説明

レーザ加工ロボットの教示方法及び教示装置

【課題】レーザ加工ロボットの教示作業を容易且つ正確に行えるようにする。
【解決手段】測定レーザと加工レーザとを出力するレーザスキャナを有し、加工レーザをワークに照射してレーザ加工を行うレーザ加工ロボットの教示方法が、ワーク上の基準照射位置を基準として予め定められた基準図形に基づき測定レーザをワーク上に照射する際に、測定レーザの照射位置を制御する制御手順S4と、レーザスキャナから照射された測定レーザが、ワークにおいて反射された反射光を測定する測定手順S5と、反射光と基準図形を比較し、基準照射位置におけるワークの表面の傾斜を算出する傾斜算出手順S6と、傾斜算出部が算出した傾斜から前記ロボットの姿勢に関する教示データを作成するデータ作成手順S7と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ワークにレーザ光を照射して溶接、切断及び穿孔等の加工を行うレーザ加工ロボットの教示方法及び教示装置に関する。
【背景技術】
【0002】
近年、レーザ発振器の高効率化を受けて、ワークにレーザ光を離れた位置から照射してリモート溶接を行うレーザ溶接ロボットが提案されている。レーザ溶接ロボットは、ロボットのアーム先端に照射方向を可変にしてレーザ光を照射するスキャナヘッドを取り付けて成る。レーザ溶接ロボットの各軸は、他の産業用ロボットと同様、予め制御装置に記憶された教示データに従って駆動される。このため、作業現場では、実機とワークを使って教示データを作成する教示作業が行われる(例えば、特許文献1及び2参照)。
【0003】
特許文献1には、教示作業を行うときに、スキャナヘッドから、レーザ光の照射可能範囲を表す可視光の枠をワーク表面に投影することが開示されている。この場合、教示作業者は、投影された枠を目視して、ワーク上のレーザ光が照射されるべき溶接点が枠内に収まるようにロボットを操作しながら、ロボットの動作経路に関する教示データを作成することができる。また、教示作業者は、ワークに投影される枠の形状が正方形となるようにロボットを操作しながら、ロボット及びスキャナヘッドの姿勢に関する教示データを作成することができる。このように特許文献1においては、ロボットの教示位置と溶接点とが一対一で対応しないリモート溶接ロボットにおいて、教示作業者による最適動作経路の教示作業を支援することが図られている。
【0004】
特許文献2には、教示作業を行うときに、レーザ光の光束の外周を通過するような複数の可視光パイロットレーザをワークに照射し、スキャナヘッド内の焦点位置調整手段を動作させてワークに投影されるパイロットレーザが一つとなるように焦点距離を調整することが開示されている。この場合、教示作業者は、ワークに投影されるパイロットレーザの点状の像を目視して、パイロットレーザが一つに重なるように焦点距離を調整することができる。このように特許文献2においては、長い焦点距離のレーザ光が使われがちでレーザスキャナとワークとの間に大きな距離が確保されるリモート溶接ロボットにおいて、教示作業者による焦点距離の調整作業を支援することが図られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−346740号公報
【特許文献2】特開2007−253200号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1及び2の何れにおいても、教示作業が、教示作業者の目視と、教示作業者による実機操作とに頼るものとなっているので、教示作業者に高い熟練が要求されることに変わりはない。熟練が足りなければ、ロボット及びスキャナヘッドの姿勢を適切に教示したり、レーザ光の焦点距離を適切に調整したりすることができない。また、適切な教示作業を行うには長時間を要するおそれがあるので、教示作業者の負担が大きくなるだけでなく、実機とワークが作業現場に搬入されてから実際に溶接作業を行えるまでに長時間を要することになる。これは、ワークにレーザ光を離れた位置から照射して切断及び穿孔等の加工を行うロボットにおいても同様にして生じる問題である。
【0007】
そこで本発明は、ワークにレーザ光を照射してワークを加工するレーザ加工ロボットにおいて、容易且つ正確に教示作業を行えるようにすることを目的としている。
【課題を解決するための手段】
【0008】
本発明は上記目的を達成すべくなされたものであり、本発明に係るレーザ加工ロボットの教示方法は、測定レーザと加工レーザとを出力するレーザスキャナを有し、前記加工レーザをワークに照射してレーザ加工を行うレーザ加工ロボットの教示方法であって、前記ワーク上の基準照射位置を基準として予め定められた基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置を制御する制御手順と、前記レーザスキャナから照射された前記測定レーザが、前記ワークにおいて反射された反射光を測定する測定手順と、前記反射光と前記基準図形を比較し、前記基準照射位置における前記ワークの表面の傾斜を算出する傾斜算出手順と、前記傾斜算出手順において算出された傾斜から前記ロボットの姿勢に関する教示データを作成するデータ作成手順とを有することを特徴としている。
【0009】
前記方法によれば、レーザが照射されたワーク上の反射光と基準図形とを比較して、ワーク表面の傾斜が自動的に算出される。そして、算出された傾斜に基づいて教示データが自動的に作成される。このため、ワークとレーザスキャナとが離れた位置にあっても、ロボットに対するワークの姿勢を容易且つ正確に把握することができ、そのように把握された教示データに従って溶接作業を良好に行うことができる。
【0010】
前記制御手順において、前記ワーク上の前記基準照射位置を基準として予め定められた前記基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置の変更を連続して行い、前記測定手順において、前記ワーク上における前記反射光の軌跡が測定されてもよい。この場合、レーザスキャナ内に、教示作業時にのみ用いられる基準形状の像を作成するための光学部品を設けなくてもよく、測定レーザの軌跡を代替とすることができるので、レーザスキャナの構成を簡素にすることができる。
【0011】
前記基準図形は、前記加工レーザの光軸と直交する平面において、前記基準照射位置を中心とする円であってもよい。
【0012】
前記レーザスキャナは、前記加工レーザと基準照射位置が同一の第1案内レーザと、前記第1案内レーザから離間した箇所から前記第1案内レーザの光軸と交差する光軸を有する第2案内レーザとを出力し、前記測定手順において、前記第1案内レーザおよび第2案内レーザの反射光を測定し、前記レーザスキャナを前記第1案内レーザの光軸方向に移動させて、前記第2案内レーザの照射位置を前記第1案内レーザの照射位置へ移動させてもよい。前記方法によれば、第1案内レーザ及び加工レーザの光軸方向において、レーザスキャナと基準照射位置との間の距離が交差位置に応じた所望の距離に調整される。このため、加工レーザを照射して溶接作業を行うときには、当該所望の距離と加工レーザの焦点距離を、当該調整された所望の距離に基づいて調整することが可能となり、加工レーザをワークに良好に作用させて適切な溶接作業を行うことができる。
【0013】
本発明に係るレーザ加工ロボットの教示装置は、加工レーザをワークに照射してレーザ加工を行うレーザ加工ロボットの教示装置であって、測定レーザと前記加工レーザとを出力するレーザスキャナと、前記ワーク上の基準照射位置を基準として予め定められた基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置を制御する制御部と、前記レーザスキャナから照射された前記測定レーザが、前記ワークにおいて反射された反射光を測定する測定部と、前記反射光と前記基準図形を比較し、前記基準照射位置における前記ワークの表面の傾斜を算出する傾斜算出部と、前記傾斜部が算出した傾斜から、前記ロボットの姿勢に関する教示データを作成するデータ作成部と、を備えていることを特徴としている。
【0014】
本装置を用いることで、前述した教示方法と同様に、容易且つ正確に教示作業を行うことができるようになる。
【発明の効果】
【0015】
以上のように、本発明によれば、ワークにレーザ光を照射するレーザ加工ロボットにおいて、容易且つ正確に教示作業を行うことができる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施形態に係るレーザ加工ロボットの全体構成を示す概念図である。
【図2】図1に示すレーザ加工ロボットの制御系の構成を示すブロック図である。
【図3】図2に示す制御装置により実行される教示方法の処理手順を示すフローチャートである。
【図4】図3のステップS1〜S3の説明図である。図4(a)は、ステップS1を終えた時点におけるレーザスキャナとワークとの配置の関係を示す図、図4(b)は、図4(a)に示す状態からレーザスキャナを移動させた状態を示す図、図4(c)は、図4(b)に示す状態からレーザスキャナを更に移動させたことによって第1案内レーザと第2案内レーザとが基準照射位置で交差している状態を示す図である。
【図5】図3のステップS4,S5の説明図である。図5(a)は、測定レーザをワークに照射した状態を図4と同じ要領で模式的に示した図、図5(b)は、図5(a)に示された状態を幾何学的に示す図であり、レーザスキャナが投影しようとしている基準形状と、カメラで撮像される像の形状と、基準照射位置におけるワーク表面の法線方向との関係を幾何学的に示す図である。
【図6】カメラで撮像された測定レーザの像の基準軸方向に対する傾斜の算出手法の説明図である。
【図7】ワーク表面の楕円長軸方向における光軸直交平面に対する傾斜角の算出手法の説明図である。
【図8】(a)〜(c)は、ステップS5を終えた時点でロボット制御部にとって既知の値を用いてワーク表面の傾斜角を算出可能である旨説明するための説明図である。
【発明を実施するための形態】
【0017】
以下、図面を参照しながら本発明の実施形態について説明する。なお、全ての図を通じて同一の又は対応する要素には同一の符号を付して重複する詳細な説明を省略する。
【0018】
(レーザ溶接ロボット)
図1は、本発明の実施形態に係るレーザ溶接ロボット1の全体構成を示す概念図である。図1に示すレーザ溶接ロボット1は、自動車の車体を製造する設備など、金属製のワーク10を溶接する作業を行う設備で好適に利用されるものであり、ロボット2、レーザスキャナ3、レーザ発振器4及び制御装置5を備える。ロボット2は、複数のモータ21a〜21f(図2参照)を有する多軸ロボットである。複数のモータ21a〜21fが動作すると、ロボット2の姿勢が変化してロボット2のアーム先端が様々な方向に移動する。レーザ発振器4は、レーザ光を発生するレーザ光源である。レーザ発振器4によって発生されたレーザ光は、光ファイバケーブル8を介してレーザスキャナ3へと導かれる。
【0019】
レーザスキャナ3は、略直方体状の筐体を有している。レーザスキャナ3の筐体はロボット2のアーム先端に固定されるので、ロボット2のアーム先端の位置及び姿勢が決まれば、レーザスキャナ3の位置及び姿勢が決まる。レーザスキャナ3は、レーザ光を筐体外に照射する第1及び第2射出部31,32(図4参照)を有している。第1射出部31は、溶接作業時に使用する溶接レーザを照射するために利用される。本実施形態に係る第1射出部31は、教示作業時に使用する測定レーザ及び第1案内レーザを照射するためにも利用される。第2射出部32は、教示作業時に使用される第2案内レーザを照射するために利用される。
【0020】
少なくとも第1射出部31から照射されるレーザ光については、その光軸方向(すなわち、照射方向)及び焦点距離が可変である。そのため、レーザスキャナ3は、その筐体内に、第1射出部31へと導かれるレーザ光の光軸方向を変更するための方向変更機構(図示せず)及び第1射出部31へと導かれるレーザ光の焦点距離を変更する焦点調整機構(図示せず)を有している。
【0021】
制御装置5は、通信ケーブル9a,9b,9cを介してロボット2、レーザスキャナ3及びレーザ発振器4とそれぞれ接続されている。制御装置5は、レーザ発振器4の動作を制御し、また、予め記憶している教示データに従ってロボット2及びレーザスキャナ3の動作を制御し、それにより、ワーク10に、所謂オンザフライ方式によるリモートレーザ溶接作業が行われる。つまり、ロボット2のアーム先端を適宜姿勢で適宜経路に沿って移動させながら、レーザ発振器4により発生される所要波長及び所要エネルギー密度を有する溶接レーザが、ワーク10から離れた位置にあるレーザスキャナ3より適宜タイミングで適宜方向に照射される。溶接レーザが照射された位置においては、ワーク10がレーザ光の作用で変質してワーク10を溶接することができる。なお、溶接レーザは、溶接すべき位置に点状に照射されてもよいし、当該位置の周囲に線状又は周状の図形を描くように照射されてもよい。
【0022】
なお、教示データは、ロボット2の動作経路に関するデータ、ロボット2の動作経路上におけるアーム先端の姿勢に関するデータ、ロボット2の動作経路上の移動速度に関するデータ、レーザスキャナ3より照射される溶接レーザの光軸方向に関するデータ(すなわち、前述の方向変更機構の動作に関するデータ)、レーザスキャナ3より照射される溶接レーザの焦点距離に関するデータ(すなわち、前述の焦点調整機構の動作に関するデータ)、溶接レーザがワーク表面10a上で照射されるべき位置である基準照射位置(更に言えば、照射された溶接レーザが合焦すべき位置)に関するデータ、溶接レーザの出力強度に関するデータ、溶接レーザが基準照射位置に照射される時間に関するデータ、溶接レーザの照射位置の移動速度に関するデータなどを含み得る。
【0023】
教示データは、レーザ溶接ロボット1を設備内に設置した後に、実際のワーク10を用いて作成される。なお、レーザ溶接ロボット1を設置する前に、オフラインティーチングで作成された教示データを制御装置5に予め記憶させておくことも可能である。この場合にも、当該作成された教示データは、実際のワークを用いて修正される必要がある。本書中実施形態の説明においては、特に断らない限り、「教示作業」が、現場で教示データを作成する作業と、オフラインティーチングで作成した教示データを現場で修正する作業とを含むものとする。
【0024】
以下、この教示作業の自動化に資する本実施形態に係る教示装置及び教示方法について説明する。
【0025】
(教示装置)
図2は、図1に示すレーザ溶接ロボット1の制御系の構成を示す概念図である。図2に示すように、制御装置5は、ロボット制御部51、レーザスキャナ制御部52及びレーザ発振器制御部53を有している。ロボット制御部51は、教示データを記憶しており、ロボット2のモータ21a〜21fの動作を教示データに従って制御する。ロボット制御部51は、後述する教示方法の処理手順を指示する制御プログラムを記憶しており、当該制御プログラムに従ってロボット2のモータ21a〜21fの動作を制御する。ロボット制御部51は、教示作業者によって操作されるティーチペンダント7と通信可能に接続され、ティーチペンダント7において教示作業者によって入力された指令に従ってロボット2のモータ21a〜21fの動作を制御する。また、ロボット制御部51は、上記制御プログラムを実行可能であることにより、傾斜算出部56及びデータ作成部57をその機能部として有している。
【0026】
レーザスキャナ制御部52は、ロボット制御部51に記憶されている教示データ若しくは制御プログラム、又はティーチペンダント7で入力された指令に従って、レーザスキャナ3の動作を制御する。レーザ発振器制御部53は、レーザ発振器4の動作を制御する。レーザ発振器制御部53は、溶接作業時には、溶接するために十分に大きいエネルギー密度を有する溶接レーザを発生するようにレーザ発振器4を制御する。教示作業時には、レーザ光の作用でワーク10を変質させないために十分に小さいエネルギー密度を有する測定レーザ又は案内レーザを発生するようにレーザ発振器4を制御する。
【0027】
レーザ溶接ロボット1には、少なくとも教示作業を行うときに、カメラ6が設けられる。カメラ6は、CCD等の光電変換素子を撮像素子として有しており、当該撮像素子に結像された画像に係る電子的なデータ(以下、「画像データ」と称す)をロボット制御部51に供給する。ロボット制御部51は、カメラ6からの画像データを処理する画像処理機能を有している。なお、画像データには、撮像素子を成す各画素の位置を特定する情報、各画素における輝度を表す情報、各画素における色を表す情報などが含まれ得る。
【0028】
カメラ6は、少なくとも教示作業を行うときに、レーザスキャナ3の筐体外面にアタッチメントを介して取外し可能に固定される。このため、カメラ6の視野は、レーザスキャナ3を基準にすると固定されたものとなり、設備の床面に据え付けられたロボット2の基部を基準にするとロボット2のアーム先端の位置及び姿勢に応じて移動するものとなる。カメラ6は、教示作業を終えて溶接作業を行う段階では、レーザスキャナ3から取り外されていてもよい。これにより、カメラ6が溶接時に発生するスパッタやヒュームで汚損するのを防止することができる。後述する教示方法によれば、カメラ6の撮像結果にレーザ溶接ロボット1の絶対位置との関係性を持たせなくてもよい。したがって、教示作業を行う事前に、絶対位置を測定する等してカメラ6を校正する手間を省くことができる。
【0029】
このように、レーザ溶接ロボット1の教示装置は、溶接作業を行う装置としてのレーザ溶接ロボット1の構成要素(すなわち、ロボット2、レーザスキャナ3、レーザ発振器4及び制御装置5)と、カメラ6と、ティーチペンダント7とを備えている。逆に、溶接作業を行う装置としてのレーザ溶接ロボット1は、カメラ6及びティーチペンダント7を必ずしも備えていない。
【0030】
(レーザスキャナの配置)
図3は、制御装置5により実行される教示方法の処理手順を示すフローチャートである。図4〜図8は、図3に示す処理をそれぞれ説明するための概念図である。図3に示すように、教示方法の最初には、ロボット制御部51が、レーザスキャナ3がワーク10の表面上の基準照射位置と距離をおいて対向して配置されるように、ロボット2のモータを制御する(ステップS1)。ここで、ワーク10の基準照射位置は、リモート溶接を行うにあたって溶接レーザを照射するときの基準となる位置である。溶接レーザを点状に照射して溶接を行う場合には、溶接レーザが照射されるべき位置が正にこの基準照射位置であってもよい。溶接レーザを周状の図形を描くように照射して溶接を行う場合には、当該図形の中心位置が基準照射位置であってもよいし、当該図形上の任意の点が基準照射位置であってもよい。また、溶接レーザを線状の図形を描くように照射して溶接を行う場合には、当該図形の始点、中間点又は終点が基準照射位置であってもよい。
【0031】
ステップS1では、第1射出部31からレーザ光が照射されたならばそのレーザ光の光軸上に基準照射位置が位置するように、ロボット2のアーム先端の位置及び姿勢(すなわち、レーザスキャナ3の位置及び姿勢)と、レーザ光の光軸方向とが調整される。この調整は、ロボット制御部51によるロボット2のモータの位置制御及びスキャナ制御部52によるレーザスキャナ3の動作制御を通じて実行される。
【0032】
基準照射位置に対するレーザ光の光軸の位置合わせを行うにあたって、少なくとも教示作業時には、ワーク10の基準照射位置に、教示作業者によって目視可能な及び/又はカメラ6によって測定可能なマークが付される。そこで、レーザ発振器制御部53は、可視光域の波長を有する案内レーザを発生するようにレーザ発振器4を制御し、当該案内レーザがレーザスキャナ3の第1射出部31より照射される。この場合、教示作業者は、ワーク10に投影された案内レーザの反射光(又は像)を目視し、当該反射光がマーク上に位置するようにティーチペンダント7でロボット2及び/又はレーザスキャナ3を操作することにより、上記位置合わせを行うことができる。また、カメラ6で、ワーク10に投影された案内レーザの像と、基準照射位置に付されたマークの像とを撮像しながら、ロボット制御部51がカメラ6からの画像データに基づいて2つの像が重なるようにモータ21a〜21fの動作を制御するようにしてもよい。これにより、上記位置合わせを自動化することができる。なお、オフラインティーチングで作成された教示データを制御装置5が記憶している場合には、当該教示データに従ってロボット2のアーム先端を基準照射位置と対向する位置で停止させたうえで、上記位置合わせを行うべくロボット2のアーム先端の位置及び/又は案内レーザの光軸方向が微調整される。
【0033】
(レーザスキャナとワークとの間の距離の調整)
このようにレーザスキャナ3がワーク10の表面から距離をおいて配置された後には、図4(a)に示すように、第1射出部31より第1案内レーザL1を照射すると共に第2射出部32より第2案内レーザL2を照射し、ワーク10に投影された第1及び第2案内レーザL1,L2の像IL1,IL2をカメラ6で撮像する。また、ロボット制御部51が、カメラ6からの画像データに基づき、第1及び第2案内レーザL1,L2の像IL1,IL2が基準照射位置pで交差しているか否かを判断する(ステップS2)。なお、第1案内レーザL1は、溶接作業時に使用される溶接レーザと、光軸方向が同一である。なお、第1射出部31から交差点fまでの距離Zについては、第1案内レーザと溶接レーザとで同一であっても異なっていてもよい。ここでは、説明の簡略化のため、同一であるものとして説明する。第2案内レーザL2は、第1案内レーザL1の光軸に対して傾いた光軸を有し、且つ第1案内レーザL1と交差するように光学設計されている。
【0034】
ステップS2の処理をより詳細に説明する。このステップS2に先立つステップS1において、アーム先端の位置及び姿勢と第1射出部31より照射されるレーザ光の光軸方向が調整されているので、ステップS2においても、第1射出部31から照射される第1案内レーザL1は、基準照射位置pに投影される。ただし、ステップS1では、交差点fの位置をも調整してはいないので(ステップS2で自動調整を行うためその必要性がない)、第1案内レーザL1の交差点fが基準照射位置pに位置している蓋然性は極めて低い。また、オフラインティーチングで教示データが作成されていた場合においても、ワーク10の据付け誤差等に起因して、交差点fが基準照射位置pに位置していない可能性がある。
【0035】
図4(a)に示すように、交差点fが基準照射位置pに位置していなければ、第2案内レーザL2は、ワーク10の表面上において基準照射位置pから離れた位置に投影される。他方、カメラ6は、その視野内に基準照射位置pの周辺を収めることができるような配置及び光学設計がなされているので、カメラ6は、基準照射位置pに投影された第1案内レーザL1の点状像と、基準照射位置pから離れた位置に投影された第2案内レーザL2の点状像との2つの像を撮像する。なお、図4(a)は、交差点fが基準照射位置pから見てレーザスキャナ3と遠ざかる側に位置する場合(Z<Z)を例示しているが、これと逆の場合には、照射された第2案内レーザL2がワーク10の表面に到達する前に基準照射位置pよりも紙面右側に進行するので、第1及び第2案内レーザL1,L2は、ワーク表面10a上の離れた2つの位置にそれぞれ投影される。
【0036】
カメラ6の撮像素子を成す画素のうち、レーザ光の像IL1,IL2が結像した画素における輝度は、結像されなかった画素と比べて格段に高い。そこで、ロボット制御部51は、カメラ6からの画像データに含まれる輝度の情報を参照して、レーザ光の像IL1,IL2が結像した箇所を特定し、これら2つの像IL1,IL2の間の距離dを算出する。ここで算出される距離dは、ワーク10の表面上の2つの像IL1,IL2の間の実際の距離である必要はなく、カメラ6の視野内での距離であればよい。
【0037】
ロボット制御部51は、カメラ6からの画像データに含まれる輝度及び色の情報を参照して、2つの点状像が所定の許容範囲を超えて離れているか否かを判断する。これにより、第1及び第2案内レーザL1,L2の像が基準照射位置pで交差しているか否かが判断されることとなる。
【0038】
なお、交差点fが基準照射位置pに位置していれば、図4(c)に示すように、第2案内レーザL2も基準照射位置pに投影されるので、カメラ6は、基準照射位置pに重なって投影された1つの点状像を撮像することとなる。そこで、第1案内レーザL1が第1色(例えば赤)の可視光レーザ、第2案内レーザL2が第1色とは異なる第2色(例えば緑)の可視光レーザ、これらが交差するとその交差位置にて第1色及び第2色の何れとも異なる第3色(例えば橙)となるように、第1案内レーザL1及び第2案内レーザL2の波長を決めることが好ましい。すると、ロボット制御部51は、ステップS1を終えた直後のステップS2の処理において、カメラ6からの画像データを参照してもレーザ光の像と推定される像が1つしか存在しないと判断した場合に、その像の色に係る情報に基づいて2つのレーザ光が重なった像であるのか否かを良好に認識することができる。
【0039】
交差していないと判断した場合(S2:NO)、ロボット制御部51は、アーム先端及びレーザスキャナ3を第1案内レーザL1の光軸方向に移動させる(ステップS3)。そして、交差しているか否かを再び判断し(ステップS2)、交差していない間は(S2:NO)、レーザスキャナ3を移動させ続ける(ステップS3)。
【0040】
図4(b)は、ステップS3の処理を行う前のアーム先端及びレーザスキャナ3の位置及び姿勢(二点鎖線参照)と、ステップS3の処理を行った後のアーム先端及びレーザスキャナ3の位置及び姿勢(実線参照)とを示している。図4(b)に示すように、ステップS3では、ロボット制御部51が、アーム先端及びレーザスキャナ3の姿勢を維持させつつレーザスキャナ3を第1案内レーザL1の光軸方向に移動させるようにロボット2のモータの動作を制御し、それにより第1案内レーザL1のワーク10に対する光軸方向を変更させないようにしている。これにより、第1案内レーザL1の光軸上に基準照射位置pが位置する状態を維持することができる。
【0041】
レーザスキャナ3がこのように移動すると、移動方向に応じて第2案内レーザL2がワーク10の表面に投影される位置が基準照射位置pに近づき又は遠ざかる。図4(b)は、交差点fが基準照射位置pに近付くようにしてレーザスキャナ3が移動した場合を例示しており、この場合、第2案内レーザL2が投影される位置は基準照射位置pに近付いていく。レーザスキャナ3を微小な距離だけ移動させるたびに、ロボット制御部51が判断処理を行うという繰返し処理が実行されることにより、最終的には図4(c)に示すように、第2案内レーザL2を基準照射位置pに投影させることができる。このとき、ロボット制御部51は、第1及び第2案内レーザL1,L2の像IL1,IL2が交差したものと判断し、このように判断すると(S2:YES)、図示略するがレーザスキャナ3の移動が止まる。
【0042】
ここで、図4(b)に示すように、基準照射位置pの周辺が平面である又は平面と近似可能であることが事前に把握されている場合、前述の繰返し処理を簡略化可能である。つまり、このような場合には、レーザスキャナ3の移動量は、カメラ6の視野内における第2案内レーザL2の像IL2の移動量と比例する。このことに着眼すれば、ステップS1を終えた後にレーザスキャナ3を僅かに移動させた後、その後交差点fを基準照射位置pに位置させるために必要となるレーザスキャナ3の移動量Zは、次式(1)より求められる。
【0043】
【数1】

【0044】
ここで、Δzは、ステップS1終えた後に僅かに移動したレーザスキャナ3の移動量、Δdは、レーザスキャナ3が移動量Δzだけ移動したときにおける第2案内レーザL2の像IL2の第1案内レーザL1の像IL1に対する相対移動量、dは、前述したステップS1を終えた時点における2つの像IL1,IL2の間の距離である。なお、相対移動量Δdは、距離dから、レーザスキャナ3が移動量Δzだけ移動した後における2つの像IL1,IL2の間の距離を減算することによって測定することができる。
【0045】
すると、ステップS1を終えた後に、僅かな移動量Δdだけレーザスキャナ3を移動し、上記式(1)に従って移動量Zを算出し、算出された移動量Zだけレーザスキャナ3を移動させると、第2案内レーザL2の像IL2を基準照射位置pに位置させる、すなわち交差点fを基準照射位置pに位置させることができる。レーザスキャナ3を移動量Zだけ移動させている間は、画像処理を省略可能になり、それによりレーザスキャナ3の移動速度を高くすることも可能となるので、交差点fを基準照射位置pに位置させるために要する時間が短縮される。
【0046】
(傾斜算出)
ロボット制御部51が第1及び第2案内レーザL1,L2の像IL1,IL2が基準照射位置pで交差していると判断してレーザスキャナ3の移動が止まると(S2:YES)、スキャナ制御部52が、第1射出部31より測定レーザLを照射してワーク10の表面上に投影し、当該測定レーザLでワーク10の表面上に、予め定められた基準形状の基準図形が描画されるように、レーザスキャナ3の動作を制御し(ステップS4)、カメラ6で実際にワーク表面10a上に投影されている測定レーザLの図形像を撮像する(ステップS5)。
【0047】
ここで、基準形状とは、ワーク10の表面10aのうち基準照射位置pの周辺が、前述した第1案内レーザの光軸A1と直交する平面(以下、単に「光軸直交平面」と称す)を成していれば、この基準照射位置pの周辺に投影されるべき形状であり、好ましくは、閉ループ形状(例えば円状又は多角形状)である。基準照射位置pの周辺が前記光軸直交平面に対して傾いていれば、基準形状の基準図形を描画すべく測定レーザLを照射しても、ワーク10の表面上には、基準形状を歪ませた形状の図形が投影される。ステップS4以降の処理においては、これに着眼して、ワーク10の表面のうち基準照射位置p周辺の光軸直交平面に対する傾斜角、言い換えれば、基準照射位置pにおけるワーク10の表面の法線方向が算出される。
【0048】
ステップS4において、測定レーザLでワーク10の表面に図形を投影するためには、前記光軸直交平面上に投影されるべき形状をなぞるように、測定レーザLの照射位置(すなわち、光軸方向)を高速で連続して変更させればよい。言い換えれば、第1射出部31からワーク10に向けて進行する測定レーザLによって、前記光軸直交平面上の基準形状の図形を底面とし第1射出部31を頂点とする錐の側面が描かれるように、測定レーザLの光軸方向を高速で連続して変更させればよい。この高速とは、ステップS5において、ワーク10の表面に投影された測定レーザLをカメラ6で撮像するにあたって、カメラ6の撮像素子に基準形状に対応する図形の軌跡が測定レーザLの残像となって結像するために十分に高い速度である。
【0049】
図5(b)では、制御上ワーク10の表面10aに投影するはずだった基準形状RFの基準図形が点線で示され、実際にワーク10の表面10aに投影されてカメラ6で撮像される測定形状MFの図形が実線で示されている。本実施形態に係る基準形状RFは、前記光軸直交平面内において基準照射位置pを中心とした半径rを有する真円である。このため、ステップS4では、第1射出部31から照射された測定レーザLで円錐の側面が描かれるように、測定レーザLの光軸方向を高速で連続して変更させることとなる(図5(b)には、測定レーザLで描かれるべき当該円錐の母線が示されている)。基準形状RFが真円である場合、ワーク10の表面10aが傾いていれば、測定形状MFは、真円を歪ませた楕円となる。
【0050】
このようにカメラ6で測定形状の図形が撮像されると、ロボット制御部51が、基準形状と測定形状とを比較して、基準照射位置pにおけるワーク表面10aの傾斜、より詳細にはワーク表面10aの法線方向を算出する(ステップS6)。
【0051】
図5(b)及び図6を参照して、法線方向の算出にあたっては、まず、測定形状MFである楕円の長軸方向の基準軸方向に対する傾斜角θを算出する。ここで、基準軸方向とは、レーザ溶接ロボット1の教示装置内に設定された座標系を成す或る軸と平行の方向である。当該或る軸は、ロボット座標系、レーザスキャナ座標系を成す軸であってもよいし、カメラ6が計測する二次元直交座標系を構成するX軸及びY軸のいずれか一方であってもよい。当該X軸及びY軸のいずれか一方と平行の方向を基準軸方向とした場合、基準照射位置pを中心にして基準軸方向に対する楕円長軸方向の傾斜角がθとなる。X軸と平行な方向が基準軸方向であるとした場合の傾斜角θは、次式(2)に従って求めることができる。
【0052】
【数2】

【0053】
ここで、xは、基準照射位置pと測定形状MFと楕円長軸との交点Aとの間の距離のうち、カメラ6の視野内における基準軸方向成分の長さ、yは、当該距離のうち、カメラ6の視野内における基準軸方向に直交する方向の成分の長さである。傾斜角θを算出するうえでは、x及びyの正確な値(すなわち、ワーク表面10a上における実際値)を求める必要はなく、xのyに対する割合を求めることができれば十分である。
【0054】
ロボット制御部51はカメラ座標系とロボット座標系との位置関係を把握可能であるので、このようにして傾斜角θに基づいて基準照射位置pのロボット座標系での座標を求めることができる。
【0055】
なお、X軸と直交するY軸と平行な方向が基準軸方向であるとした場合、算出される傾斜角は、90−θ[deg]となる。そこで、ロボット制御部51は、X軸及びY軸のうち傾斜角が小さくなる側の軸、すなわち傾斜角が45度以下となる側の軸を、基準軸方向に適用する。このようにすれば、補正量が高々45度になり、姿勢の変動を極力抑えることができる。
【0056】
このようにして傾斜角θを考慮した座標補正を行うと、図7に示すように、ワーク表面10aが楕円長軸方向に沿って線で表わされる二次元平面内で傾斜角θを幾何学的に算出することができる。この算出手法の説明の便宜上、特徴点にA〜Hの符号を付すこととする。「点A」は第1射出部31の位置、「点E」は基準照射位置、「点F」は測定レーザLが描く円錐の母線とワーク表面10aとの交点のうち線分AE方向において点Aに近い側の交点、「点G」は点Fとは逆に線分AE方向において遠い側の交点、「点D」は点Eを通過して線分AEと直交する直線と線分AGとの交点(すなわち、前記光軸直交平面と測定レーザLとの交点)、「点B」は点Fを通過して線分EDと平行な直線と線分AGとの交点、「点C」は線分FBと線分AEとの交点、「点H」は半直線DEと点Fを通過して半直線DEと直交する直線との交点である。
【0057】
ここで、ステップS5を終えた時点において、ロボット制御部51は、次式(3)〜(5)で表わされる関係を既知として取り扱うことができる。
【0058】
【数3】

【0059】
上記式(3)に関し、線分AEは、ステップS1において調整された値である。上記式(4)に関し、線分DEは、当該教示方法の処理手順を指示する制御プログラムにおいて予め定められた値である。上記式(5)に関し、線分GEの線分EFに対する比は、ステップS5においてカメラ6で撮像された画像に係るデータから測定可能である。傾斜角θは、ロボット制御部51にとって既知の値Z,r,Kのみを用いて算出され得る。以下、この点について図8を参照して説明する。
【0060】
図8(a)に示すように、三角形FBGは、二角相等により三角形EDGと相似関係にある。よって、線分BCの長さr′は、r及びKを用いて、次式(6)に従って算出される。
【0061】
【数4】

【0062】
図8(b)に示すように、三角形ABCは、二角相等により三角形ADEと相似関係にある。よって、線分ACの長さZは、Z及びKを用いて次式(7)に従って算出される。それにより、線分FHの長さZは、Z及びKを用いて次式(8)に従って算出される。
【0063】
【数5】

【0064】
図8(c)に示すように、直角三角形FEHに着目すると、辺EHの長さがr′であり、辺HFの長さがZであるので、傾斜角θは、Z,r及びKを用いて次式(9)に従って算出される。
【0065】
【数6】

【0066】
このように、傾斜角θは、ロボット制御部51にとって既知の値Z,r,Kを用いて算出することができる。しかも、これら値は、カメラ6がレーザ溶接ロボット1の絶対位置を測定しておかなくてもロボット制御部51が把握可能な値である。このため、傾斜角θを算出するためにカメラ6を校正する必要はない。
【0067】
(教示データの決定)
このように、第1射出部31から基準照射位置pまでの距離Z、基準軸方向に対する測定形状の楕円長軸方向の傾斜角θ、及び基準照射位置pにおけるワーク表面10の光軸直交平面に対する傾斜角θ(すなわち、基準照射位置pにおけるワーク表面の法線方向)が算出されると、これら算出値Z,θ,θに基づき、ステップS2,S3において調整されたロボット2のアーム先端及びレーザスキャナ3の位置及び姿勢のデータや基準照射位置pのデータが補正され、当該補正後のデータが教示データとして決定される(ステップS7)。
【0068】
これにより、溶接作業を行うときに、溶接レーザの光軸を、基準照射位置pに向けて基準照射位置pにおけるワーク表面の法線方向に対して所要の角度だけ傾けることができる。なお、当該角度は0度を含み、光軸と法線とが一致する概念を含む。また、溶接レーザを基準照射位置pにおいて合焦させることができる。したがって、溶接レーザをワーク10に最適に作用させることができ、溶接作業を良好に行うことができる。しかも、このような溶接作業を実現するための教示データが、カメラ6を利用して自動化される。このため、教示作業を容易且つ正確に行うことができる。
【0069】
以上、本発明の実施形態について説明したが、上記の装置の構成及び方法の手順は本発明の範囲内において適宜変更可能である。
【0070】
例えば、ステップS2,S3において、3本以上の案内レーザを照射してもよい。ステップS4において、基準形状は真円に限らず、正方形枠など、その他の形状であってもよい。この場合、ステップS5の傾斜角の算定式は適宜変更される。また、本発明の教示装置及び教示方法は、リモート溶接を行うロボットに限定されず、ワークの切断や穿孔等のその他のレーザ加工を行うロボットにも好適に適用可能である。
【産業上の利用可能性】
【0071】
本発明は、教示作業を容易且つ正確に行うことができるという作用効果を奏し、リモート溶接作業を行うレーザ溶接ロボットに適用すると有益である。
【符号の説明】
【0072】
1 レーザ溶接ロボット
2 ロボット
3 レーザスキャナ
4 レーザ発振器
5 制御装置
6 カメラ
10 ワーク
31 第1射出部
32 第2射出部
L1 第1案内レーザ
L2 第2案内レーザ
L 測定レーザ
A1 (溶接レーザ及び第1案内レーザの)光軸
p 基準照射位置
f (溶接レーザ及び第1案内レーザの)交差点
(第1射出部から焦点までの光軸方向における)距離
θ 第1傾斜角
θ 第2傾斜角

【特許請求の範囲】
【請求項1】
測定レーザと加工レーザとを出力するレーザスキャナを有し、前記加工レーザをワークに照射してレーザ加工を行うレーザ加工ロボットの教示方法であって、
前記ワーク上の基準照射位置を基準として予め定められた基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置を制御する制御手順と、
前記レーザスキャナから照射された前記測定レーザが、前記ワークにおいて反射された反射光を測定する測定手順と、
前記反射光と前記基準図形を比較し、前記基準照射位置における前記ワークの表面の傾斜を算出する傾斜算出手順と、
前記傾斜算出手順において算出された傾斜から前記ロボットの姿勢に関する教示データを作成するデータ作成手順と、を有することを特徴とするレーザ加工ロボットの教示方法。
【請求項2】
前記制御手順において、前記ワーク上の前記基準照射位置を基準として予め定められた前記基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置の変更を連続して行い、
前記測定手順において、前記ワーク上における前記反射光の軌跡が測定される、請求項1に記載のレーザ加工ロボットの教示方法。
【請求項3】
前記基準図形は、前記加工レーザの光軸と直交する平面において、前記基準照射位置を中心とする円である、請求項1又は2に記載のレーザ加工ロボットの教示方法。
【請求項4】
前記レーザスキャナは、前記加工レーザと基準照射位置が同一の第1案内レーザと、前記第1案内レーザから離間した箇所から前記第1案内レーザの光軸と交差する光軸を有する第2案内レーザとを出力し、
前記測定手順において、前記第1案内レーザおよび第2案内レーザの反射光を測定し、前記レーザスキャナを前記第1案内レーザの光軸方向に移動させて、前記第2案内レーザの照射位置を前記第1案内レーザの照射位置へ移動させる、請求項1乃至3のいずれか1項に記載のレーザ加工ロボットの教示方法。
【請求項5】
加工レーザをワークに照射してレーザ加工を行うレーザ加工ロボットの教示装置であって、
測定レーザと前記加工レーザとを出力するレーザスキャナと、
前記ワーク上の基準照射位置を基準として予め定められた基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置を制御する制御部と、
前記レーザスキャナから照射された前記測定レーザが、前記ワークにおいて反射された反射光を測定する測定部と、を備え、
前記反射光と前記基準図形を比較し、前記基準照射位置における前記ワークの表面の傾斜を算出する傾斜算出部と、
前記傾斜部が算出した傾斜から、前記ロボットの姿勢に関する教示データを作成するデータ作成部と、を有していることを特徴とするレーザ加工ロボットの教示装置。
【請求項6】
前記制御部は、前記ワーク上の前記基準照射位置を基準として予め定められた前記基準図形に基づき前記測定レーザを前記ワーク上に照射する際に、前記測定レーザの照射位置の変更を連続して行い、前記測定部は、前記ワーク上における前記反射光の軌跡を測定する、請求項5に記載のレーザ加工ロボットの教示装置。
【請求項7】
前記基準図形は、前記加工レーザの光軸と直交する平面において、前記基準照射位置を中心とする円である、請求項5又は6に記載のレーザ加工ロボットの教示装置。
【請求項8】
前記レーザスキャナは、前記加工レーザと基準照射位置が同一の第1案内レーザと、前記第1案内レーザから離間した箇所から前記第1案内レーザの光軸と交差する光軸を有する第2案内レーザとを出力し、
前記測定部は、前記第1案内レーザおよび第2案内レーザの反射光を測定し、
前記制御部は、前記レーザスキャナを前記第1案内レーザの光軸方向に移動させて、前記第2案内レーザの照射位置を前記第1案内レーザの照射位置へ移動させる、請求項5乃至7のいずれか1項に記載のレーザ加工ロボットの教示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−135781(P2012−135781A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−288558(P2010−288558)
【出願日】平成22年12月24日(2010.12.24)
【出願人】(000000974)川崎重工業株式会社 (1,710)
【Fターム(参考)】