2電動機MG2の回生トルクを出力した状態で、係合装置である第1ブレーキB1および第2ブレーキB2の係合制御によるダウン変速を実行する変速指令を変速制御手段66に出力する。一方、要求制動力Tbが閾値αに満たない場合、運転者が変速ショックを感じやすい状態であると判断し、第2電動機MG2の回転同期制御を伴うダウン変速を実行する変速指令を変速制御手段66に出力する。なお、前記閾値αは予め実験的に求められて記憶される値であり、ダウン変速の際に運転者が変速ショックを感じにくくなると判断される要求制動力Tbに設定されている。従って、要求制動力Tbが閾値αを越えると、第1ブレーキB1および第2ブレーキB2の掴み替えによる係合制御が実行され、回転同期制御を伴う変速に比べて変速ショックが大きくなるが、運転者がその変速ショックを感じにくい状態にあるため、変速ショックによる違和感が抑制されることとなる。
【0046】
また、要求制動力Tbが閾値α以上である場合、第1ブレーキB1および第2ブレーキB2を最適な係合油圧およびタイミングで掴み替える係合制御を実行することとなるが、このとき、変速制御手段66は、ダウンシフトが開始される変速点を、回転同期制御が実行される場合に比べて低車速側に設定する。具体的には、図5に示すように、回転同期制御を伴うダウン変速が開始される車速Vが車速V1であるとすると、要求制動力Tbが閾値α以上の場合には、変速点が車速V1よりも低車速側である車速V2に設定され、その車速V2において変速制御が開始される。このように、車速V2で変速制御が開始されると、変速時の入力軸64の回転速度変化が車速V1の場合に比べて小さくなるので、変速ショックが低減される。
【0047】
図6は、電子制御装置28の制御作動の要部、すなわち自動変速機22のコーストダウン変速において運転者の変速ショックによる違和感を抑制しつつ、燃費を向上する制御作動を説明するためのフローチャートであって、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
【0048】
先ず、変速制御手段66に対応するステップST1(以下、ステップを省略する)において、車速Vがコーストダウン変速が開始される車速Vを跨いだが否かが判断される。ST1が否定される場合、本ルーチンは終了させられる。ST1が肯定される場合、要求駆動力算出手段68および変速方法判断手段70に対応するST2において、ブレーキペダル29の操作量Braや車速V等に基づいて要求制動力Tbが算出され、算出された要求制動力Tbが予め設定されている閾値α以上であるか否かが判断される。
【0049】
ST2が肯定される場合、運転者が変速ショックを感じにくい状態であると判断され、変速制御手段66に対応するST3において、第2電動機MG2から回生トルクを出力した状態で第1ブレーキB1および第2ブレーキB2の係合制御による変速が実行される。これより、変速中においても第2電動機MG2によって回生(発電)され燃費が向上する。また、変速点をさらに低車速側に設定することで、変速ショックを低減することも併せて実施される。この変速制御にあっては、変速ショックが比較的大きくなるものの、運転者の要求制動力Tbが大きいために運転者は変速ショックを感じにくい状態にあるため、運転者はその変速ショックによる違和感を殆ど感じない。
【0050】
一方、ST3が否定される場合、運転者が変速ショックを感じやすい状態であると判断され、変速制御手段66に対応するST4において、変速ショックが小さくなる第2電動機MG2の回転同期制御を伴う変速制御が実行される。従って、運転者は変速ショックによる違和感を殆ど感じない。
【0051】
上述のように、本実施例によれば、運転者の要求制動力Tbが大きくなり、運転者が変速ショックを感じにくい状態にある場合には、第2電動機MG2の回生トルクが付与された状態で変速が実行されても運転者が感じる違和感が少ない。従って、運転者の要求制動力Tbが閾値α以上である場合には、運転者が変速ショックを感じにくいものと判断し、回生トルクを付与した状態で第1ブレーキB1および第2ブレーキB2の係合制御によって変速を進行させることで、運転者に与える違和感を抑制しつつ、第2電動機MG2による回生が実行されることで燃費を向上させることができる。
【0052】
また、本実施例によれば、要求制動力Tbが、予め設定されている閾値αに満たない場合には、第2電動機MG2による回転同期制御を実施して第2ブレーキB2を係合する。このようにすれば、要求制動力Tbが閾値αに満たない場合には、運転者が変速ショックを感じやすいものと判断し、変速ショックが抑制される第2電動機MG2による回転同期制御を伴う変速が実行される。従って、運転者が変速ショックを感じやすい場合には、変速ショックの少ない変速制御が実行されて運転者に与える違和感を抑制することができる。
【0053】
また、本実施例によれば、車輪(前輪および後輪)にホイールブレーキトルクを付与する制動装置48を備え、運転者の要求制動力Tbが達成されるように、ホイールブレーキトルクを付与する。このようにすれば、第2電動機MG2による回生トルクが付与されない場合であっても、ホイールブレーキトルクを付与することで運転者の要求制動力Tbを実現することができる。
【0054】
また、本実施例によれば、エンジン24に動力伝達可能に連結された遊星歯車装置26を更に備え、自動変速機22は、第2電動機MG2と遊星歯車装置26の出力軸14との間に設けられている。このようにすれば、エンジン24、遊星歯車装置26、自動変速機22、および第2電動機MG2を備えた実用的な車両用動力伝達装置10において、運転者の変速ショックを感じにくい状態にある場合には回生トルクを付与した状態で第2ブレーキB2の係合制御によってダウン変速を進行させることで、運転者の変速ショックによる違和感を抑制しつつ、第2電動機MG2による回生を実行することで燃費を向上させる制御装置28を提供することができる。
【0055】
また、本実施例によれば、差動部は、エンジン24に動力伝達可能に連結された遊星歯車装置26とその遊星歯車装置26に動力伝達可能に連結された第1電動機MG1とを有し、その第1電動機MG1の運転状態によって遊星歯車装置26の差動状態が制御されることにより電気的な無段変速機として作動するものである。このようにすれば、電気的な無段変速機として機能する差動部を備える実用的な車両用動力伝達装置10において、運転者の変速ショックを感じにくい状態にある場合には回生トルクを付与した状態で第2ブレーキB2の係合制御によって変速を進行させることで、運転者の変速ショックによる違和感を抑制しつつ、第2電動機MG2による回生を実行することで燃費を向上させる制御装置28を提供することができる。
【0056】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0057】
例えば、前述の実施例において、第2電動機MG2の回生トルクを出力した状態でのダウン変速において、変速ショックを低減するため、ダウン変速が開始される変速点をさらに低車速側に設定するとしたが、必ずしも変速点を変更する必要はない。
【0058】
また、前述の実施例では、遊星歯車装置26の出力軸14に自動変速機22を介して第2電動機が並列に連結されていたが、例えば差動機構の出力軸と駆動輪18との間に自動変速機22が直列に連結され、差動機構の出力軸に第2電動機MG2が連結される構成など、電動機が変速機を介して回転軸に連結されている構成であれば、適宜本発明を適用することができる。
【0059】
また、前述の実施例では、例えば運転者の要求制動力Tbをブレーキペダル29の操作量Braや車速Vに基づいて算出するとしたが、ブレーキペダル29の操作量Braのみに基づいて要求制動力Tbを算出するものであっても構わない。また、ブレーキペダル29の操作量Braに代えて、例えば制動装置48を作動させるマスターシリンダの油圧など、運転者の要求制動力Tbに関連するパラメータであれば特に限定されない。
【0060】
また、前述の実施例では、第1ブレーキB1および第2ブレーキB2を有する2段の変速が可能な自動変速機22に本発明が適用されていたが、必ずしも2段の変速に限定されず、3段以上の変速が可能な自動変速機においても本発明を適用することができる。
【0061】
また、前述の実施例では、第1ブレーキB1および第2ブレーキB2は、油圧式の摩擦係合装置であったが、油圧式の摩擦係合装置に限定されず、例えば電磁クラッチなどトルク容量を連続的に変化させることができる係合装置であれば、本発明に適用することができる。
【0062】
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【符号の説明】
【0063】
10:ハイブリッド車両用動力伝達装置
14:出力軸
22:自動変速機(変速部)
24:エンジン
26:遊星歯車装置(差動機構)
28:電子制御装置(制御装置)
31:差動部
48:制動装置
64:入力軸
B1:第1ブレーキ(係合装置)
B2:第2ブレーキ(係合装置)
MG1:第1電動機(差動用電動機)
MG2:第2電動機(電動機)

【特許請求の範囲】
【請求項1】
複数個の係合装置の係合状態が切り換えられることによって複数の変速比が段階的に成立させられる変速部と、該変速部の入力軸に連結された電動機とを備え、コースト走行中には前記電動機による回生トルクが付与される回生制御を実行可能なハイブリッド車両用動力伝達装置の制御装置であって、
コースト走行中に前記変速部のダウン変速が判断された場合であって、前記運転者の要求制動力が、予め設定されている閾値以上である場合には、前記電動機の回生トルクを付与した状態で前記係合装置の係合制御によってダウン変速を進行させることを特徴とする請求項1のハイブリッド車両用動力伝達装置の制御装置。
【請求項2】
前記要求制動力が、予め設定されている前記閾値に満たない場合には、前記電動機による前記入力軸の回転同期制御を実施して前記係合装置を係合することを特徴とする請求項1のハイブリッド車両用動力伝達装置の制御装置。
【請求項3】
車輪にホイールブレーキトルクを付与する制動装置を備え、
運転者の前記要求制動力が達成されるように、前記ホイールブレーキトルクを付与することを特徴とする請求項2のハイブリッド車両用動力伝達装置の制御装置。
【請求項4】
エンジンに動力伝達可能に連結された差動部を更に備え、前記変速部は、前記電動機と前記差動部の出力軸との間に設けられていることを特徴とする請求項1乃至3のいずれか1のハイブリッド車両用動力伝達装置の制御装置。
【請求項5】
前記差動部は、前記エンジンに動力伝達可能に連結された差動機構と該差動機構に動力伝達可能に連結された差動用電動機とを有し、該差動用電動機によって該差動機構の差動状態が制御されることにより電気的な無段変速機として作動することを特徴とする請求項4の車両用動力伝達装置の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−95316(P2013−95316A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−241181(P2011−241181)
【出願日】平成23年11月2日(2011.11.2)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】