説明

光学素子製造装置及び光学素子製造方法

【課題】手間や時間をかけることなく光学素子材料の厚さを随時測定することができる光学素子製造装置及び光学素子製造方法を提供する。
【解決手段】光学素子製造装置は、光学素子材料10を保持する光学素子保持具11と、光学素子材料10の加工面10aに当接し、該光学素子材料10を研削又は研磨する加工工具20を支持する加工工具支持装置21と、光学素子材料10と加工工具20との間の相対的な運動を与えるモータ及び運動制御部と、光学素子保持具11に保持された光学素子材料10に対して加工工具支持装置21に支持された加工工具20とは反対側に設けられ、光学素子材料10の厚さを非接触で測定する測定部30とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズ等の光学素子に対して研削・研磨加工を施す光学素子製造装置及び光学素子製造方法に関する。
【背景技術】
【0002】
従来から、レンズ等の光学素子に対する球面創成加工は、保持具に保持された光学素子の加工面に対してカップ状の加工工具を当接させ、光学素子を回転させると共に、加工工具を回転させて光学素子の加工面を研削することにより行われている。
【0003】
光学素子を精度良く製造するためには、正確な加工条件の設定が必要となる。そのため、例えば特許文献1には、球面創成加工用のNC装置等において、初期加工した光学素子材料の径や厚さ等の測定値に基づいて加工条件の補正を行うことが開示されている。また、例えば特許文献2には、レンズ加工機上で被検レンズの厚さを非接触で測定する装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平10−156690号公報
【特許文献2】特開2002−310620号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、光学素子材料の厚さの非接触方式による測定は、光学素子材料の加工面に対して測定光を照射することにより行われる。そのため、通常は、光学素子材料を光学素子製造装置から一旦取り外し、外部に設けられた測定装置において測定を行わなくてはならない。また、光学素子製造装置内部に測定装置を設ける場合であっても、光学素子材料を加工工具から測定を妨げない位置まで一旦退避させた上で測定を行う必要がある。そのため、光学素子材料の加工中に測定を行う場合、多くの手間と時間がかかってしまう。
【0006】
本発明は、上記に鑑みてなされたものであって、手間や時間をかけることなく光学素子材料の厚さを随時測定することができる光学素子製造装置及び光学素子製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明に係る光学素子製造装置は、光学素子材料を保持する保持手段と、前記光学素子材料の加工面に当接し、前記光学素子材料を研削又は研磨する加工工具を支持する加工工具支持手段と、前記保持手段に保持された前記光学素子材料と前記加工工具支持手段に支持された前記加工工具との間の相対的な運動を与える運動機構と、前記保持手段に保持された前記光学素子材料に対して前記加工工具支持手段に支持された前記加工工具とは反対側に設けられ、前記光学素子材料の厚さを非接触で測定する測定手段とを備えることを特徴とする。
【0008】
上記光学素子製造装置において、前記測定手段は、前記保持手段に保持された前記光学素子材料に対して前記加工工具支持手段に支持された前記加工工具とは反対側に設けられた光源と、前記光源から出射した光を、前記保持手段に保持された前記光学素子材料の前記加工面とは反対側の面に入射させる光学系と、前記光学素子材料によって反射された前記光に基づいて、前記光学素子材料の厚さを測定する測定処理手段とを備えることを特徴とする。
【0009】
上記光学素子製造装置において、前記光源は、低コヒーレンス光を出射する光源であり、前記光学系は、前記光源から出射した光を、前記保持手段に保持された光学素子材料の光軸と平行な測定光と、該測定光と直交する光路を有する参照光とに分割し、前記測定光を前記光学素子材料の前記加工面とは反対側の面に入射させる光分割手段と、前記参照光の光路と直交する反射面を有し、前記参照光の光路に沿って移動可能な参照ミラーとを有し、前記測定処理手段は、前記光学素子材料によって反射された前記測定光と前記参照ミラーによって反射された前記参照光とに基づいて、分光干渉法の原理により前記光学素子材料の厚さを測定することを特徴とする。
【0010】
上記光学素子製造装置において、前記保持手段は、前記光学素子材料を保持する保持具であって、前記光源から出射した光を前記光学素子材料の前記加工面とは反対側の面に向けて通過させる貫通路が設けられた保持具を備えることを特徴とする。
【0011】
上記光学素子製造装置は、前記測定手段によって測定された前記厚さを通知する通知手段をさらに備えることを特徴とする。
【0012】
上記光学素子製造装置は、前記加工面を研削又は研磨する動作の開始から所定時間が経過した際に、該動作を停止させて、前記測定手段に前記厚さを測定させる制御手段をさらに備えることを特徴とする。
【0013】
上記光学素子製造装置は、前記加工面を研削又は研磨する動作の開始から所定時間が経過した際に、該動作を停止させて前記測定手段に前記厚さを測定させる制御手段と、前記厚さが所定の設定値以下であるか否かを判定する判定手段とをさらに備え、前記制御手段は、前記厚さが前記設定値以下である場合に、前記加工工具と前記光学素子材料の前記加工面とが離間するように該加工工具及び該光学素子材料のうちの少なくとも一方を移動させる制御を行うことを特徴とする。
【0014】
上記光学素子製造装置は、前記測定手段によって測定された前記厚さが所定の設定値以下であるか否かを判定する判定手段と、前記厚さが前記設定値以下である場合に、前記加工面を研削又は研磨する動作を停止させると共に、前記加工工具と前記光学素子材料の前記加工面とが離間するように該加工工具及び該光学素子材料のうちの少なくとも一方を移動させる制御を行う制御手段とをさらに備えることを特徴とする。
【0015】
上記光学素子製造装置は、前記光学素子の製造に関する情報の通知を行う通知手段をさらに備え、前記制御手段は、前記厚さが前記設定値以下である場合に、前記通知手段に対して加工終了の旨を通知させることを特徴とする。
【0016】
上記光学素子製造装置において、前記通知手段は、画面表示、照明点灯又は点滅、音声出力、及び通知音出力の内の少なくとも1つによって通知を行うことを特徴とする。
【0017】
本発明に係る光学素子製造方法は、光学素子材料を保持手段に保持させる保持工程と、
前記保持手段と前記加工工具との内の少なくとも一方を回転させることにより前記加工面を研削又は研磨する加工工程と、前記光学素子材料に対して前記加工工具とは反対側に設けられた測定手段によって、前記加工工具を前記加工面に当接させた状態で、前記光学素子材料の厚さを非接触で測定する測定工程とを含むことを特徴とする。
【発明の効果】
【0018】
本発明によれば、光学素子材料に対して加工工具とは反対側に設けられた測定手段によって光学素子材料の厚さを非接触で測定するので、光学素子材料を加工工具から退避させるといった手間や時間をかけることなく、光学素子材料の厚さを随時測定することができる。
【図面の簡単な説明】
【0019】
【図1】図1は、本発明の実施の形態1に係る光学素子製造装置を示す上面図である。
【図2】図2は、図1に示す光学素子製造装置の矢視A方向の側面図である。
【図3】図3は、図2のB−B線における一部断面図である。
【図4】図4は、図1に示す光学素子製造装置の構成を示すブロック図である。
【図5】図5は、本発明の実施の形態1に係る光学素子製造方法を示すフローチャートである。
【図6A】図6Aは、図1に示す光学素子の動作を示す模式図である。
【図6B】図6Bは、図1に示す光学素子の動作を示す模式図である。
【図6C】図6Cは、図1に示す光学素子の動作を示す模式図である。
【図6D】図6Dは、図1に示す光学素子の動作を示す模式図である。
【図6E】図6Eは、図1に示す光学素子の動作を示す模式図である。
【図7】図7は、本発明の実施の形態2に係る光学素子製造装置の構成を示すブロック図である。
【図8】図8は、本発明の実施の形態2に係る光学素子製造方法を示すフローチャートである。
【図9】図9は、本発明の実施の形態3に係る光学素子製造方法を示すフローチャートである。
【図10】図10は、本発明の実施の形態4に係る光学素子製造装置を示す一部断面図である。
【発明を実施するための形態】
【0020】
以下、図面を参照して、本発明に係る光学素子支持装置及び光学素子の製造方法を詳細に説明する。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。図面は模式的なものであり、各部の寸法の関係や比率は、現実と異なることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている。
また、本出願において、球面とは、球体の表面の他、球体の表面の一部である曲面のことをいう。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1に係る光学素子製造装置の構成を示す上面図である。また、図2は、図1に示す光学素子製造装置1の矢視A方向の側面図である。図3は、図2のB−B線における一部断面図である。図4は、光学素子製造装置1の構成を示すブロック図である。
【0022】
図1〜図3に示すように、光学素子製造装置1は、被加工材である光学素子材料10を保持する光学素子保持具11と、光学素子材料10の加工面10aに対して研削加工を施す加工工具20と、加工工具20を支持する加工工具支持装置21と、光学素子材料10に対して加工工具20とは反対側に設けられ、光学素子材料10の厚さを非接触で測定する測定部30と、表示部40と、光学素子材料10に対する加工動作を制御する加工制御部50とを備える。
【0023】
光学素子保持具11は、内側に光学素子材料10を嵌合させる凹部11bが設けられた円柱形状の保持部11aと、保持部11aよりも径が小さい円柱形状の支持部11cとを含む。これらの保持部11a及び支持部11cは、一体的に形成されている。凹部11bは、光学素子材料10を嵌合させた際に、光学素子材料10の光軸が光学素子保持具11の軸R1と一致するように形成されている。
【0024】
光学素子保持具11には、光学素子保持具11に回転運動を与える回転機構として、スピンドル12と、モータ13と、ベルト14とが設けられている。スピンドル12は、支持部11cの外周を回転自在に支持する。また、ベルト14は、支持部11cに対してモータ13の回転運動を伝達する。このような回転機構により、光学素子保持具11及びそこに保持された光学素子材料10が軸R1を回転軸として回転する。光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14は一体となって、加工制御部50の制御の下で動作する支持機構15により、軸R1に沿って平行移動自在に支持されている。
【0025】
図3に示すように、光学素子保持具11の軸R1を含む回転中心部には、凹部11bから支持部11cの底部11dにかけて貫通する貫通路11eが設けられている。この貫通路11eは、測定部30から出射した測定光Lbを軸R1に沿って通過させ、光学素子材料10の保持面10bに入射させるための通路である。
【0026】
加工工具20は、円柱状の外形をなし、円柱状の一方の底部に凹部20aを有する球面創成用のカップ状加工具である。この凹部20aの縁が、光学素子材料10の加工面10aに当接されて、該加工面10aを球面形状に研削する砥石として作用する。
【0027】
加工工具支持装置21は、加工工具20を、軸R2について回転自在、且つ軸R2が軸R1に対して角度自在となるように支持すると共に、軸R1と直交する面と平行な方向に平行移動自在に支持する。また、加工工具支持装置21は、加工面10aを加工した最終形状である球面の球心において軸R2が軸R1と交差するように加工工具20を支持する。このような加工工具支持装置21は、後述する位置制御部54及び運動制御部55の制御の下で動作して、加工工具20を移動させると共に加工工具20に対して回転運動を与える。
【0028】
測定部30は、軸R1上に設けられた光源31と、軸R1上に設けられ、光源31の方向から入射した光を分割して軸R1の方向と該軸R1に直交する軸R3の方向(図の下方向)に分割する分割部としてのプリズム32と、軸R3上に設けられた参照ミラー33と、参照ミラー33を支持するミラー支持装置34と、軸R3上であって、プリズム32に対して参照ミラー33の反対側に設けられた撮像素子35と、撮像素子35から出力された電気信号に基づいて光学素子材料10の厚さを測定すると共に、測定部30の各部の動作を制御する測定処理部36とを有する。
【0029】
光源31は、低コヒーレンス光(光束)Laを出射する光源であり、光学素子保持具11の底部11d側に、低コヒーレンス光Laの光軸が軸R1と一致するように設置される。光源31には、コヒーレンス長が短い光源、例えばASE(Amplified Spontaneous Emission)や、LED(Light Emitting Diode)、SLD(Super Luminescent Diode)等が使用される。
【0030】
プリズム32は、光源31の方向から入射した光の一部を光学素子材料10の方向に透過させると共に、残りの光を参照ミラー33の方向に反射する。また、プリズム32は、光学素子材料10の方向から入射した光を軸R3の方向(図の上側)に反射すると共に、参照ミラー33の方向から入射した光を透過させる。なお、光源31から出射した光を分割する光分割手段としては、プリズム32以外にも、ビームスプリッタ(ハーフミラー)等の光学素子を用いても良い。
【0031】
参照ミラー33は、軸R3と直交する反射面を有する反射ミラーである。
ミラー支持装置34は、測定処理部36の制御の下で、参照ミラー33を軸R3に沿って移動可能に支持する。これにより、参照ミラー33とプリズム32との距離が調節される。
【0032】
撮像素子35は、CCD(charge coupled device)やCMOS(complementary metal oxide semiconductor)等の光電変換素子によって実現される。撮像素子35は、プリズム32の方向から来る光を入射させる受光面を有し、受光面に入射した光を光電変換して電気信号を出力する。
【0033】
測定処理部36は、撮像素子35から出力された電気信号に基づいて、分光干渉法の原理により光学素子材料10の厚さを算出する。
【0034】
表示部40は、測定処理部36によって算出された光学素子材料10の厚さや、加工制御部50から入力される種々の情報や命令等を画面に表示することによりユーザに通知する通知手段である。具体的には、表示部40は、LCDやELディスプレイ等の表示装置によって実現される。また、表示部40は、画面表示機能の他に、LED照明の点灯又は点滅や、音声出力や、通知音出力等により所定の情報をユーザに通知する機能を備えても良い。
【0035】
加工制御部50は、光学素子製造装置1に対する種々の命令や情報の入力を受け付ける入力部51と、光学素子製造装置1全体の動作を制御する制御部52と、モータ13の駆動を制御するモータ制御部53と、光学素子材料10と加工工具20との相対的な位置関係を制御する位置制御部54と、加工工具支持装置21の運動を制御する運動制御部55とを供える。この内、入力部51は、操作ボタン、キーボード、マウスやタッチパネル等のポインティングデバイス等によって実現される。
【0036】
位置制御部54は、光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14を一体として軸R1に沿って移動させるように、支持機構15の動作を制御する。また、運動制御部55は、加工工具20が軸R2を回転軸とする回転運動を行うように加工工具支持装置21の動作を制御する。
【0037】
なお、光学素子保持具11に設けられた回転機構(スピンドル12と、モータ13と、ベルト14)、及び/又は、運動制御部55は、光学素子材料10と加工工具20との間の相対的な運動を与える運動機構に相当する。
【0038】
次に、測定部30における光学素子材料10の厚さの測定原理について説明する。
光源31から出射した低コヒーレンス光の光束Laは、プリズム32により、軸R1方向に透過する測定光Lbと、軸R3方向に反射される参照光Lcとに分割される。測定光Lbは、貫通路11e内を通過し、光学素子材料10の保持面10bに入射する。このとき、測定光Lbの一部は保持面10bによって反射されてプリズム32の方向に戻り(測定光Lb’)、測定光Lbの残りはそのまま光学素子材料10内に進行する(測定光Lb)。この測定光Lbは、加工面10aにおいて反射され、プリズム32の方向に戻る(測定光Lb’)。
一方、参照光Lcは、参照ミラー33によって反射されてプリズム32の方向に戻る(参照光Lc’)。
【0039】
プリズム32は、測定光Lb’、Lb’を撮像素子35の方向に反射すると共に、参照光Lc’を透過させる。それにより、測定光Lb’、Lb’と参照光Lc’との合成光Ldが、撮像素子35の受光面に入射する。
【0040】
撮像素子35の受光面においては、測定光Lb’又は測定光Lb’と参照光Lc’との干渉により、干渉縞が観察される。この干渉縞は、参照ミラー33の位置に応じて変化する。そこで、測定処理部36は、参照ミラー33を所定の速度で移動させながら干渉縞における干渉強度の変化を測定し、測定光Lb’と参照光Lc’との干渉に対応するピーク、及び、測定光Lb’と参照光Lc’との干渉に対応するピークを検出する。さらに、測定処理部36は、これらのピークにおける参照ミラー33の位置に基づいて、測定光Lb’と測定光Lb’との光路長差を算出し、この光路長差と光学素子材料10の屈折率とから、光学素子材料10の厚さを算出する。
【0041】
次に、実施の形態1に係る光学素子製造方法を、図5及び図6A〜図6Eを参照しながら説明する。図5は、実施の形態1に係る光学素子製造方法を示すフローチャートである。また、図6A〜図6Eは、光学素子製造装置1の動作を示す模式図である。なお、図6A〜図6Eにおいては、加工制御部50の記載を省略している。また、以下の説明において、加工工具20は予め加工工具支持装置21に取り付けられているものとする。
【0042】
まず、工程S01において、図6Aに示すように、光学素子材料10を光学素子保持具11の凹部11bに取り付ける。なお、光学素子材料10の取り付けは、ユーザが手作業で行っても良いし、搬送装置及び取り付け装置を別途設けて、自動で行うようにしても良い。
【0043】
続く工程S02において、制御部52は、入力部51が受け付けた入力信号に従って、光学素子材料10に対する加工時間を設定する。ここで、光学素子材料10の厚さは、光学素子材料10を軸R1に沿って加工工具20に近づける方向に平行移動させる(切り込ませる)加工工程において、加工終了時にどの位置まで切り込ませるかによって決定される。そこで、この切り込み量と光学素子材料10の厚さとの関係(実測データ)を予め測定しておくことにより、所望の厚さに対応した切り込み量を算出することができる。また、切り込み速度一定の条件下においては、所望の切り込み量から加工時間を算出することができる。工程S02においては、このような実測データに基づいて、所望の厚さに対応した加工時間を設定する。或いは、所望の厚さを入力することにより、上記実測データに基づいて、加工時間を自動で設定する処理を組み込んでも良い。
【0044】
工程S03において、制御部52は、各部に対して光学素子材料10への加工動作を開始させる。これに応じて、モータ13は光学素子保持具11に回転運動を与え、加工工具支持装置21は加工工具20に回転運動を与える。さらに、支持機構15は、光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14を一体として、軸R1に沿って加工工具20に近づく向きに一定速度で平行移動させる(図6B参照)。それにより、加工面10aに対する研削加工が行われる(工程S04)。
【0045】
工程S05において、制御部52は、工程S02において設定された加工時間(設定時間)が経過したか否かを判定する。設定時間が経過した場合(工程S05:Yes)、制御部52は、加工面10aに対する加工動作を停止させる(工程S06)。一方、設定時間が経過していない場合(工程S05:No)、制御部52は、加工面10aに対する加工を継続させる(工程S04)。
【0046】
工程S07において、測定部30は、光源31から光束La(図3参照)を出射させ、測定光Lbを光学素子材料10の保持面10bに照射することにより、光学素子材料10の厚さを測定する(図6C参照)。
【0047】
工程S08において、表示部40は、測定部30によって測定された光学素子材料10の厚さの測定値を表示する。なお、この際に、表示部40は、音声によって測定値を通知することとしても良い。
【0048】
工程S09において、ユーザは表示部40に表示された測定値を見て、測定値が所望の値(目標値)となったか否かを判定し、判定結果を入力部51に入力する。
【0049】
測定値が目標値よりも大きいとの判定結果が入力された場合(工程S09:No)、制御部52は加工時間を再度設定する(工程S10)。なお、このとき設定される加工時間は、ユーザが手動で入力しても良いし、制御部52が光学素子材料10の厚さの測定値と工程S02において設定された設定値とに基づいて加工時間を変更することとしても良い。その後、処理は工程S03に移行する。
【0050】
一方、測定値が目標値以下であるとの判定結果が入力された場合(工程S09:Yes)、支持機構15は、加工工具20と光学素子材料10の加工面10aとが離間するように、光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14を移動させ、加工工具20から退避させる(工程S11、図6D参照)。
【0051】
さらに、工程S12において、図6Eに示すように、光学素子材料10を光学素子保持具11から取り外す。それによって、所望の厚さに加工された光学素子材料10を得ることができる。なお、光学素子材料10の搬送装置及び取り付け装置を別途設ける場合には、加工済みの光学素子材料10の取り外し、及び別の光学素子材料10の光学素子保持具11への取り付け(工程S01)を自動で行い、工程S02〜S12の処理を繰り返しても良い。
【0052】
以上説明したように、実施の形態1によれば、光学素子材料10を加工している間に、加工面10aに加工工具20を当接させた状態で光学素子材料10の厚さを測定することができる。即ち、光学素子材料を光学素子製造装置から取り外して別の測定装置に移動させたり、光学素子材料を加工工具から一旦退避させるといった手間や時間をかけることなく、光学素子材料の厚さを測定することが可能となる。実施の形態1によれば、このように、光学素子材料10の厚さを随時測定することができるので、厚さ精度の高い光学素子を製造することが可能となる。
【0053】
また、実施の形態1によれば、光学素子材料10の加工が終了した際に、その状態で光学素子材料10の厚さを測定することができる。従って、従来は手間や時間の制約から一部の光学素子材料に対する厚さの抽出検査しか実施できなかった場合であっても、実施の形態1によれば、全数検査を実施することも可能となる。
【0054】
また、実施の形態1によれば、光学素子材料の厚さの測定値に基づいて光学素子材料に対する加工動作を制御するので、光学素子製造装置の構造や状態(例えば、光学素子材料の保持具合、加工工具の磨耗の仕方、温度変化等)が装置ごとにばらつきを有している場合であっても、厚さのばらつきのない光学素子を製造することが可能となる。
【0055】
さらに、実施の形態1によれば、ユーザは、光学素子材料10の厚さを随時把握することができるので、熟練作業者でなくても、短時間で正確な加工条件(加工時間、光学素子材料の回転速度等)を設定することが可能となる。
【0056】
(変形例1)
上記実施の形態1においては、加工動作を一旦停止させてから光学素子材料10の厚さの測定を行ったが、加工動作と並行して光学素子材料10の厚さを測定しても良い。この場合、測定部30は、測定した厚さを逐次表示部40に出力して表示させる。ユーザは、表示部40に表示された厚さを見て、厚さが所望の値になったときに入力部51を操作して加工動作を停止させることができる。
【0057】
(実施の形態2)
次に、本発明の実施の形態2を説明する。
図7は、実施の形態2に係る光学素子製造装置の構成を示すブロック図である。図7に示すように、実施の形態2に係る光学素子製造装置2は、図3に示す加工制御部50の代わりに、判定部61及び制御部62を有する加工制御部60を備える。
【0058】
判定部61は、測定部30によって測定された光学素子材料10の厚さが所定の設定値以下であるか否かを判定する。制御部62は、判定部61の判定結果に基づいて、光学素子製造装置2の各部の動作を制御する。その他の構成については、実施の形態1と同様である。
【0059】
図8は、実施の形態2に係る光学素子製造方法を示すフローチャートである。
まず、工程S21において、光学素子材料10を光学素子保持具11の凹部11bに取り付ける(図6A参照)。なお、光学素子材料10の取り付けは、ユーザが手作業で行っても良いし、搬送装置及び取り付け装置を別途設けて自動で行うようにしても良い。
【0060】
工程S22において、制御部62は、入力部51が受け付けた入力信号に従って、研削加工後の光学素子材料10の厚さ(設定値)を設定する。なお、設定値は、仕上がり時における厚さの目標値としても良いし、加工動作の停止制御に要する時間を考慮して、目標値よりも若干大きい値としても良い。後者の場合、制御部52が、ユーザが入力した目標値に対して所定の値を自動で加算することとしても良い。
【0061】
工程S23において、制御部62は、各部に対して光学素子材料10への加工動作を開始させる。これに応じて、モータ13は光学素子保持具11に回転運動を与え、加工工具支持装置21は加工工具20に回転運動を与える。また、支持機構15は、光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14を一体として、軸R1に沿って加工工具20に近づく向きに一定速度で平行移動させる(図6B参照)。それにより、加工面10aに対する研削加工が行われる(工程S24)。
【0062】
工程S25において、制御部62は、加工動作を開始してから所定時間が経過したか否かを判定する。この時間は、光学素子材料10が所定の厚さずつ研削されるよう、切り込み速度に基づいて予め設定されている。
【0063】
所定時間が経過した場合(工程S25:Yes)、制御部62は、各部に対して加工面10aへの加工動作を停止させる(工程S26)。一方、所定時間が経過してない場合(工程S25:No)、制御部62は、加工面10aに対する加工を継続させる(工程S24)。
【0064】
工程S27において、測定部30は、光源31から光束La(図3参照)を出射させ、測定光Lbを光学素子材料10の保持面10bに照射することにより、光学素子材料10の厚さを測定する(図6C参照)。このとき、制御部62は、厚さの測定値を表示部40に表示させても良い。
【0065】
工程S28において、判定部61は、光学素子材料10の厚さの測定値が工程S22において設定された設定値以下であるか否かを判定する。
【0066】
測定値が設定値よりも大きい場合(工程S28:No)、処理は工程S23に戻る。なお、この場合、工程S25において判定される経過時間(加工時間)は、常に一定の切り込み量が加算されるように設定されることとしても良いし、制御部62が厚さの測定値と設定値とに基づいて加工時間を変更することとしても良い。
【0067】
一方、測定値が設定値以下である場合(工程S28:Yes)、支持機構15は、加工工具20と光学素子材料10の加工面10aとが離間するように、光学素子材料10、光学素子保持具11、スピンドル12、モータ13、及びベルト14を移動させ、加工工具20から退避させる(工程S29、図6D参照)。なお、この場合、制御部62は、光学素子材料10への加工が終了した旨を表示部40に表示させても良い。或いは、LED照明の点滅や音声や通知音等により、加工の終了をユーザに通知するようにしても良い。
【0068】
さらに、工程S30において、光学素子材料10を光学素子保持具11から取り外す(図6E参照)。それによって、所望の厚さに加工された光学素子材料10を得ることができる。なお、光学素子材料10の搬送装置及び取り付け装置を別途設ける場合には、加工済みの光学素子材料10の取り外し、及び別の光学素子材料10の光学素子保持具11への取り付け(工程S21)を自動で行い、工程S22〜S30の処理を繰り返しても良い。この場合、工程S22を省略し、工程S28の判定では1つ目の光学素子材料10の加工時における設定値を繰り返し用いても良い。
【0069】
以上説明したように、実施の形態2によれば、光学素子材料の厚さを定期的に測定し、その測定結果に基づいて光学素子材料に対する加工動作を制御するので、厚さ精度の高い光学素子を自動で製造することが可能となる。また、複数の光学素子を順次製造する場合においても、全ての光学素子に対して厚さ測定がなされているので、厚さ不良による再加工の発生を防止することが可能となる。
【0070】
さらに、実施の形態2によれば、光学素子材料10の厚さの測定値に基づいて加工動作を制御するので、光学素子製造装置の構造や状態が装置ごとにばらつきを有している場合であっても、同一の加工条件(加工時間、光学素子材料の回転速度等)の下で、厚さのばらつきのない光学素子を製造することが可能となる。従って、熟練作業者でなくても、加工条件を容易に設定し、厚さ精度の良い光学素子を簡単に製造することができる。
【0071】
(実施の形態3)
次に、本発明の実施の形態3を説明する。
実施の形態3に係る光学素子製造方法は、光学素子材料の厚さをリアルタイムで測定しながら加工を行うことを特徴とする。なお、実施の形態3に係る光学素子製造装置の構成は、図7に示すものと同様である。
【0072】
図9は、実施の形態3に係る光学素子製造方法を示すフローチャートである。なお、工程S21〜S24、S29、S30の動作は、実施の形態2と同様である。
【0073】
工程S24に続く工程S41において、測定部30は、光源31から光束La(図3参照)を出射させ、測定光Lbを光学素子材料10の保持面10bに照射することにより、光学素子材料10の厚さを測定する(図6C参照)。このとき、制御部62は、厚さの測定値を表示部40に表示させても良い。
【0074】
工程S42において、判定部61は、光学素子材料10の厚さの測定値が工程S22において設定された設定値以下であるか否かを判定する。そして、測定値が設定値よりも大きい場合(工程S42:No)、処理は工程S24に戻る。一方、測定値が設定値以下である場合(工程S42:Yes)、制御部62は、各部に対して加工面10aへの加工動作を停止させる(工程S43)。なお、この場合、制御部62は、光学素子材料10への加工が終了した旨を表示部40に表示させても良い。或いは、LED照明の点滅や音声や通知音等により、加工の終了をユーザに通知するようにしても良い。
【0075】
以上説明したように、実施の形態3によれば、光学素子材料の厚さをリアルタイムで測定し、その測定結果に基づいて光学素子材料に対する加工動作を制御するので、厚さ精度の高い光学素子を自動で製造することが可能となる。また、複数の光学素子を順次製造する場合においても、全ての光学素子に対して厚さ測定がなされているので、厚さ不良による再加工の発生を防止することが可能となる。
【0076】
また、実施の形態3によれば、光学素子材料の厚さの測定値に測定された加工動作を制御するので、光学素子製造装置の構造や状態が装置ごとにばらつきを有している場合であっても、同一の加工条件の下で、厚さのばらつきのない光学素子を製造することが可能となる。従って、熟練作業者でなくても、加工条件を容易に設定し、厚さ精度の良い光学素子を簡単に製造することができる。
【0077】
(実施の形態4)
次に、本発明の実施の形態4を説明する。
図10は、実施の形態4に係る光学素子製造装置を示す一部断面図である。図10に示すように、実施の形態4に係る光学素子製造装置4において、加工工具支持装置21には加工工具70が取り付けられている。光学素子製造装置4のその他の構成については、実施の形態1と同様である。なお、加工制御部50の代わりに、実施の形態2及び3と同様に加工制御部60を設けても良い。
【0078】
加工工具70は、円柱状の一方の底部に球面状の凹部70aが設けられた球面状加工具である。この凹球面70bが光学素子材料10の加工面10aに当接されて、該加工面10aを球面70bに対応する形状に研削又は研磨する。
【0079】
このような加工工具70を用いる場合、光学素子材料10に対する加工工程において(図5の工程S04参照)、運動制御部55は、加工工具支持装置21を介し、加工工具70に対して軸R2を回転軸とする回転運動、及び軸R1と軸R2との交点を球心とする球面上での揺動運動を与える。それにより、回転する加工面10aに対する球面70bの相対運動によって加工面10aが研削又は研磨される。
【0080】
なお、このとき設定される加工時間は、常に一定としていても良いし、制御部52が厚さの測定値と設定値とに基づいて加工時間を変更することとしても良い。この場合、加工時間と厚さの相関とを表す実測データを予め取得し、この実測データと厚さの測定値とに基づいて加工時間を自動調整すると良い。
【0081】
また、加工開始時に光学素子材料10と加工工具70とを当接し、又は加工終了後に両者を離間する際には、光学素子材料10側を軸R1に沿って移動させても良いし、加工工具70側を軸R1、或いは軸R2に沿って移動させても良いし、両者を移動させても良い。
【0082】
このような実施の形態4によれば、加工工具として球面状加工具を用いる場合においても、光学素子材料の加工中に光学素子材料の厚さを随時測定することができるので、厚さ精度の高い光学素子を製造することが可能となる。
【符号の説明】
【0083】
1、2、4 光学素子製造装置
10 光学素子材料
10a 加工面
11 光学素子保持具
11a 保持部
11b 凹部
11c 支持部
11d 底部
11e 貫通路
12 スピンドル
13 モータ
14 ベルト
15 支持機構
20、70 加工工具
20a、70a 凹部
21 加工工具支持装置
30 測定部
31 光源
32 プリズム
33 参照ミラー
34 ミラー支持装置
35 撮像素子
36 測定処理部
40 表示部
50、60 加工制御部
51 入力部
52、62 制御部
53 モータ制御部
54 位置制御部
55 運動制御部
61 判定部
70b 凹球面

【特許請求の範囲】
【請求項1】
光学素子材料を保持する保持手段と、
前記光学素子材料の加工面に当接し、前記光学素子材料を研削又は研磨する加工工具を支持する加工工具支持手段と、
前記保持手段に保持された前記光学素子材料と前記加工工具支持手段に支持された前記加工工具との間の相対的な運動を与える運動機構と、
前記保持手段に保持された前記光学素子材料に対して前記加工工具支持手段に支持された前記加工工具とは反対側に設けられ、前記光学素子材料の厚さを非接触で測定する測定手段と、
を備えることを特徴とする光学素子製造装置。
【請求項2】
前記測定手段は、
前記保持手段に保持された前記光学素子材料に対して前記加工工具支持手段に支持された前記加工工具とは反対側に設けられた光源と、
前記光源から出射した光を、前記保持手段に保持された前記光学素子材料の前記加工面とは反対側の面に入射させる光学系と、
前記光学素子材料によって反射された前記光に基づいて、前記光学素子材料の厚さを測定する測定処理手段と、
を備えることを特徴とする請求項1に記載の光学素子製造装置。
【請求項3】
前記光源は、低コヒーレンス光を出射する光源であり、
前記光学系は、
前記光源から出射した光を、前記保持手段に保持された光学素子材料の光軸と平行な測定光と、該測定光と直交する光路を有する参照光とに分割し、前記測定光を前記光学素子材料の前記加工面とは反対側の面に入射させる光分割手段と、
前記参照光の光路と直交する反射面を有し、前記参照光の光路に沿って移動可能な参照ミラーと、
を有し、
前記測定処理手段は、前記光学素子材料によって反射された前記測定光と前記参照ミラーによって反射された前記参照光とに基づいて、分光干渉法の原理により前記光学素子材料の厚さを測定する、
ことを特徴とする請求項2に記載の光学素子製造装置。
【請求項4】
前記保持手段は、前記光学素子材料を保持する保持具であって、前記光源から出射した光を前記光学素子材料の前記加工面とは反対側の面に向けて通過させる貫通路が設けられた保持具を備えることを特徴とする請求項2又は3に記載の光学素子製造装置。
【請求項5】
前記測定手段によって測定された前記厚さを通知する通知手段をさらに備えることを特徴とする請求項1〜4のいずれか1項に記載の光学素子製造装置。
【請求項6】
前記加工面を研削又は研磨する動作の開始から所定時間が経過した際に、該動作を停止させて、前記測定手段に前記厚さを測定させる制御手段をさらに備えることを特徴とする請求項5に記載の光学素子製造装置。
【請求項7】
前記加工面を研削又は研磨する動作の開始から所定時間が経過した際に、該動作を停止させて前記測定手段に前記厚さを測定させる制御手段と、
前記厚さが所定の設定値以下であるか否かを判定する判定手段と、
をさらに備え、
前記制御手段は、前記厚さが前記設定値以下である場合に、前記加工工具と前記光学素子材料の前記加工面とが離間するように該加工工具及び該光学素子材料のうちの少なくとも一方を移動させる制御を行うことを特徴とする請求項1〜4のいずれか1項に記載の光学素子製造装置。
【請求項8】
前記測定手段によって測定された前記厚さが所定の設定値以下であるか否かを判定する判定手段と、
前記厚さが前記設定値以下である場合に、前記加工面を研削又は研磨する動作を停止させると共に、前記加工工具と前記光学素子材料の前記加工面とが離間するように該加工工具及び該光学素子材料のうちの少なくとも一方を移動させる制御を行う制御手段と、
をさらに備えることを特徴とする請求項1〜4のいずれか1項に記載の光学素子製造装置。
【請求項9】
前記光学素子の製造に関する情報の通知を行う通知手段をさらに備え、
前記制御手段は、前記厚さが前記設定値以下である場合に、前記通知手段に対して加工終了の旨を通知させることを特徴とする請求項7又は8に記載の光学素子製造装置。
【請求項10】
前記通知手段は、画面表示、照明点灯又は点滅、音声出力、及び通知音出力の内の少なくとも1つによって通知を行うことを特徴とする請求項5又は9に記載の光学素子製造装置。
【請求項11】
光学素子材料を保持手段に保持させる保持工程と、
前記保持手段と前記加工工具との内の少なくとも一方を回転させることにより前記加工面を研削又は研磨する加工工程と、
前記光学素子材料に対して前記加工工具とは反対側に設けられた測定手段によって、前記加工工具を前記加工面に当接させた状態で、前記光学素子材料の厚さを非接触で測定する測定工程と、
を含むことを特徴とする光学素子製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図6E】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−232383(P2012−232383A)
【公開日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2011−102883(P2011−102883)
【出願日】平成23年5月2日(2011.5.2)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】