説明

レーザー光線照射機構およびレーザー加工装置

【課題】レーザー光線発信器から発振されたレーザー光線の出力を高速制御することができるレーザー光線照射機構およびレーザー加工装置を提供する。
【解決手段】レーザー光線発振器と集光レンズとの間に配設された出力調整手段63とを具備するレーザー光線照射機構であって、出力調整手段は、1/2波長板と、直線偏光のレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面および第2の偏光ビームスプリッター面を備えたプリズム632と、S偏光成分とP偏光成分との間に位相差(α)を生成する光路長調整手段633と、偏光成分合成手段636と、偏光成分合成手段で合成されたレーザー光線を分光する偏光ビームスプリッター面を備え、偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御する制御手段とを具備している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザー光線発信器から発振されたレーザー光線の出力を高速制御することができるレーザー光線照射機構およびレーザー加工装置に関する。
【背景技術】
【0002】
半導体デバイス製造工程においては、略円板形状である半導体ウエーハの表面に格子状に配列されたストリートと呼ばれる分割予定ラインによって複数の領域が区画され、この区画された領域にIC、LSI等のデバイスを形成する。そして、半導体ウエーハをストリートに沿って切断することによりデバイスが形成された領域を分割して個々の半導体デバイスを製造している。
【0003】
半導体ウエーハのストリートに沿った切断は、通常、ダイサーと呼ばれている切削装置によって行われている。この切削装置は、被加工物である半導体ウエーハを保持するチャックテーブルと、該チャックテーブルに保持された半導体ウエーハを切削するための切断手段と、チャックテーブルと切断手段とを相対的に移動せしめる移動手段とを具備している。切断手段は、高速回転せしめられる回転スピンドルと該スピンドルに装着された切削ブレードを含んでいる。切削ブレードは円盤状の基台と該基台の側面外周部に装着された環状の切れ刃からなっており、切れ刃は例えば粒径3μm程度のダイヤモンド砥粒を電鋳によって固定し厚さ20μm程度に形成されている。
【0004】
また、近時においては、IC、LSI等の回路の処理能力を向上するために、シリコンウエーハの如き半導体基板の表面にSiOF、BSG(SiOB)等の無機物系の膜やポリイミド系、パリレン系等のポリマー膜である有機物系の膜からなる低誘電率絶縁体被膜(Low−k膜)を積層せしめた形態の半導体ウエーハが実用化されている。しかるに、Low−k膜は、雲母のように多層(5〜15層)に積層されているとともに非常に脆いことから、切削ブレードによりストリートに沿って切削すると、Low−k膜が剥離し、この剥離が回路にまで達し半導体チップに致命的な損傷を与えるという問題がある。
【0005】
上述した問題を解消するために、Low−k膜にレーザー光線を照射してLow−k膜を除去し、Low−k膜が除去されたストリートを切削ブレードにより切削する加工装置が下記特許文献1に開示されている。
【0006】
しかるに、ストリート上のLow−k膜に回路の機能をテストするためのテスト エレメント グループ(Teg)と呼ばれるテスト用の金属パターンが部分的に配設されている半導体ウエーハにおいては、Low−k膜を除去するためにレーザー光線を照射しても、銅やアルミニウム等からなる金属パターンがレーザー光線を妨げLow−k膜を円滑に除去することができないという問題がある。そこで、金属パターンを除去できる程度にレーザー光線の出力を高めてストリートにレーザー光線を照射すると、Low−k膜のみが形成されているストリート部の半導体基板が破損してデブリが飛散し、このデブリが回路に接続されるボンディングパッド等に付着して半導体チップの品質を低下させるという新たな問題が生じる。
【0007】
このような問題を解消するために、テスト用金属パターンが位置する領域と低誘電率絶縁体被膜の領域に、それぞれ異なる加工条件でレーザー光線を照射してテスト用金属パターンおよび低誘電率絶縁体被膜を除去するレーザー加工方法が下記特許文献2に開示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−320466号公報
【特許文献2】特開2005−118832号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
而して、レーザー光線発信器から発振されたレーザー光線の出力を加工送り速度に追随して調整することが難しく、テスト用金属パターンが位置する領域を確実に除去することが困難であるという問題がある。
【0010】
本発明は上記事実に鑑みてなされたものであり、その主たる技術的課題は、レーザー光線発振器から発振されたレーザー光線の出力を高速制御することができるレーザー光線照射機構およびレーザー加工装置を提供することである。
【課題を解決するための手段】
【0011】
上記主たる技術課題を解決するため、本発明によれば、レーザー光線を発振するレーザー光線発振器と、該レーザー光線発振器から発振されたレーザー光線を集光して照射する集光レンズと、該レーザー光線発振器と該集光レンズとの間に配設され該レーザー光線発振器から発振されたレーザー光線の出力を調整する出力調整手段と、を具備するレーザー光線照射機構であって、
該出力調整手段は、該レーザー光線発振器から発振された直線偏光のレーザー光線の偏光面を45度回転する1/2波長板と、
該1/2波長板によって偏光面が45度回転せしめられたレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面および第2の偏光ビームスプリッター面を備えたプリズムと、
該第1の偏光ビームスプリッター面と対向して配設され該第1の偏光ビームスプリッター面を透過したレーザー光線のP偏光成分を反射するミラー面を備えた第1のミラーと、該第1のミラーに装着され印加する電圧に対応して該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整するピエゾアクチュエータとを備え、該第1の偏光ビームスプリッター面で反射したレーザー光線のS偏光成分と該第1のミラーのミラー面で反射したP偏光成分との間に位相差(α)を生成する光路長調整手段と、
該第2の偏光ビームスプリッター面と対向して所定の間隔をもって配設され該第1のミラーのミラー面で反射し該第2の偏光ビームスプリッター面を透過したP偏光成分を反射するミラー面を備えた第2のミラーを備え、該第1の偏光ビームスプリッター面で反射するとともに該第2の偏光ビームスプリッター面で反射したS偏光成分と該第2の偏光ビームスプリッター面を透過し該第2のミラーのミラー面で反射したP偏光成分との間に位相差(β)を生成する偏光成分合成手段と、
該偏光成分合成手段で合成されたレーザー光線を分光する偏光ビームスプリッター面を備え、該偏光成分合成手段で合成されたレーザー光線の一部または全部を該集光レンズに導き、該偏光成分合成手段で合成されたレーザー光線の全部または一部をビームダンパーに導く分光手段と、
該光路長調整手段の該ピエゾアクチュエータに印加する電圧を制御し、該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整することにより該偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御する制御手段と、を具備している、
ことを特徴とするレーザー光線照射機構が提供される。
【0012】
また、本発明によれば、被加工物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された被加工物にレーザー光線を照射するレーザー光線照射機構と、該チャックテーブルと該レーザー光線照射機構とを加工送り方向に相対的に加工送りする加工送り手段と、を具備するレーザー加工装置において、
該レーザー光線照射機構は、レーザー光線を発振するレーザー光線発振器と、該レーザー光線発振器から発振されたレーザー光線を集光して照射する集光レンズと、該レーザー光線発振器と該集光レンズとの間に配設され該レーザー光線発振器から発振されたレーザー光線の出力を調整する出力調整手段と、を具備し、
該出力調整手段は、該レーザー光線発振器から発振された直線偏光のレーザー光線の偏光面を45度回転する1/2波長板と、
該1/2波長板によって偏光面が45度回転せしめられたレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面および第2の偏光ビームスプリッター面を備えたプリズムと、
該第1の偏光ビームスプリッター面と対向して配設され該第1の偏光ビームスプリッター面を透過したレーザー光線のP偏光成分を反射するミラー面を備えた第1のミラーと、該第1のミラーに装着され印加する電圧に対応して該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整するピエゾアクチュエータとを備え、該第1の偏光ビームスプリッター面で反射したレーザー光線のS偏光成分と該第1のミラーのミラー面で反射したP偏光成分との間に位相差(α)を生成する光路長調整手段と、
該第2の偏光ビームスプリッター面と対向して所定の間隔をもって配設され該第1のミラーのミラー面で反射し該第2の偏光ビームスプリッター面を透過したP偏光成分を反射するミラー面を備えた第2のミラーを備え、該第1の偏光ビームスプリッター面で反射するとともに該第2の偏光ビームスプリッター面で反射したS偏光成分と該第2の偏光ビームスプリッター面を透過し該第2のミラーのミラー面で反射したP偏光成分との間に位相差(β)を生成する偏光成分合成手段と、
該偏光成分合成手段で合成されたレーザー光線を分光する偏光ビームスプリッター面を備え、該偏光成分合成手段で合成されたレーザー光線の一部または全部を該集光レンズに導き、該偏光成分合成手段で合成されたレーザー光線の全部または一部をビームダンパーに導く分光手段と、
該光路長調整手段の該ピエゾアクチュエータに印加する電圧を制御し、該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整することにより該偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御する制御手段と、を具備している、
ことを特徴とするレーザー加工装置が提供される。
【発明の効果】
【0013】
本発明によるレーザー光線照射機構は上記のように構成され、出力調整手段の光路長調整手段を構成するピエゾアクチュエータに印加する電圧値を制御し、第1のミラーのミラー面と第1の偏光ビームスプリッター面との間隔を調整することにより偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御するので、集光レンズから照射されるレーザー光線の出力を調整することができる。しかも、第1のミラーのミラー面と第1の偏光ビームスプリッター面との間隔を調整するピエゾアクチュエータは印加する電圧値に対応して伸び、数μmの変位が可能であるため高速制御が可能である。従って、レーザー加工装置において被加工物を加工送りする加工送り速度に追随して集光レンズから被加工物に照射されるレーザー光線の出力を調整することができる。
【図面の簡単な説明】
【0014】
【図1】本発明に従って構成されたレーザー加工装置の斜視図。
【図2】図1に示すレーザー加工装置に装備される本発明に従って構成されたレーザー光線照射機構の第1の実施形態を示すブロック構成図。
【図3】本発明に従って構成されたレーザー光線照射機構の第2の実施形態を示すブロック構成図。
【図4】図1に示すレーザー加工装置に装備される制御手段のブロック構成図。
【図5】被加工物であるウエーハとしての半導体ウエーハの斜視図。
【図6】図5に示す半導体ウエーハの断面拡大図。
【図7】図1に示すレーザー加工装置によって図5および図6に示す半導体ウエーハに実施するレーザー光線照射工程の説明図。
【発明を実施するための形態】
【0015】
以下、本発明に従って構成されたレーザー光線照射機構およびレーザー加工装置の好適な実施形態について、添付図面を参照して詳細に説明する。
【0016】
図1には、本発明に従って構成されたレーザー光線照射機構を装備したレーザー加工装置の斜視図が示されている。図1に示すレーザー加工装置1は、静止基台2と、該静止基台2に矢印Xで示す加工送り方向(X軸方向)に移動可能に配設され被加工物を保持するチャックテーブル機構3と、静止基台2に上記X軸方向と直交する矢印Yで示す割り出し送り方向(Y軸方向)に移動可能に配設されたレーザー光線照射ユニット支持機構4と、該レーザー光線照射ユニット支持機構4に矢印Zで示す集光点位置調整方向(Z軸方向)に移動可能に配設されたレーザー光線照射ユニット5とを具備している。
【0017】
上記チャックテーブル機構3は、静止基台2上にX軸方向に沿って平行に配設された一対の案内レール31、31と、該案内レール31、31上にX軸方向に移動可能に配設された第一の滑動ブロック32と、該第1の滑動ブロック32上にY軸方向に移動可能に配設された第2の滑動ブロック33と、該第2の滑動ブロック33上に円筒部材34によって支持された支持テーブル35と、被加工物保持手段としてのチャックテーブル36を具備している。このチャックテーブル36は多孔性材料から形成された吸着チャック361を具備しており、吸着チャック361の上面である保持面上に被加工物である例えば円形形状の半導体ウエーハを図示しない吸引手段によって保持するようになっている。このように構成されたチャックテーブル36は、円筒部材34内に配設された図示しないパルスモータによって回転せしめられる。なお、チャックテーブル36には、半導体ウエーハ等の被加工物を保護テープを介して支持する環状のフレームを固定するためのクランプ362が配設されている。
【0018】
上記第1の滑動ブロック32は、その下面に上記一対の案内レール31、31と嵌合する一対の被案内溝321、321が設けられているとともに、その上面にX軸方向に沿って平行に形成された一対の案内レール322、322が設けられている。このように構成された第1の滑動ブロック32は、被案内溝321、321が一対の案内レール31、31に嵌合することにより、一対の案内レール31、31に沿ってX軸方向に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第1の滑動ブロック32を一対の案内レール31、31に沿ってX軸方向に移動させるための加工送り手段37を具備している。加工送り手段37は、上記一対の案内レール31と31の間に平行に配設された雄ネジロッド371と、該雄ネジロッド371を回転駆動するためのパルスモータ372等の駆動源を含んでいる。雄ネジロッド371は、その一端が上記静止基台2に固定された軸受ブロック373に回転自在に支持されており、その他端が上記パルスモータ372の出力軸に伝動連結されている。なお、雄ネジロッド371は、第1の滑動ブロック32の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ372によって雄ネジロッド371を正転および逆転駆動することにより、第一の滑動ブロック32は案内レール31、31に沿ってX軸方向に移動せしめられる。
【0019】
図示の実施形態におけるレーザー加工装置1は、上記チャックテーブル36の加工送り量を検出するための加工送り量検出手段374を備えている。加工送り量検出手段374は、案内レール31に沿って配設されたリニアスケール374aと、第1の滑動ブロック32に配設され第1の滑動ブロック32とともにリニアスケール374aに沿って移動する読み取りヘッド374bとからなっている。この加工送り量検出手段374の読み取りヘッド374bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の加工送り量を検出する。
【0020】
上記第2の滑動ブロック33は、その下面に上記第1の滑動ブロック32の上面に設けられた一対の案内レール322、322と嵌合する一対の被案内溝331、331が設けられており、この被案内溝331、331を一対の案内レール322、322に嵌合することにより、Y軸方向に移動可能に構成される。図示の実施形態におけるチャックテーブル機構3は、第2の滑動ブロック33を第1の滑動ブロック32に設けられた一対の案内レール322、322に沿ってY軸方向に移動させるための第1の割り出し送り手段38を具備している。第1の割り出し送り手段38は、上記一対の案内レール322と322の間に平行に配設された雄ネジロッド381と、該雄ネジロッド381を回転駆動するためのパルスモータ382等の駆動源を含んでいる。雄ネジロッド381は、その一端が上記第1の滑動ブロック32の上面に固定された軸受ブロック383に回転自在に支持されており、その他端が上記パルスモータ382の出力軸に伝動連結されている。なお、雄ネジロッド381は、第2の滑動ブロック33の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ382によって雄ネジロッド381を正転および逆転駆動することにより、第2の滑動ブロック33は案内レール322、322に沿ってY軸方向に移動せしめられる。
【0021】
図示の実施形態におけるレーザー加工装置1は、上記第2の滑動ブロック33の割り出し加工送り量を検出するための割り出し送り量検出手段384を備えている。割り出し送り量検出手段384は、案内レール322に沿って配設されたリニアスケール384aと、第2の滑動ブロック33に配設され第2の滑動ブロック33とともにリニアスケール384aに沿って移動する読み取りヘッド384bとからなっている。この割り出し送り量検出手段384の読み取りヘッド384bは、図示の実施形態においては1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36の割り出し送り量を検出する。
【0022】
上記レーザー光線照射ユニット支持機構4は、静止基台2上にY軸方向に沿って平行に配設された一対の案内レール41、41と、該案内レール41、41上に矢印Yで示す方向に移動可能に配設された可動支持基台42を具備している。この可動支持基台42は、案内レール41、41上に移動可能に配設された移動支持部421と、該移動支持部421に取り付けられた装着部422とからなっている。装着部422は、一側面にZ軸方向に延びる一対の案内レール423、423が平行に設けられている。図示の実施形態におけるレーザー光線照射ユニット支持機構4は、可動支持基台42を一対の案内レール41、41に沿ってY軸方向に移動させるための第2の割り出し送り手段43を具備している。第2の割り出し送り手段43は、上記一対の案内レール41、41の間に平行に配設された雄ネジロッド431と、該雄ネジロッド431を回転駆動するためのパルスモータ432等の駆動源を含んでいる。雄ネジロッド431は、その一端が上記静止基台2に固定された図示しない軸受ブロックに回転自在に支持されており、その他端が上記パルスモータ432の出力軸に伝動連結されている。なお、雄ネジロッド431は、可動支持基台42を構成する移動支持部421の中央部下面に突出して設けられた図示しない雌ネジブロックに形成された雌ネジ穴に螺合されている。このため、パルスモータ432によって雄ネジロッド431を正転および逆転駆動することにより、可動支持基台42は案内レール41、41に沿ってY軸方向に移動せしめられる。
【0023】
図1に基づいて説明を続けると、図示の実施形態におけるレーザー加工装置1は、レーザー光線照射ユニット5のユニットホルダ51を可動支持基台42の装着部422に設けられた一対の案内レール423、423に沿って矢印Zで示す集光点位置調整方向(Z軸方向)即ちチャックテーブル36の保持面に対して垂直な方向に移動させるための集光点位置調整手段53を具備している。集光点位置調整手段53は、一対の案内レール423、423の間に配設された雄ネジロッド(図示せず)と、該雄ネジロッドを回転駆動するためのパルスモータ532等の駆動源を含んでおり、パルスモータ532によって図示しない雄ネジロッドを正転および逆転駆動することにより、上記レーザー光線照射ユニット5を案内レール423、423に沿ってZ軸方向に移動せしめる。なお、図示の実施形態においてはパルスモータ532を正転駆動することによりレーザー光線照射ユニット5を上方に移動し、パルスモータ532を逆転駆動することによりレーザー光線照射ユニット5を下方に移動するようになっている。
【0024】
図示の実施形態のおけるレーザー光線照射ユニット5は、ユニットホルダ51と、該ユニットホルダ51に取り付けられた円筒形状のユニットハウジング52を具備しており、ユニットホルダ51が上記可動支持基台42の装着部422に一対の案内レール423、423に沿って移動可能に配設されている。ユニットホルダ51に取り付けられたユニットハウジング52には、上記チャックテーブル36に保持された被加工物にレーザー光線を照射するレーザー光線照射機構が配設されている。このレーザー光線照射機構の第1の実施形態について、図2を参照して説明する。
【0025】
図2に示す実施形態におけるレーザー光線照射機構6は、パルスレーザー光線を発振するパルスレーザー光線発振手段61と、該パルスレーザー光線発振手段61から発振されたレーザー光線を集光して上記チャックテーブル36に保持された被加工物に照射する集光器62と、パルスレーザー光線発振手段61と集光器62の間に配設されパルスレーザー光線発振手段61から発振されたパルスレーザー光線の出力を調整する出力調整手段63を具備している。パルスレーザー光線発振手段61は、YAGレーザー発振器或いはYVO4レーザー発振器からなるパルスレーザー光線発振器611と、これに付設された繰り返し周波数設定手段612とから構成されており、例えば波長が355nmのパルスレーザー光線を発振する。上記集光器62は、パルスレーザー光線発振手段61から発振され出力調整手段63によって出力が調整されたパルスレーザー光線を図2において下方に向けて方向変換する方向変換ミラー621と、該方向変換ミラー621によって方向変換されたパルスレーザー光線を集光する集光レンズ622を具備し、該集光レンズ622によって集光したパルスレーザー光線をチャックテーブル36の保持面に保持された被加工物に照射する。このように構成された集光器62は、ユニットハウジング52の先端に配設される。
【0026】
上記パルスレーザー光線発振手段61から発振されたパルスレーザー光線の出力を調整する出力調整手段63は、パルスレーザー光線発振手段61から発振された直線偏光のパルスレーザー光線を45度回転する1/2波長板631と、該1/2波長板631によって45度回転せしめられた直線偏光のレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面632aおよび第2の偏光ビームスプリッター面632bを備えたプリズム632と、該プリズム632の第1の偏光ビームスプリッター面632aに対向して配設された光路長調整手段633と、プリズム632の第2の偏光ビームスプリッター面632bに対向して配設された偏光成分合成手段636を具備している。
【0027】
上記1/2波長板631は、パルスレーザー光線発振手段61から発振された直線偏光のパルスレーザー光線の偏光面を第1の偏光ビームスプリッター面632aに対して45度回動し、P偏光成分とS偏光成分が均等な強度分布となるように調整する。プリズム632の第1の偏光ビームスプリッター面632aおよび第2の偏光ビームスプリッター面632bは、1/2波長板631によって45度回転せしめられた直線偏光のレーザー光線のS偏光成分を反射し、P偏光成分を透過せしめる。光路長調整手段633は、第1の偏光ビームスプリッター面632aと対向するミラー面634aを備えた第1のミラー634と、該第1のミラー634の背面に装着されたピエゾアクチュエータ635とからなっている。第1のミラー634は、プリズム632の第1の偏光ビームスプリッター面632aを透過したP偏光成分を反射する。ピエゾアクチュエータ635は、印加する電圧値に対応して伸びる圧電素子によって構成され、後述する制御手段によって制御される。このように構成された光路長調整手段633は、ピエゾアクチュエータ635に印加する電圧値に対応して第1のミラー634のミラー面634aと第1の偏光ビームスプリッター面632aとの間隔(d0)を調整することにより、第1の偏光ビームスプリッター面632aで反射した直線偏光のレーザー光線のS偏光成分と第1のミラー634のミラー面634aで反射したP偏光成分との間に位相差(α)を生成する。上記偏光成分合成手段636は、プリズム632の第2の偏光ビームスプリッター面632bに所定の間隔(d1)をもって対向するミラー面637aを備えた第2のミラー637からなっている。この第2のミラー637からなる偏光成分合成手段636は、上記第1の偏光ビームスプリッター面632aで反射しするとともに第2の偏光ビームスプリッター面632bで反射したS偏光成分と第2の偏光ビームスプリッター面632bを透過し第2のミラー637のミラー面637aで反射したP偏光成分との間に位相差(β)を生成し両偏光成分を合成する。
【0028】
図2を参照して説明を続けると、図示の実施形態における出力調整手段63は、上記第2の偏光ビームスプリッター面632bで反射したS偏光成分と第2の偏光ビームスプリッター面632bを透過し第2のミラー637のミラー面637aで反射したP偏光成分が合成されプリズム632から出力されたレーザー光線の方向を変換する方向変換ミラー638と、該方向変換ミラー638によって方向変換されたレーザー光線を分光する分光手段639を具備している。図2に示す分光手段639は、1/2波長板639aと偏光ビームスプリッター面を備えたビームスプリッター639bとからなっている。1/2波長板639aは、プリズム632から出力されたレーザー光線を45度回転して元の状態に戻す。偏光ビームスプリッター面を備えたビームスプリッター639bは、1/2波長板639aによって45度回転せしめられたレーザー光線のS偏光成分を反射してビームダンパー64に導き、P偏光成分を透過して上記集光器62に導く。なお、図2に示す分光手段639は1/2波長板639aと偏光ビームスプリッター面を備えたビームスプリッター639bとからなっている例を示したが、1/2波長板639aを用いずにビームスプリッター639bの偏光ビームスプリッター面を45度回転するように構成してもよい。
【0029】
図示の実施形態におけるレーザー光線照射機構6の出力調整手段63は以上のように構成されており、以下出力調整の原理について説明する。
プリズム632の第1の偏光ビームスプリッター面632aおよび第2の偏光ビームスプリッター面632bで反射したレーザー光線のS偏光成分と、第1の偏光ビームスプリッター面632aを透過して光路長調整手段633を構成する第1のミラー634のミラー面634aで反射するとともに第2のミラー637のミラー面637aで反射したP偏光成分との間には、位相差(α+β)が生成される。このように位相差(α+β)が生成されたS偏光成分とP偏光成分は、分光手段639に向けて出力される。レーザー光線のS偏光成分とS偏光成分に対して位相差(α+β)が加わったP偏光成分が合成されると、位相差(α+β)の値によってレーザー光線の偏光特性が異なってくる。即ち、位相差(α+β)が0度の場合、偏光はビームスプリッター639bの偏光ビームスプリッター面に対してP偏光成分のみとなり、レーザー光線は全てビームスプリッター639bを透過して上記集光器62に導かれる。一方、位相差(α+β)が180度の場合、偏光はビームスプリッター639bの偏光ビームスプリッター面に対してS偏光成分のみとなり、レーザー光線は全てビームスプリッター639bの偏光ビームスプリッター面で反射されビームダンパー64に導かれる。位相差(α+β)が0度から180度に変化するに従ってレーザー光線のP偏光成分が徐々に少なくなる。従って、位相差(α+β)を0度から180度の間で制御することにより、レーザー光線のP偏光成分即ち集光器62を介して被加工物に照射されるレーザー光線の出力を調整することができる。なお、位相差(α+β)の調整は、光路長調整手段633を構成するピエゾアクチュエータ635に印加する電圧値を制御し、第1のミラー634のミラー面634aと第1の偏光ビームスプリッター面632aとの間隔(d0)を調整することにより達成できる。光路長調整手段633を構成するピエゾアクチュエータ635は、上述したように印加する電圧値に対応して伸びる圧電素子によって構成され、数μmの変位が可能で共振周波数が300kHzを超えるものもあり、応答性が優れており高速制御が可能である。
【0030】
次に、出力調整手段63の第2の実施形態について、図3を参照して説明する。
なお、図3に示す出力調整手段63は、上記図3に示す出力調整手段63とプリズム632の形状が相違する以外は実質的に同一の構成であるため、同一部材には同一符合を付して、その説明は省略する。
図3に示す出力調整手段63のプリズム632は、第1の偏光ビームスプリッター面632aおよび第2の偏光ビームスプリッター面632bの他に、3個の反射面632c、632d、632eを備えている。このように構成されたプリズム632は、パルスレーザー光線発振手段61から発振され1/2波長板631によって45度回転せしめられた直線偏光のレーザー光線を、次のように反射して出力する。即ち、パルスレーザー光線発振手段61から発振され1/2波長板631によって45度回転せしめられた直線偏光のレーザー光線のS偏光成分は、第1の偏光ビームスプリッター面632aによって反射し、更に反射面632cおよび632dを介して第2の偏光ビームスプリッター面632bに達する。一方、パルスレーザー光線発振手段61から発振され1/2波長板637aによって45度回転せしめられた直線偏光のレーザー光線のP偏光成分は、第1の偏光ビームスプリッター面632aを透過して光路長調整手段633を構成する第1のミラー634のミラー面634aで反射し、更に反射面632cおよび632dを介して第2の偏光ビームスプリッター面632bに達する。第2の偏光ビームスプリッター面632bに達したS偏光成分は、第2の偏光ビームスプリッター面632bで反射面632eに向けて反射する。一方、第2の偏光ビームスプリッター面632bに達したP偏光成分は、第2の偏光ビームスプリッター面632bを透過して第2のミラー637のミラー面637aで反射し、S偏光成分と合成して反射面632eに達する。このようにS偏光成分とP偏光成分が合成されたレーザー光線は、反射面632eで反射して分光手段639に向けて出力される。以上のようにしてプリズム632内を複数回反射して出力されるレーザー光線も、上記図2に示す実施形態と同様に第1の偏光ビームスプリッター面632a、反射面632cおよび632d、第2の偏光ビームスプリッター面632bで反射したレーザー光線のS偏光成分と、第1の偏光ビームスプリッター面632aを透過して光路長調整手段633を構成する第1のミラー634のミラー面634a、反射面632cおよび632d、第2の偏光ビームスプリッター面632bを透過して第2のミラー637のミラー面637aで反射したP偏光成分との間には、位相差(α+β)が生成される。
【0031】
図1に戻って説明を続けると、レーザー光線照射ユニット5を構成するユニットハウジング52の前端部には、撮像手段7が配設されている。この撮像手段7は、被加工物を照明する照明手段と、該照明手段によって照明された領域を捕らえる光学系と、該光学系によって捕らえられた像を撮像する撮像素子(CCD)等を備え、撮像した画像信号を図示しない制御手段に送る。
【0032】
図示の実施形態におけるレーザー加工装置1は、図4に示す制御手段8を具備している。制御手段8はマイクロコンピュータによって構成されており、制御プログラムに従って演算処理する中央処理装置(CPU)81と、制御プログラム等を格納するリードオンリメモリ(ROM)82と、演算結果等を格納する読み書き可能なランダムアクセスメモリ(RAM)83と、入力インターフェース84および出力インターフェース85とを備えている。このように構成された制御手段8の入力インターフェース84には、加工送り量検出手段374、割り出し送り量検出手段384、撮像手段7等からの検出信号が入力されるとともに、入力手段9から被加工物の情報等が入力される。また、出力インターフェース85からは、上記加工送り手段37のパルスモータ372、第1の割り出し送り手段38のパルスモータ382、第2の割り出し送り手段43のパルスモータ432、集光点位置調整手段53のパルスモータ532、レーザー光線照射機構6のパルスレーザー光線発振手段61、出力調整手段63の光路長調整手段633を構成するピエゾアクチュエータ635等に制御信号を出力する。
【0033】
図示の実施形態におけるレーザー加工装置1は以上のように構成されており、以下その作用について説明する。
図5にはレーザー加工装置1によって加工処理される半導体ウエーハの斜視図が示されており、図6には図5に示す半導体ウエーハのストリートにおける拡大断面図が示されている。図5および図6に示す半導体ウエーハ10は、シリコンウエーハからなる半導体基板11の表面11aに格子状に配列された複数のストリート(切断予定ライン)111によって複数の領域が区画され、この区画された領域にIC、LSI等のデバイス112が形成されている。なお、この半導体ウエーハ10は、半導体基板11の表面11aに低誘電率絶縁体被膜113が積層して形成されており、ストリート111にはデバイス112の機能をテストするためのテスト エレメント グループ(Teg)と呼ばれるテスト用の金属パターン114が部分的に複数配設されている。このように構成された半導体ウエーハ10の各ストリート111および各金属パターン114の設計上の座標値が入力手段9によって制御手段8に入力される。そして制御手段8は、入力された各ストリート111および各金属パターン114の設計上の座標値をランダムアクセスメモリ(RAM)83に格納する。
【0034】
以下、上記半導体ウエーハ10にストリート111に沿ってレーザー光線を照射し、低誘電率絶縁体被膜113および金属パターン114を除去する方法について説明する。
上述した半導体ウエーハ10は、図1に示すレーザー加工装置1のチャックテーブル機構3を構成するチャックテーブル36の吸着チャック361上に表面10aを上側にして搬送され、該吸着チャック361に吸引保持される。このようにしてチャックテーブル36上に半導体ウエーハ10を吸引保持したならば、制御手段8は加工送り手段37を作動して半導体ウエーハ10を吸引保持したチャックテーブル36を撮像手段7の直下に位置付ける。
【0035】
チャックテーブル36を撮像手段7の直下に位置付けたならば、制御手段8は撮像手段7を作動して半導体ウエーハ10のレーザー加工すべき加工領域を検出するアライメント作業を実行する。即ち、撮像手段7および制御手段8は、半導体ウエーハ10の所定方向に形成されているストリート111と、ストリート111に沿ってレーザー光線を照射するレーザー光線照射機構6の集光器62との位置合わせを行うためのパターンマッチング等の画像処理を実行し、レーザー光線照射位置のアライメントを遂行する。また、撮像手段7および制御手段8は、半導体ウエーハ10に形成されている上記所定方向と直交する方向に形成されているストリート111に対しても、同様にレーザー光線照射位置のアライメントを遂行する。
【0036】
以上のようにしてチャックテーブル36上に保持されている半導体ウエーハ10に形成されているストリート111を検出し、レーザー光線照射位置のアライメントを実行したならば、制御手段8は加工送り手段37を作動してチャックテーブル36を移動し、図7の(a)で示すように所定のストリート111の一端(図において左端)をレーザー光線照射機構6の集光器62の直下に位置付ける。そして、制御手段8はレーザー光線発振手段61に制御信号を出力し、集光器62から低誘電率絶縁体被膜113および金属パターン114に対して吸収性を有する波長のパルスレーザー光線(波長:355nm、繰り返し周波数:30kHz)を照射しつつチャックテーブル36を矢印X1で示す方向に所定の加工送り速度(例えば200mm/秒)で移動せしめる(レーザー光線照射工程)。このレーザー光線照射工程において制御手段8は、加工送り量検出手段374から検出信号を入力し、ランダムアクセスメモリ(RAM)83に格納されている金属パターン114の座標値が集光器62の直下に達する都度、集光器62から照射されるレーザー光線の出力を後述するように制御する。なお、集光器62によって集光されるパルスレーザー光線の集光スポット径は、図示の実施形態においてはφ9.2μmに設定されている。
【0037】
上記レーザー光線照射工程においては、金属パターン114が存在しない領域には低誘電率絶縁体被膜113が除去できる出力のパルスレーザー光線を照射し、金属パターン114が存在する領域には金属パターン114と低誘電率絶縁体被膜113が除去できる出力のパルスレーザー光線を照射する。例えば、金属パターン114が存在する領域を加工する際には、制御手段8はレーザー光線照射機構6における出力調整手段63の光路長調整手段633を構成するピエゾアクチュエータ635に印加する電圧を制御し、上記プリズム632を通って出力されるレーザー光線のS偏光成分とP偏光成分の位相差(α+β)が0度になるように制御する。この結果、プリズム632から出力されるパルスレーザー光線の偏光は偏光ビームスプリッター面を備えたビームスプリッター639bに対してP偏光成分のみとなり、レーザー光線は全てビームスプリッター639bを透過して上記集光器62に導かれる。このようにして集光器62に導かれるレーザー光線の出力を、図示の実施形態においては例えば3Wに設定されている。
【0038】
一方、金属パターン114が存在しない領域を加工する際には、低誘電率絶縁体被膜113のみが除去できる出力(例えば1W)のパルスレーザー光線を照射する。即ち、制御手段8はレーザー光線照射機構6における出力調整手段63の光路長調整手段633を構成するピエゾアクチュエータ635に印加する電圧を制御して、上記プリズム632を通って出力されるレーザー光線のS偏光成分とP偏光成分の位相差(α+β)を例えば120度になるように調整し、ビームスプリッター637bの偏光ビームスプリッター面に対してP偏光成分の割合が例えば1W(図示の実施形態においては全出力の1/3)となるように制御する。従って、プリズム632から出力されるパルスレーザー光線の偏光はビームスプリッター637bの偏光ビームスプリッター面に対してS偏光成分が2/3、P偏光成分1/3となる。この結果、プリズム632から出力されるパルスレーザー光線の全出力の2/3のS偏光成分がビームダンパー64に導かれ、1/3のP偏光成分がビームスプリッター639bを透過して上記集光器62に導かれて図示の実施形態においては出力が1Wのパルスレーザー光線が被加工物である半導体ウエーハ10に照射される。
【0039】
上述したレーザー光線照射工程を実施し、図7の(b)で示すように集光器62の照射位置がストリート111の他端(図7の(b)において右端)に達したら、パルスレーザー光線の照射を停止する。この結果、図7の(b)に示すように半導体ウエーハ10の所定のストリート111に沿って金属パターン114および低誘電率絶縁体被膜113が除去される。このレーザー光線照射工程においては被加工物である半導体ウエーハ10に照射されるレーザー光線の出力が、上述したように金属パターン114が存在する領域を加工する際には例えば3Wに設定され、金属パターン114が存在しない領域を加工する際には例えば1Wに設定されているので、金属パターン114が存在する領域では金属パターン114および低誘電率絶縁体被膜113を確実に除去することができ、また金属パターン114が存在しない領域では低誘電率絶縁体被膜113だけを除去することができる。なお、被加工物である半導体ウエーハ10に照射するレーザー光線の出力の調整は、上述したように光路長調整手段633を構成するピエゾアクチュエータ635に印加する電圧値を制御し、第1のミラー634のミラー面634aと第1の偏光ビームスプリッター面632aとの間隔(d0)を調整することにより達成できるので、高速制御が可能となり加工送り速度に追随して調整することができる。
【0040】
上述したように所定のストリート111に沿ってレーザー光線照射工程を実行したら、制御手段8は第1の割り出し送り手段38を作動してチャックテーブル36、従ってこれに保持されている半導体ウエーハ10を矢印Yで示す割り出し送り方向にストリート111の間隔だけ割り出し送りし(割り出し工程)、上記レーザー光線照射工程を実行する。このようにして所定方向に延在する全てのストリート111についてレーザー光線照射工程を実行したならば、チャックテーブル36を90度回動せしめて、上記所定方向に対して直交する方向に延びるストリート111に沿って上レーザー光線照射工程を実行することにより、半導体ウエーハ10の全てのストリート111に形成されているテスト用金属パターン114および低誘電率絶縁体被膜113が除去される。
【符号の説明】
【0041】
3:チャックテーブル機構
36:チャックテーブル
37:加工送り手段
374:加工送り量検出手段
38:第1の割り出し送り手段
43:第2の割り出し送り手段
5:レーザー光線照射ユニット
53:集光点位置調整手段
6:レーザー光線照射機構
61:パルスレーザー光線発振手段
611:パルスレーザー光線発振器
62:集光器
622:集光レンズ
63:出力調整手段
631:1/2波長板
632:プリズム
633:光路長調整手段
634:第1のミラー
635:ピエゾアクチュエータ
636:偏光成分合成手段
637:第2のミラー
639:分光手段
64:ビームダンパー
7:撮像手段
8:制御手段
10:半導体ウエーハ

【特許請求の範囲】
【請求項1】
レーザー光線を発振するレーザー光線発振器と、該レーザー光線発振器から発振されたレーザー光線を集光して照射する集光レンズと、該レーザー光線発振器と該集光レンズとの間に配設され該レーザー光線発振器から発振されたレーザー光線の出力を調整する出力調整手段と、を具備するレーザー光線照射機構であって、
該出力調整手段は、該レーザー光線発振器から発振された直線偏光のレーザー光線の偏光面を45度回転する1/2波長板と、
該1/2波長板によって偏光面が45度回転せしめられたレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面および第2の偏光ビームスプリッター面を備えたプリズムと、
該第1の偏光ビームスプリッター面と対向して配設され該第1の偏光ビームスプリッター面を透過したレーザー光線のP偏光成分を反射するミラー面を備えた第1のミラーと、該第1のミラーに装着され印加する電圧に対応して該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整するピエゾアクチュエータとを備え、該第1の偏光ビームスプリッター面で反射したレーザー光線のS偏光成分と該第1のミラーのミラー面で反射したP偏光成分との間に位相差(α)を生成する光路長調整手段と、
該第2の偏光ビームスプリッター面と対向して所定の間隔をもって配設され該第1のミラーのミラー面で反射し該第2の偏光ビームスプリッター面を透過したP偏光成分を反射するミラー面を備えた第2のミラーを備え、該第1の偏光ビームスプリッター面で反射するとともに該第2の偏光ビームスプリッター面で反射したS偏光成分と該第2の偏光ビームスプリッター面を透過し該第2のミラーのミラー面で反射したP偏光成分との間に位相差(β)を生成する偏光成分合成手段と、
該偏光成分合成手段で合成されたレーザー光線を分光する偏光ビームスプリッター面を備え、該偏光成分合成手段で合成されたレーザー光線の一部または全部を該集光レンズに導き、該偏光成分合成手段で合成されたレーザー光線の全部または一部をビームダンパーに導く分光手段と、
該光路長調整手段の該ピエゾアクチュエータに印加する電圧を制御し、該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整することにより該偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御する制御手段と、を具備している、
ことを特徴とするレーザー光線照射機構。
【請求項2】
被加工物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された被加工物にレーザー光線を照射するレーザー光線照射機構と、該チャックテーブルと該レーザー光線照射機構とを加工送り方向に相対的に加工送りする加工送り手段と、を具備するレーザー加工装置において、
該レーザー光線照射機構は、レーザー光線を発振するレーザー光線発振器と、該レーザー光線発振器から発振されたレーザー光線を集光して照射する集光レンズと、該レーザー光線発振器と該集光レンズとの間に配設され該レーザー光線発振器から発振されたレーザー光線の出力を調整する出力調整手段と、を具備し、
該出力調整手段は、該レーザー光線発振器から発振された直線偏光のレーザー光線の偏光面を45度回転する1/2波長板と、
該1/2波長板によって偏光面が45度回転せしめられたレーザー光線を入光してS偏光成分を反射させP偏光成分を透過せしめる第1の偏光ビームスプリッター面および第2の偏光ビームスプリッター面を備えたプリズムと、
該第1の偏光ビームスプリッター面と対向して配設され該第1の偏光ビームスプリッター面を透過したレーザー光線のP偏光成分を反射するミラー面を備えた第1のミラーと、該第1のミラーに装着され印加する電圧に対応して該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整するピエゾアクチュエータとを備え、該第1の偏光ビームスプリッター面で反射したレーザー光線のS偏光成分と該第1のミラーのミラー面で反射したP偏光成分との間に位相差(α)を生成する光路長調整手段と、
該第2の偏光ビームスプリッター面と対向して所定の間隔をもって配設され該第1のミラーのミラー面で反射し該第2の偏光ビームスプリッター面を透過したP偏光成分を反射するミラー面を備えた第2のミラーを備え、該第1の偏光ビームスプリッター面で反射するとともに該第2の偏光ビームスプリッター面で反射したS偏光成分と該第2の偏光ビームスプリッター面を透過し該第2のミラーのミラー面で反射したP偏光成分との間に位相差(β)を生成する偏光成分合成手段と、
該偏光成分合成手段で合成されたレーザー光線を分光する偏光ビームスプリッター面を備え、該偏光成分合成手段で合成されたレーザー光線の一部または全部を該集光レンズに導き、該偏光成分合成手段で合成されたレーザー光線の全部または一部をビームダンパーに導く分光手段と、
該光路長調整手段の該ピエゾアクチュエータに印加する電圧を制御し、該第1のミラーのミラー面と該第1の偏光ビームスプリッター面との間隔を調整することにより該偏光成分合成手段で合成されたレーザー光線のS偏光成分とP偏光成分との位相差(α+β)を0度から180度の間で制御する制御手段と、を具備している、
ことを特徴とするレーザー加工装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−161812(P2012−161812A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−23830(P2011−23830)
【出願日】平成23年2月7日(2011.2.7)
【出願人】(000134051)株式会社ディスコ (2,397)
【Fターム(参考)】