説明

内燃機関の燃料噴射量制御装置

【課題】気筒間における空燃比の不均一性が生じた場合にNOx排出量が増大することを極力回避することができる内燃機関の燃料噴射量制御装置を提供する。
【解決手段】制御装置は、上流側空燃比センサの出力値により表される空燃比が目標空燃比に一致するように、メインフィードバック制御を実行する。更に、制御装置は、それぞれの燃焼室に供給される混合気の空燃比の気筒間における差が大きいほど大きくなる空燃比不均衡指標値を取得し、その取得された空燃比不均衡指標値が大きいほど、目標空燃比をリッチ側に修正する。このとき、制御装置は、真の平均空燃比を触媒のウインドウの範囲内の基準空燃比に一致させるためのストイキ補正項(第1修正量)と、真の平均空燃比を基準空燃比以下の空燃比に一致させるためのリッチ化補正項(第2修正量)と、を空燃比不均衡指標値に基いて別々に算出し、それらを用いて目標空燃比を決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多気筒内燃機関の燃料噴射量制御装置に関する。
【背景技術】
【0002】
従来から、図1に示したように、内燃機関の排気通路に配設された三元触媒(53)と、その三元触媒(53)の上流に配置された上流側空燃比センサ(67)と、を備えた空燃比制御装置が広く知られている。
【0003】
この空燃比制御装置は、機関に供給される混合気の空燃比(機関の空燃比、従って、排ガスの空燃比)が目標空燃比と一致するように、上流側空燃比センサの出力値に基いて空燃比フィードバック量(メインフィードバック量)を算出し、その空燃比フィードバック量により機関の空燃比をフィードバック制御(メインフィードバック制御)するようになっている。このような空燃比制御装置において使用される空燃比フィードバック量は、全気筒に対して共通する制御量である。目標空燃比は、三元触媒(53)のウインドウ内の所定の基準空燃比(例えば、理論空燃比)に設定される。
【0004】
ところで、一般に、このような空燃比制御装置は電子制御式燃料噴射装置を採用した内燃機関に適用される。その内燃機関は、各気筒又は各気筒に連通した吸気ポートに少なくとも一つの燃料噴射弁(39)を備えている。従って、ある特定の気筒の燃料噴射弁の特性が「指示された燃料噴射量(指示燃料噴射量)よりも過大な量の燃料を噴射する特性」となると、その特定の気筒に供給される混合気の空燃比(その特定気筒の空燃比)のみが大きくリッチ側に変化する。即ち、気筒間における空燃比の不均一性(空燃比気筒間ばらつき、空燃比の気筒間インバランス)が大きくなる。換言すると、各気筒に供給される混合気の空燃比である「気筒別空燃比」の間に不均衡が生じる。
【0005】
なお、以下において、指示燃料噴射量よりも過大又は過小な量の燃料を噴射する特性を有する燃料噴射弁に対応する気筒をインバランス気筒とも称呼し、残りの気筒(指示燃料噴射量の燃料を噴射する燃料噴射弁に対応する気筒)を非インバランス気筒(又は、正常気筒)とも称呼する。
【0006】
ある特定の気筒の燃料噴射弁の特性が「指示燃料噴射量よりも過大な量の燃料を噴射する特性」となると、機関全体に供給される混合気の空燃比の平均は、基準空燃比に設定された目標空燃比よりもリッチ側の空燃比となる。従って、全気筒に対して共通する空燃比フィードバック量により、上記特定の気筒の空燃比は基準空燃比に近づけられるようにリーン側へと変更され、同時に、他の気筒の空燃比は基準空燃比から遠ざけられるようにリーン側へと変更させられる。この結果、機関全体に供給される混合気の空燃比の平均(排ガスの空燃比の時間的平均)は基準空燃比の近傍の空燃比に一致する。なお、以下において、「機関全体に供給される混合気の空燃比の平均」は、単に「機関の真の平均空燃比」とも称呼する。機関の真の平均空燃比は、「複数の気筒の燃焼室に供給される混合気」の真の平均空燃比と同義である。
【0007】
しかしながら、上記特定の気筒の空燃比は依然として基準空燃比よりもリッチ側の空燃比となり、残りの気筒の空燃比は基準空燃比よりもリーン側の空燃比となる。この結果、各気筒の空燃比が基準空燃比である場合に比べ、各気筒から排出されるエミッションの量(未燃物の量及び/又は窒素酸化物の量)が増大する。このため、機関の真の平均空燃比が基準空燃比であったとしても、増大したエミッションを三元触媒が浄化しきれず、結果として、エミッションが悪化する虞がある。
【0008】
従って、気筒間における空燃比の不均一性が過大になっていること(空燃比気筒間インバランス状態が発生していること)を検出し、何らかの対策を講じさせるようにすることはエミッションを悪化させないために重要である。なお、空燃比気筒間インバランス状態は、特定の気筒の燃料噴射弁の特性が「指示燃料噴射量よりも過小な量の燃料を噴射する特性」となった場合等にも発生する。
【0009】
従来の燃料噴射量制御装置の一つは、上流側空燃比センサ(67)の出力値(出力信号)の軌跡長を取得する。更に、この制御装置は、その軌跡長と「機関回転速度に応じて変化する参照値」とを比較し、その比較結果に基いて空燃比気筒間インバランス状態が発生したか否かを判定する(例えば、特許文献1を参照。)。
【0010】
従来の燃料噴射量制御装置の別の一つは、上流側空燃比センサ(67)の出力値を分析し、気筒別空燃比を検出する。そして、この制御装置は、検出された気筒別空燃比の間の差に基づいて空燃比気筒間インバランス状態が発生したか否かを判定する(例えば、特許文献2を参照。)。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】米国特許第7,152,594号明細書
【特許文献2】特開2000−220489号公報
【発明の概要】
【0012】
ところで、気筒間における空燃比の不均一性が生じると(気筒別空燃比が不均一になると)、機関の真の平均空燃比は、上流側空燃比センサの出力値に基いて表される空燃比を「理論空燃比等の基準空燃比に設定された目標空燃比」に一致させるためのメインフィードバック制御により、「基準空燃比よりも大きい空燃比(リーン空燃比)」に制御され、その結果、窒素酸化物の排出量が増大する場合がある。以下、この理由を述べる。
【0013】
機関に供給される燃料は炭素と水素との化合物である。従って、燃焼に供される混合気の空燃比が理論空燃比よりもリッチ側の空燃比であると、「炭化水素HC、一酸化炭素CO及び水素H等」の未燃物が中間生成物として生成される。この場合、燃焼に供される混合気の空燃比が理論空燃比よりもリッチ側の空燃比であって理論空燃比から遠ざかるほど、燃焼期間中に中間生成物が酸素と出合って結合する確率が急激に小さくなる。この結果、未燃物(HC、CO及びH)の量は、図2に示したように、気筒に供給される混合気の空燃比がリッチ側の空燃比になるほど急激に(例えば、二次関数的に)増大する。
【0014】
なお、図2に示したグラフの横軸は、気筒間における空燃比の不均一性の程度を表す「インバランス割合」でもある。インバランス割合とは、例えば、非インバランス気筒の燃料噴射弁から噴射される燃料噴射量を1とした場合、インバランス気筒の燃料噴射弁から噴射される燃料噴射量が1+αであるとき、αとなる値である。
【0015】
一方、上流側空燃比センサ(67)は一般に拡散抵抗層を備える。上流側空燃比センサ(67)は、その拡散抵抗層を通過して上流側空燃比センサ(67)の排ガス側電極層(空燃比検出素子の表面)に到達した「酸素の量(酸素濃度、酸素分圧)又は未燃物の量(未燃物の濃度、未燃物の分圧)」に応じた値を出力する。
【0016】
他方、水素Hは、炭化水素HC及び一酸化炭素CO等に比べて小さい分子である。従って、水素Hは他の未燃物(HC,CO)に比較して、上流側空燃比センサ(67)の拡散抵抗層を迅速に拡散する。即ち、拡散抵抗層において水素Hの選択的拡散(優先的な拡散)が発生する。
【0017】
気筒間における空燃比の不均一性が生じると、この水素の選択的拡散に起因して、上流側空燃比センサ(67)の出力値により表される空燃比の平均は、機関の真の平均空燃比よりも、リッチ側の空燃比となる。
【0018】
より具体的に述べると、例えば、4気筒エンジンの各気筒に吸入される空気量(重量)がA0であり、各気筒に供給される燃料の量(重量)がF0であるとき、空燃比A0/F0が理論空燃比(例えば、14.6)であると仮定する。更に、説明を簡単にするため、目標空燃比は理論空燃比であると仮定する。
【0019】
この場合において、各気筒に対して供給(噴射)される燃料の量が均等に10%だけ過剰であると仮定する。即ち、各気筒に1.1・F0の燃料が供給されたと仮定する。このとき、4気筒に供給される空気量の総量(各気筒がそれぞれ一回の燃焼行程を終了する間に機関全体に供給される空気量)は4・A0であり、4気筒に供給される燃料の総量(各気筒がそれぞれ一回の燃焼行程を終了する間に機関全体に供給される燃料の量)は4.4・F0(=1.1・F0+1.1・F0+1.1・F0+1.1・F0)である。よって、機関の真の平均空燃比は、4・A0/(4.4・F0)=A0/(1.1・F0)となる。
【0020】
制御装置は、気筒間における空燃比の不均一性が発生していない場合における上流側空燃比センサ(67)の出力値と空燃比との関係を予め記憶しており、その関係と実際の上流側空燃比センサ(67)の出力値とに基いて空燃比を検出する。このように検出される空燃比を、検出空燃比abyfsと言う。従って、上記例の場合、検出空燃比abyfsは、機関の真の平均空燃比と等しい空燃比A0/(1.1・F0)となる。
【0021】
この結果、メインフィードバック制御によって、機関全体に供給される混合気の空燃比は「目標空燃比である理論空燃比A0/F0」に一致させられる。即ち、メインフィードバック制御によって各気筒に供給される燃料の量が10%ずつ減量され、各気筒に1・F0の燃料が供給されるようになる。つまり、各気筒の空燃比は、何れの気筒においても理論空燃比A0/F0に一致する。
【0022】
次に、ある一つの特定気筒に対して供給される燃料の量が40%だけ過剰な量(即ち、1.4・F0)であり、残りの3気筒のそれぞれに対して供給される燃料の量は適正量(各気筒の空燃比が理論空燃比と一致するために必要な燃料量であり、この場合F0)であると仮定する。即ち、特定気筒の空燃比のみが大きくリッチ側にずれる「気筒間における空燃比の不均一性」が生じたと仮定する。この場合、その特定気筒に供給される混合気の空燃比(特定気筒の空燃比)は、残りの気筒に供給される混合気の空燃比(残りの気筒の空燃比)に比較して、大きくリッチ側の空燃比(小さい空燃比)へと変化する。このとき、その特定気筒から極めて多量の未燃物(HC,CO,H)が排出される。
【0023】
より具体的に述べると、上記仮定によれば、4気筒に供給される空気量の総量は4・A0である。一方、4気筒に供給される燃料の総量は4.4・F0(=1.4・F0+F0+F0+F0)である。よって、機関の真の平均空燃比は、4・A0/(4.4・F0)=A0/(1.1・F0)となる。即ち、この場合の機関の真の平均空燃比は、前述した「各気筒に対して供給される燃料の量が均等に10%だけ過剰である場合」と同じ値となる。
【0024】
しかしながら、前述したように、排ガス中の未燃物(HC、CO及びH)の量は、気筒に供給される混合気の空燃比がリッチ側の空燃比になるほど急激に増大する。従って、「特定気筒に対して供給される燃料の量のみが40%だけ過剰な量となった場合に排ガスに含まれる水素Hの量」は、「各気筒に対して供給される燃料の量が均等に10%だけ過剰な量となった場合に排ガスに含まれる水素Hの量」よりも顕著に大きくなる。
【0025】
この結果、上述した「水素の選択的拡散」に起因して、上流側空燃比センサ(67)の出力値により表される空燃比の平均は「機関の真の平均空燃比(A0/(1.1・F0))」よりもリッチ側の空燃比となる。つまり、排ガスの真の平均空燃比が「所定のリッチ側の空燃比」であっても、空燃比気筒間インバランスが発生しているときに上流側空燃比センサ(67)の排ガス側電極層に到達する水素Hの濃度は、空燃比気筒間インバランスが発生していないときに排ガス側電極層に到達する水素Hの濃度よりも、格段に高くなる。故に、上流側空燃比センサ(67)の出力値は、機関の真の平均空燃比よりもリッチ側の空燃比を示す値となる。
【0026】
その結果、上流側空燃比センサの出力値に基くメインフィードバック制御により、機関の真の平均空燃比は、理論空燃比よりもリーン側に制御されてしまう。以上が、気筒間における空燃比の不均一性が生じたとき、機関の真の平均空燃比が目標空燃比よりもリーン側に制御されてしまう理由である。なお、以下において、このような「水素の選択的拡散及びメインフィードバック制御に起因する空燃比のリーン側への移行」は、単に、「リーン誤制御」とも称呼する。
【0027】
「リーン誤制御」は、インバランス気筒の空燃比が、非インバランス気筒の空燃比よりもリーン側に偏移した場合においても、同様に発生する。この理由については後述する。
【0028】
リーン誤制御が発生すると、機関の真の平均空燃比(従って、三元触媒に流入する排ガスの真の平均空燃比)が「三元触媒のウインドウよりもリーン側の空燃比(大きい空燃比)」となる場合が生じる。この場合、三元触媒の浄化効率が低下し、NOx(窒素酸化物)の排出量が増大する。
【0029】
加えて、仮に、「機関の真の平均空燃比」が基準空燃比に一致させられたとしても、気筒間における空燃比の不均一性が生じているとき、排ガスの排気通路における空間分布は一様ではなくなる。換言すると、三元触媒には、インバランス気筒からの排ガスであって基準空燃比とは相違する第1空燃比の排ガスと、非インバランス気筒からの排ガスであって基準空燃比とは相違する第2空燃比の排ガスと、が交互に流入する。従って、気筒別空燃比の不均一性の程度が大きくなることにより、これらの排ガスのうち、「三元触媒のウインドウに対してリーン側に外れた空燃比」の排ガスが三元触媒に流入する場合が生じる。この場合、NOxの排出量が急激に増大する。
【0030】
従って、本発明の目的の一つは、「気筒間における空燃比の不均一性が生じた場合(上記リーン誤制御が発生する状態となった場合)にNOx排出量が増大すること」を極力回避することができる内燃機関の燃料噴射量制御装置を提供することにある。本発明の燃料噴射量制御装置は、以下、単に「本発明装置」とも称呼する。
【0031】
本発明装置は、上流側空燃比センサの出力値により表される空燃比を目標空燃比に一致させるためのメインフィードバック制御を実行する。気筒別空燃比の不均一性が生じていない場合、目標空燃比は「三元触媒のウインドウ内の所定の基準空燃比(例えば、理論空燃比)」に設定される。
【0032】
更に、本発明装置は、目標空燃比を、気筒別空燃比の不均一性の程度が大きくなるほど「より小さくなる空燃比(修正後空燃比)」に設定する。即ち、目標空燃比は、気筒別空燃比の不均一性の程度が大きくなるほど、基準空燃比よりも小さい範囲において小さくなるように修正される。
【0033】
気筒別空燃比の不均一性の程度が大きくなることに伴って、目標空燃比が「基準空燃比よりも小さい空燃比」に設定された状態においても、水素の選択的拡散に起因して上流側空燃比センサの出力値により表される空燃比は排ガスの真の空燃比に対してリッチ側の空燃比に移行する。従って、メインフィードバック制御により、機関の真の平均空燃比(即ち、前記空燃比センサに到達する排ガスを排出している複数の気筒の燃焼室に供給される混合気の真の平均空燃比)は目標空燃比よりも大きい空燃比(リーン側の空燃比)へと制御される。しかしながら、修正後空燃比は基準空燃比よりも小さい(リッチ側の空燃比である)から、修正後空燃比を適切に設定することにより、メインフィードバック制御の結果として得られる機関の真の平均空燃比を「基準空燃比以下の空燃比」に一致させることができる。従って、NOxの排出量が増大することを回避することができる。
【0034】
より具体的に述べると、本発明装置は、第1修正量と第2修正量とを用いて目標空燃比を上述したように修正する。即ち、本発明装置は、「前記基準空燃比を前記第1修正量に基づいて修正することにより得られる第1修正空燃比」に対して前記第2修正量を用いて更に修正を加えることにより得られる第2修正空燃比を、「目標空燃比として設定される修正後空燃比」として求める。
【0035】
第1修正量及び第2修正量は、何れも空燃比不均衡指標値に基づいて算出される。空燃比不均衡指標値は、後述するように種々の手法に基いて算出される。空燃比不均衡指標値は、気筒別空燃比の不均一性が生じていないとき所定の基準値(例えば、「0」)となり、気筒別空燃比の不均一性の程度が大きいほど大きくなる値として求められる。
【0036】
前記第1修正量は、前記基準空燃比を前記第1修正量により修正することにより、前記第1修正空燃比を求めるための値である。この第1修正空燃比は、前記基準空燃比以下の空燃比であり、且つ、前記目標空燃比が前記第1修正空燃比であるときに前記機関の真の平均空燃比が前記メインフィードバック制御により「前記基準空燃比」に一致するように設定される空燃比、である。
【0037】
前記第2修正量は、前記第1修正空燃比を前記第2修正量により修正することにより、前記第2修正空燃比を求めるための値である。この第2修正空燃比は、前記第1修正空燃比以下の空燃比であり、且つ、前記目標空燃比が前記第2修正空燃比であるときに前記機関の真の平均空燃比が前記メインフィードバック制御により「前記基準空燃比以下の空燃比」に一致するように設定される空燃比、である。このように、第2修正空燃比は、前記機関の真の平均空燃比を前記基準空燃比「以下」の空燃比に一致させるように定められる空燃比であるから、第2修正量は「第1修正空燃比を修正しない量」となる場合もある。
【0038】
本発明装置によれば、気筒別空燃比の不均一性が生じていないとき(即ち、前記空燃比不均衡指標値が前記基準値であるとき)、目標空燃比は「三元触媒のウインドウ内の所定の空燃比である基準空燃比」に維持される。この場合、上流側空燃比センサの出力値により表される空燃比は、水素の選択的拡散に起因する検出誤差を含まないので、上流側空燃比センサに到達した排ガスの真の空燃比に応じた空燃比になる。この結果、メインフィードバック制御により、機関の真の平均空燃比は基準空燃比近傍に維持される。従って、NOx排出量は小さい。
【0039】
これに対し、気筒別空燃比の不均一性が生じたとき(即ち、前記空燃比不均衡指標値が前記基準値とは異なる値になったとき)、目標空燃比は「修正後空燃比として設定される第2修正空燃比」に設定される。
【0040】
上述したように、第2修正量は、第1修正空燃比を修正しない量となる場合もある。従って、第2修正量が第1修正空燃比を修正しない量であるとき、修正空燃比は第1修正空燃比に一致し、目標空燃比はその第1修正空燃比に一致させられる。この場合、上流側空燃比センサの出力値により表される空燃比が「第1修正空燃比」に一致するようにメインフィードバック制御が実行される。この結果、機関の真の平均空燃比が基準空燃比に一致するので、気筒別空燃比の不均一性の程度が大きくなった場合においてNOxの排出量が増大することを回避することができる。
【0041】
例えば、前記空燃比不均衡指標値が所定の値であるとき、メインフィードバック制御の結果として得られる「機関の真の平均空燃比」を基準空燃比に一致させるためには、目標空燃比をいかなる空燃比に設定すればよいか(即ち、第1修正空燃比をいかなる空燃比にすればよいか)について、予め実験等により求めることができる。換言すると、「機関の真の平均空燃比」がメインフィードバック制御によって基準空燃比に一致するときの目標空燃比を、種々の空燃比不均衡指標値に対して予め求めることにより、空燃比不均衡指標値と第1修正空燃比との関係、従って、空燃比不均衡指標値と第1修正量との関係、を予め定めることができる。そして、その関係に「実際に取得された空燃比不均衡指標値」を適用することにより、第1修正量を算出することができる。
【0042】
加えて、第2修正量が、第1修正空燃比を修正する量であるとき、修正後空燃比は第2修正空燃比に一致し、目標空燃比はその第2修正空燃比に一致させられる。この場合、上流側空燃比センサの出力値により表される空燃比が「第2修正空燃比」に一致するようにメインフィードバック制御が実行される。この結果、機関の真の平均空燃比が「基準空燃比よりも小さい空燃比」に一致するので、「気筒別空燃比の不均一性の程度が大きくなった場合等において排ガスの空間分布が一様でなくなることに起因して三元触媒のウインドウに対しリーン側に外れた空燃比の排ガスが三元触媒に流入すること」を防止することができる。従って、気筒別空燃比の不均一性の程度が大きくなった場合においても、NOxの排出量が増大することを回避することができる。
【0043】
本発明装置の一態様において、
前記目標空燃比を決定する目標空燃比決定手段は、
前記排気通路であって前記三元触媒よりも下流の位置に配設されるとともに同配設された位置を通過する排ガスの空燃比に応じた出力値を出力する下流側空燃比センサと、
前記下流側空燃比センサの出力値が前記基準空燃比に対応する下流側目標値に一致するように、前記下流側空燃比センサの出力値に基づいて前記目標空燃比を補正するためのサブフィードバック量を算出するとともに同算出したサブフィードバック量に基いて前記目標空燃比を修正するサブフィードバック制御手段と、
を更に備える。
【0044】
前記サブフィードバック量は、メインフィードバック制御における目標空燃比を直接的に修正する量であってもよく、メインフィードバック制御に使用される「上流側空燃比センサの出力値を補正することにより前記目標空燃比を実質的に修正する量」であってもよい。即ち、メインフィードバック制御に使用される「上流側空燃比センサの出力値を補正する」ことは、メインフィードバック制御における目標空燃比を補正することと実質的に等価な意味を持つ。
【0045】
上記サブフィードバック量を用いたフィードバック制御は、サブフィードバック制御とも称呼される。サブフィードバック制御によれば、下流側空燃比センサの出力値を前記基準空燃比に対応する下流側目標値に一致させることができる。ところで、上流側空燃比センサの出力値自体は、上流側空燃比センサへの各気筒からのガスの到達の仕方及び上流側空燃比センサの個体差等に起因して変化する。従って、第2修正量が第1修正空燃比を修正しない量であるときに、「目標空燃比を第1修正空燃比に一致させるメインフィードバック制御」を実行した場合であっても、機関の真の平均空燃比を前記基準空燃比に完全に一致させ得ない場合が生じうる。一方、下流側空燃比センサには「三元触媒において水素等の未燃物が浄化された排ガス」が到達する。更に、下流側空燃比センサは、各気筒からの排ガスの到達の仕方の気筒間における相違の影響を受けない。よって、下流側空燃比センサの出力値は、機関の真の平均空燃比に対応した値となる。従って、上記サブフィードバック制御を実行すれば、機関の真の平均空燃比を前記基準空燃比の近傍に制御することができるので、エミッションを良好に維持することができる。
【0046】
ところで、第2修正量は、機関の真の平均空燃比を「前記基準空燃比よりもリッチ側の空燃比」へと移行させるための量である。これに対し、サブフィードバック量は、機関の真の平均空燃比を「前記基準空燃比」に一致させるように変化する量である。従って、前記第2修正量が「前記機関の真の平均空燃比を、前記基準空燃比よりも正の閾値空燃比以上小さい範囲内の特定空燃比へと修正する値」であるときに、サブフィードバック制御が継続されると、第2修正量による効果(機関の真の平均空燃比を基準空燃比よりもリッチな空燃比に設定しようとする効果)が、サブフィードバック制御により相殺されてしまう。
【0047】
そこで、上記本発明装置の一態様は、更に、
前記第2修正空燃比が、前記機関の真の平均空燃比を前記基準空燃比よりも正の閾値空燃比以上小さい範囲内の空燃比に一致させるための特定空燃比となっているか否かを、前記第2修正量に基づいて判定し、前記第2修正空燃比が前記特定空燃比となっていると判定されたとき、前記サブフィードバック制御手段による前記サブフィードバック量の算出を停止させるサブフィードバック量算出停止手段、を備える。
【0048】
これによれば、第2修正量による効果が、サブフィードバック制御により相殺されてしまうことを回避することができる。
【0049】
本発明装置の他の態様において、
前記目標空燃比決定手段は、
前記第1修正量が、前記機関の吸入空気量が大きくなるほど前記第1修正空燃比をより小さい空燃比へと修正する値となるように、前記第1修正量を前記吸入空気量に相関するパラメータ(例えば、吸入空気量、スロットル弁開度及び機関の負荷率等)に基づいて決定するように構成される。
【0050】
「リーン誤制御」の程度(即ち、メインフィードバック制御によりどの程度リーン空燃比に制御されてしまうか)は、気筒間における空燃比の不均一性の程度がある特定の値であっても、例えば、機関の吸入空気量が大きくなるほど大きくなる。これは、吸入空気量が大きくなるほど、インバランス気筒から排出される水素の絶対量が多くなるからであると推定される。従って、上記態様のように、第1修正量を吸入空気量に相関するパラメータに基づいて決定することにより、機関の真の平均空燃比を基準空燃比の近傍へとより確実に制御することができる。
【0051】
同様に、本発明装置の他の態様において、
前記目標空燃比決定手段は、
前記第2修正量が、前記機関の吸入空気量が大きくなるほど前記第2修正空燃比をより小さい空燃比へと修正する値となるように、前記第2修正量を前記吸入空気量に相関するパラメータ(例えば、吸入空気量、スロットル弁開度及び機関の負荷率等)に基づいて決定するように構成される。
【0052】
前述したように、「リーン誤制御」の程度は、気筒間における空燃比の不均一性の程度がある特定の値であっても、例えば、機関の吸入空気量が大きくなるほど大きくなる。従って、上記態様のように、第2修正量を吸入空気量に相関するパラメータに基づいて決定することにより、機関の真の平均空燃比を「基準空燃比よりもリッチ側の狙いの空燃比の近傍」へとより確実に制御することができる。
【0053】
なお、空燃比不均衡指標値を取得する不均衡指標値取得手段は、次のような種々の態様をとることができる。
(A)前記不均衡指標値取得手段は、前記空燃比不均衡指標値として、前記上流側空燃比センサが配設された位置を通過する前記排ガスの空燃比の変動が大きくなるほど大きくなる値を前記空燃比センサの出力値に基づいて取得するように構成され得る。
【0054】
この場合、更に具体的には不均衡指標値取得手段は次のような態様であってもよい。
(A−1)
前記不均衡指標値取得手段は、
前記上流側空燃比センサの出力値Vabyfsの時間についての微分値d(Vabyfs)/dtを取得するとともに、同取得した微分値d(Vabyfs)/dtに相関する値を前記空燃比不均衡指標値として取得するように構成され得る。
(A−2)
前記不均衡指標値取得手段は、
前記上流側空燃比センサの出力値Vabyfsにより表される検出空燃比abyfsの時間についての微分値d(abyfs)/dtを取得するとともに、同取得した微分値d(abyfs)/dt値に相関する値を前記空燃比不均衡指標値として取得するように構成され得る。
(A−3)
前記不均衡指標値取得手段は、
前記上流側空燃比センサの出力値Vabyfsの時間についての二階微分値d2(Vabyfs)/dt2を取得するとともに、同取得した二階微分値d2(Vabyfs)/dt2に相関する値を前記空燃比不均衡指標値として取得するように構成され得る。
(A−4)
前記不均衡指標値取得手段は、
前記上流側空燃比センサの出力値Vabyfsにより表される検出空燃比abyfsの時間についての二階微分値d2(abyfs)/dt2を取得するとともに、同取得した二階微分値d2(abyfs)/dt2に相関する値を前記空燃比不均衡指標値として取得するように構成され得る。
(A−5)
前記不均衡指標値取得手段は、
前記上流側空燃比センサの出力値Vabyfsの所定期間における最大値と最小値との差に相関する値、又は、前記上流側空燃比センサの出力値Vabyfsにより表される検出空燃比abyfsの所定期間における最大値と最小値との差に相関する値を、前記空燃比不均衡指標値として取得するように構成され得る。
(A−6)
前記不均衡指標値取得手段は、
前記空燃比不均衡指標値として、前記上流側空燃比センサの出力値Vabyfsの所定期間おける軌跡長に相関する値、又は、前記上流側空燃比センサの出力値Vabyfsにより表される検出空燃比abyfsの前記所定期間における軌跡長に相関する値を取得するように構成され得る。
【0055】
本発明装置の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明装置の各実施形態についての説明から容易に理解されるであろう。
【図面の簡単な説明】
【0056】
【図1】図1は、本発明の各実施形態に係る燃料噴射量制御装置が適用される内燃機関の概略平面図である。
【図2】図2は、気筒に供給された混合気の空燃比と、その気筒から排出される未燃成分の量と、の関係を示したグラフである。
【図3】図3は、図1に示した内燃機関の概略構成を示した同機関の断面図である。
【図4】図4は、図1及び図3に示した空燃比センサ(上流側空燃比センサ)の部分概略斜視図(透視図)である。
【図5】図5は、図1及び図3に示した空燃比センサの部分断面図である。
【図6】図6の(A)〜(C)のそれぞれは、図1及び図3に示した空燃比センサ(上流側空燃比センサ)が備える空燃比検出部の概略断面図である。
【図7】図7は、排ガスの空燃比と空燃比センサの限界電流値との関係を示したグラフである。
【図8】図8は、排ガスの空燃比と空燃比センサの出力値との関係を示したグラフである。
【図9】図9は、排ガスの空燃比と図1及び図3に示した下流側空燃比センサの出力値との関係を示したグラフである。
【図10】図10は、空燃比気筒間インバランス状態が発生した場合と同状態が発生していない場合の空燃比不均衡指標値に関連する各値の挙動を示したタイムチャートである。
【図11】図11は、実際のインバランス割合と、検出空燃比変化率に基いて取得される空燃比不均衡指標値と、の関係を示したグラフである。
【図12】図12は、本発明の第1実施形態に係る燃料噴射量制御装置(第1制御装置)のCPUが実行するルーチンを示したフローチャートである。
【図13】図13は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。
【図14】図14は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。
【図15】図15は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。
【図16】図16は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。
【図17】図17は、本発明の第2実施形態に係る燃料噴射量制御装置(第2制御装置)のCPUが実行するルーチンを示したフローチャートである。
【図18】図18は、本発明の第3実施形態に係る燃料噴射量制御装置(第3制御装置)のCPUが実行するルーチンを示したフローチャートである。
【発明を実施するための形態】
【0057】
以下、本発明の各実施形態に係る内燃機関の燃料噴射量制御装置(以下、単に「制御装置」とも称呼する。)について図面を参照しながら説明する。この制御装置は、内燃機関に供給される混合気の空燃比(機関の空燃比)を制御する空燃比制御装置の一部であり、更に、空燃比気筒間インバランス判定装置の一部でもある。
【0058】
<第1実施形態>
(構成)
図3は、第1実施形態に係る制御装置(以下、「第1制御装置」とも称呼する。)を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。なお、図3は、特定気筒の断面のみを示しているが、他の気筒も同様な構成を備えている。
【0059】
この内燃機関10は、シリンダブロック部20と、シリンダヘッド部30と、吸気系統40と、排気系統50と、を含む。
【0060】
シリンダブロック部20は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含む。シリンダヘッド部30は、シリンダブロック部20の上に固定されている。吸気系統40は、シリンダブロック部20にガソリン混合気を供給する種々の部材を含む。排気系統50は、シリンダブロック部20から排出された排ガスを外部に放出するための種々の部材を含む。
【0061】
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランク軸24を含む。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21の壁面及びピストン22の上面は、シリンダヘッド部30の下面とともに燃焼室25を形成している。
【0062】
シリンダヘッド部30は、吸気ポート31、吸気弁32、可変吸気タイミング制御装置33、排気ポート34、排気弁35、可変排気タイミング制御装置36、点火プラグ37、イグナイタ38及び燃料噴射弁(燃料噴射手段、燃料供給手段)39を備えている。
【0063】
吸気ポート31は燃焼室25に連通している。吸気弁32は吸気ポート31を開閉する。可変吸気タイミング制御装置33は、吸気弁32を駆動するインテークカムシャフトと、そのインテークカムシャフトの位相角を連続的に変更するアクチュエータ33aと、を含む。排気ポート34は燃焼室25に連通している。排気弁35は排気ポート34を開閉する。可変排気タイミング制御装置36は、排気弁35を駆動するエキゾーストカムシャフトと、そのエキゾーストカムシャフトの位相角を連続的に変更するアクチュエータ36aと、を含む。点火プラグ37は、各燃焼室25に一つずつ配設されている。イグナイタ38は、各点火プラグ37に一つずつ設けられている。イグナイタ38はイグニッションコイルを含む。
【0064】
燃料噴射弁39は、一つの燃焼室25に対して一つずつ配設されている。燃料噴射弁39は各燃焼室25に連通する各吸気ポート31に設けられている。即ち、複数の気筒のそれぞれは、他の気筒とは独立して燃料供給を行う燃料噴射弁39を備えている。燃料噴射弁39は、噴射指示信号に応答し、正常である場合に「その噴射指示信号に含まれる指示燃料噴射量の燃料」を対応する吸気ポート31内に噴射するようになっている。より具体的に述べると、燃料噴射弁39には一定の圧力に維持された燃料が供給されている。燃料噴射弁39は、指示燃料噴射量に応じた時間だけ開弁する。従って、燃料噴射弁39が正常であれば、燃料噴射弁39は指示燃料噴射量の燃料を噴射する。しかしながら、燃料噴射弁39に異常が発生すると、燃料噴射弁39は指示燃料噴射量とは相違する量の燃料を噴射するようになる。
【0065】
吸気系統40は、インテークマニホールド41、吸気管42、エアフィルタ43、及び、スロットル弁44を備えている。
【0066】
インテークマニホールド41は、図1に示したように、複数の枝部41aとサージタンク41bとからなる。複数の枝部41aのそれぞれの一端は、図3に示したように、複数の吸気ポート31のそれぞれに接続されている。複数の枝部41aの他端はサージタンク41bに接続されている。吸気管42の一端はサージタンク41bに接続されている。エアフィルタ43は吸気管42の他端に配設されている。スロットル弁44は、吸気管42内にあって吸気通路の開口断面積を可変とするようになっている。スロットル弁44は、DCモータからなるスロットル弁アクチュエータ44a(スロットル弁駆動手段の一部)により吸気管42内で回転駆動されるようになっている。
【0067】
排気系統50は、エキゾーストマニホールド51、エキゾーストパイプ52、エキゾーストパイプ52に配設された上流側触媒53、及び、上流側触媒53よりも下流のエキゾーストパイプ52に配設された図示しない下流側触媒を備えている。
【0068】
エキゾーストマニホールド51は、図1に示したように、それぞれの一端が排気ポートに接続された複数の枝部51aと、その複数の枝部51aのそれぞれの他端であって総ての枝部51aが集合している集合部51bとを備えている。この集合部51bは、複数(2以上であり、本例では4つ)の気筒から排出された排ガスが集合するから、排気集合部HKとも称呼される。エキゾーストパイプ52は集合部51bに接続されている。図3に示したように、排気ポート34、エキゾーストマニホールド51及びエキゾーストパイプ52は、排気通路を構成している。
【0069】
上流側触媒53及び下流側触媒のそれぞれは、所謂、白金、ロジウム及びパラジウム等の貴金属(触媒物質)からなる活性成分を担持する三元触媒装置(排気浄化用の触媒)である。各触媒は、各触媒に流入するガスの空燃比が「ウインドウの範囲内の所定の空燃比(理論空燃比近傍の空燃比である基準空燃比)」であるとき、HC,CO,Hなどの未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能(酸化・還元機能)を有する。この機能は触媒機能とも称呼される。更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有する。各触媒は、酸素吸蔵機能により空燃比が理論空燃比から偏移したとしても未燃成分及び窒素酸化物を浄化することができる。即ち、酸素吸蔵機能により、三元触媒(上流側触媒53及び下流側触媒)のウインドウの幅が拡大される。酸素吸蔵機能は、触媒に担持されているセリア(CeO)等の酸素吸蔵材によってもたらされる。
【0070】
このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、水温センサ63、クランクポジションセンサ64、インテークカムポジションセンサ65、エキゾーストカムポジションセンサ66、上流側空燃比センサ67、下流側空燃比センサ68、及び、アクセル開度センサ69を備えている。
【0071】
エアフローメータ61は、吸気管42内を流れる吸入空気の質量流量(吸入空気流量)Gaに応じた信号を出力するようになっている。即ち、吸入空気流量Gaは、単位時間あたりに機関10に吸入される吸入空気量Gaを表す。
【0072】
スロットルポジションセンサ62は、スロットル弁44の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
【0073】
水温センサ63は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。冷却水温THWは、機関10の暖機状態(機関10の温度)を表すパラメータである。
【0074】
クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、後述する電気制御装置70によって機関回転速度NEに変換される。
【0075】
インテークカムポジションセンサ65は、インテークカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。後述する電気制御装置70は、クランクポジションセンサ64及びインテークカムポジションセンサ65からの信号に基づいて、基準気筒(例えば第1気筒)の圧縮上死点を基準とした絶対クランク角度CAを取得するようになっている。この絶対クランク角度CAは、基準気筒の圧縮上死点において「0°クランク角度」に設定され、クランク軸24の回転角度に応じて720°クランク角度まで増大し、その時点にて再び0°クランク角度に設定される。
【0076】
エキゾーストカムポジションセンサ66は、エキゾーストカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。
【0077】
上流側空燃比センサ67は、図1にも示したように、エキゾーストマニホールド51の集合部51bと上流側触媒53との間の位置において「エキゾーストマニホールド51及びエキゾーストパイプ52の何れか(即ち、排気通路)」に配設されている。
【0078】
上流側空燃比センサ67は、例えば、特開平11−72473号公報、特開2000−65782号公報及び特開2004−69547号公報等に開示された「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
【0079】
上流側空燃比センサ67は、図4及び図5に示したように、空燃比検出部67aと、外側保護カバー67bと、内側保護カバー67cと、を有している。
【0080】
外側保護カバー67bは金属からなる中空円筒体である。外側保護カバー67bは内側保護カバー67cを覆うように、内側保護カバー67cを内部に収容している。外側保護カバー67bは、流入孔67b1をその側面に複数備えている。流入孔67b1は、排気通路を流れる排ガス(外側保護カバー67bの外部の排ガス)EXを外側保護カバー67bの内部に流入させるための貫通孔である。更に、外側保護カバー67bは、外側保護カバー67bの内部の排ガスを外部(排気通路)に流出させるための流出孔67b2をその底面に有している。
【0081】
内側保護カバー67cは、金属からなり、外側保護カバー67bの直径よりも小さい直径を有する中空円筒体である。内側保護カバー67cは、空燃比検出部67aを覆うように空燃比検出部67aを内部に収容している。内側保護カバー67cは流入孔67c1をその側面に複数備えている。この流入孔67c1は、外側保護カバー67bの流入孔67b1を通して「外側保護カバー67bと内側保護カバー67cとの間の空間」に流入した排ガスを、内側保護カバー67cの内部に流入させるための貫通孔である。更に、内側保護カバー67cは、内側保護カバー67cの内部の排ガスを外部に流出させるための流出孔67c2をその底面に有している。
【0082】
図6の(A)〜(C)に示したように、空燃比検出部67aは、固体電解質層671と、排ガス側電極層672と、大気側電極層(基準ガス側電極層)673と、拡散抵抗層(多孔質層)674と、第一壁部675と、触媒部676と、第二壁部677と、ヒータ678と、を含んでいる。
【0083】
固体電解質層671は酸素イオン導電性酸化物焼結体である。本例において、固体電解質層671は、ZrO(ジルコニア)にCaOを安定剤として固溶させた「安定化ジルコニア素子」である。固体電解質層671は、その温度が活性温度以上であるとき、周知の「酸素電池特性」及び「酸素ポンプ特性」を発揮する。
【0084】
排ガス側電極層672は、白金(Pt)等の触媒活性の高い貴金属からなる。排ガス側電極層672は、固体電解質層671の一つの面上に形成されている。排ガス側電極層672は、化学メッキ等により浸透性を十分に有するように(即ち、多孔質状に)形成されている。
【0085】
大気側電極層673は、白金(Pt)等の触媒活性の高い貴金属からなる。大気側電極層673は、固体電解質層671の他の面上であって、固体電解質層671を挟んで排ガス側電極層672に対向するように形成されている。大気側電極層673は、化学メッキ等により浸透性を十分に有するように(即ち、多孔質状に)形成されている。
【0086】
拡散抵抗層(拡散律速層)674は、多孔質セラミック(耐熱性無機物質)からなる。拡散抵抗層674は、排ガス側電極層672の外側表面を覆うように、例えば、プラズマ溶射法等により形成されている。
【0087】
第一壁部675は、緻密であってガスを透過させないアルミナセラミックスからなる。第一壁部675は拡散抵抗層674の角部(一部)を除いて拡散抵抗層674を覆うように形成されている。即ち、第一壁部675は拡散抵抗層674の一部を外部に露呈させる貫通部を備えている。
【0088】
触媒部676は、第一壁部675の貫通部を閉じるように貫通部に形成されている。触媒部676は、上流側触媒53と同様、酸化還元反応を促進する触媒物質及び酸素吸蔵機能を発揮する酸素吸蔵材を担持している。触媒部676は多孔質体である。従って、図6の(B)及び図6の(C)に白抜きの矢印により示したように、排ガス(前述した内側保護カバー67cの内部に流入した排ガス)は、触媒部676を通過して拡散抵抗層674に到達し、その排ガスは更に拡散抵抗層674を通過して排ガス側電極層672に到達する。
【0089】
第二壁部677は、緻密であってガスを透過させないアルミナセラミックスからなる。第二壁部677は大気側電極層673を収容する空間である「大気室67A」を形成するように構成されている。大気室67Aには大気が導入されている。
【0090】
上流側空燃比センサ67には電源679が接続されている。電源679は、大気側電極層673側が高電位となり、排ガス側電極層672が低電位となるように、電圧V(=Vp)を印加する。
【0091】
ヒータ678は第二壁部677に埋設されている。ヒータ678は後述する電気制御装置70によって通電されたときに発熱し、固体電解質層671、排ガス側電極層672及び大気側電極層673を加熱し、それらの温度を調整するようになっている。
【0092】
このような構造を有する上流側空燃比センサ67は、図6の(B)に示したように、排ガスの空燃比が理論空燃比よりもリーン側の空燃比であるとき、拡散抵抗層674を通って排ガス側電極層672に到達した酸素をイオン化して大気側電極層673へと通過させる。この結果、電源679の正極から負極へと電流Iが流れる。この電流Iの大きさは、図7に示したように、電圧Vを所定値Vpに設定すると、排ガス側電極層672に到達した酸素の量(酸素濃度、酸素分圧、即ち、排ガスの空燃比)に比例した一定値となる。上流側空燃比センサ67は、この電流(即ち、限界電流Ip)を電圧に変換した値を出力値Vabyfsとして出力する。
【0093】
これに対し、図6の(C)に示したように、排ガスの空燃比が理論空燃比よりもリッチ側の空燃比であるとき、上流側空燃比センサ67は、大気室67Aに存在する酸素をイオン化して排ガス側電極層672へと導き、拡散抵抗層674を通って排ガス側電極層672に到達する未燃物(HC,CO及びH等)を酸化する。この結果、電源679の負極から正極へと電流Iが流れる。この電流Iの大きさも、図7に示したように、電圧Vを所定値Vpに設定すると、排ガス側電極層672に到達した未燃物の量(未燃物濃度、未燃物の分圧、即ち、排ガスの空燃比)に比例した一定値となる。上流側空燃比センサ67は、この電流(即ち、限界電流Ip)を電圧に変換した値を出力値Vabyfsとして出力する。
【0094】
即ち、空燃比検出部67aは、図4に示したように、上流側空燃比センサ67の配設位置を流れ、且つ、外側保護カバー67bの流入孔67b1及び内側保護カバー67cの流入孔67c1を通って空燃比検出部67aに到達しているガスの空燃比に応じた出力値Vabyfsを「空燃比センサ出力」として出力する。出力値Vabyfsは、空燃比検出部67aに到達しているガスの空燃比が大きくなるほど(リーンとなるほど)増大する。即ち、出力値Vabyfsは、図8に示したように、空燃比検出部67aに到達している排ガスの空燃比に実質的に比例する。なお、図8は、気筒別空燃比の不均一性が生じていない場合における「出力値Vabyfsと排ガスの空燃比との関係」を示す。この場合の出力値Vabyfsは、空燃比検出部67aに到達しているガスの空燃比が理論空燃比であるとき、理論空燃比相当値Vstoichに一致する。
【0095】
以上から明らかなように、「上流側空燃比センサ67は、複数の気筒(少なくとも2以上、好ましくは3以上の気筒)から排出された排ガスが集合する機関の排気通路の排気集合部HK又は同排気通路の同排気集合部HKよりも下流側の部位に配設された空燃比センサであって、固体電解質層671、同固体電解質層671の一面に形成された排ガス側電極層672、同排ガス側電極層を覆うとともに前記排ガスが到達する拡散抵抗層674、及び、同固体電解質層671の他面に形成されるとともに大気室67A内に露呈された大気側電極層673を有する空燃比検出部を含み、排ガス側電極層672に到達した排ガスに含まれる「酸素の量及び未燃物の量」に応じた出力値Vabyfs(排ガスの空燃比に応じた出力値Vabyfs)を出力する空燃比センサである。」と言うことができる。
【0096】
電気制御装置70は、図8に示した空燃比変換テーブル(マップ)Mapabyfsを記憶している。電気制御装置70は、空燃比センサ67の出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより、実際の上流側空燃比abyfsを検出する(即ち、検出空燃比abyfsを取得する)。空燃比変換テーブルMapabyfsは、気筒間における空燃比の不均一性がない場合における「排ガスの空燃比と、出力値Vabyfsと、の関係」に基いて予め作成されている。
【0097】
ところで、上流側空燃比センサ67は、前述したように、排気集合部HKと上流側触媒53との間の位置に配設されている。更に、上流側空燃比センサ67は、エキゾーストマニホールド51の内部及びエキゾーストパイプ52の内部の何れかに外側保護カバー67bが露呈するように配設されている。
【0098】
より具体的には、空燃比センサ67は、図4及び図5に示したように、保護カバー(67b、67c)の底面が排ガスEXの流れと平行であり、保護カバー(67b、67c)の中心軸線CCが排ガスEXの流れと直交するように排気通路内に配設される。これにより、外側保護カバー67bの流入孔67b1に到達した排気通路内の排ガスEXは、外側保護カバー67bの流出孔67b2近傍を流れる排気通路内の排ガスEXの流れにより、外側保護カバー67b及び内側保護カバー67cの内部へと吸い込まれる。
【0099】
従って、排気通路を流れる排ガスEXは、図4及び図5において矢印Ar1により示したように外側の保護カバー67bの流入孔67b1を通って外側の保護カバー67bと内側の保護カバー67cとの間に流入する。次いで、その排ガスは、矢印Ar2に示したように「内側の保護カバー67cの流入孔67c1」を通って「内側の保護カバー67cの内部」に流入した後に、空燃比検出部67aに到達する。その後、その排ガスは、矢印Ar3に示したように「内側の保護カバー67cの流出孔67c2及び外側の保護カバー67bの流出孔67b2」を通って排気通路に流出する。
【0100】
このため、「外側保護カバー67b及び内側保護カバー67c」の内部における排ガスの流速は、外側保護カバー67bの流出孔67b2近傍を流れる排ガスEXの流速(従って、単位時間あたりの吸入空気量である吸入空気量Ga)に応じて変化する。換言すると、「ある空燃比の排ガス(第1排ガス)が流入孔67b1に到達した時点」から「その第1排ガスが空燃比検出部67aに到達する時点」までの時間は、吸入空気量Gaに依存するが機関回転速度NEには依存しない。従って、空燃比センサ67の「排気通路を流れる排ガスの空燃比」に対する出力応答性(応答性)は、空燃比センサ67の外側保護カバー67bの近傍を流れる排ガスの流量(流速)が大きいほど、即ち、吸入空気量Gaが大きいほど、良好になる。このことは、上流側空燃比センサ67が内側保護カバー67cのみを有する場合にも成立する。
【0101】
再び、図3を参照すると、下流側空燃比センサ68は、エキゾーストパイプ52であって上流側触媒53よりも下流側であり且つ下流側触媒よりも上流側(即ち、上流側触媒53と下流側触媒との間の排気通路)に配設されている。下流側空燃比センサ68は、周知の起電力式の酸素濃度センサ(安定化ジルコニアを用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ68は、排気通路であって下流側空燃比センサ68が配設されている部位を通過するガスである被検出ガスの空燃比に応じた出力値Voxsを発生するようになっている。換言すると、出力値Voxsは、上流側触媒53から流出し且つ下流側触媒に流入するガスの空燃比(従って、機関10に供給される混合気の空燃比の時間的平均値、機関10の真の平均空燃比)に応じた値である。
【0102】
この出力値Voxsは、図9に示したように、被検出ガスの空燃比が理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V)となる。出力値Vabyfsは、被検出ガスの空燃比が理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V)となる。更に、出力値Voxsは、被検出ガスの空燃比が理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(中間電圧Vst、例えば、約0.5V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへと急変する。同様に、出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
【0103】
図3に示したアクセル開度センサ69は、運転者によって操作されるアクセルペダル81の操作量Accp(アクセルペダル操作量Accp)を表す信号を出力するようになっている。アクセルペダル操作量Accpは、アクセルペダル81の操作量(アクセルペダル81の開度)が大きくなるとともに大きくなる。
【0104】
電気制御装置70は、「CPU71、CPU71が実行するプログラム、テーブル(マップ、関数)及び定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、バックアップRAM74並びにADコンバータを含むインターフェース75等」からなる周知のマイクロコンピュータである。
【0105】
バックアップRAM74は、機関10を搭載した車両の図示しないイグニッション・キー・スイッチの位置(オフ位置、始動位置及びオン位置等の何れか)に関わらず、車両に搭載されたバッテリから電力の供給を受けるようになっている。バックアップRAM74は、バッテリから電力の供給を受けている場合、CPU71の指示に応じてデータを格納する(データが書き込まれる)とともに、そのデータを読み出し可能となるように保持(記憶)する。従って、バックアップRAM74は、機関10の運転停止中においてもデータを保持することができる。
【0106】
バックアップRAM74は、バッテリが車両から取り外される等によりバッテリからの電力供給が遮断されると、データを保持することができない。そこで、CPU71は、バックアップRAM74への電力供給が再開されたとき、バックアップRAM74に保持されるべきデータを初期化(デフォルト値に設定)するようになっている。なお、バックアップRAM74は、EEPROM等の読み書き可能な不揮発性メモリであってもよい。
【0107】
インターフェース75は、センサ61〜69と接続され、CPU71にそれらのセンサからの信号を供給するようになっている。更に、インターフェース75は、CPU71の指示に応じて可変吸気タイミング制御装置33のアクチュエータ33a、可変排気タイミング制御装置36のアクチュエータ36a、各気筒のイグナイタ38、各気筒に対応して設けられた燃料噴射弁39、スロットル弁アクチュエータ44a及び空燃比センサ67のヒータ678等に駆動信号(指示信号)を送出するようになっている。
【0108】
なお、電気制御装置70は、取得されたアクセルペダルの操作量Accpが大きくなるほどスロットル弁開度TAが大きくなるように、スロットル弁アクチュエータ44aに指示信号を送出するようになっている。即ち、電気制御装置70は、運転者により変更される機関10の加速操作量(アクセルペダル操作量Accp)に応じて「機関10の吸気通路に配設されたスロットル弁44」の開度を変更するスロットル弁駆動手段を備えている。
【0109】
(リーン誤制御について)
インバランス気筒の空燃比が非インバランス気筒の空燃比よりもリッチ側に偏移した場合、上流側空燃比センサ67の出力値Vabyfsに基く空燃比のフィードバック制御(メインフィードバック制御)により、機関の空燃比がリーン側に偏移する理由については上述した。
【0110】
即ち、排ガス中の未燃物(HC、CO及びH)の量は、図2に示したように、気筒に供給される混合気の空燃比がリッチ側の空燃比になるほど急激に増大する。このため、「特定気筒に対して供給される燃料の量のみが40%だけ過剰な量となった場合」に排ガスに含まれる水素Hの総量SH1は、図2によれば、SH1=H3+H0+H0+H0=H3+3・H0となる。
【0111】
ここで、機関10の各気筒に吸入される空気量(重量)はA0であると仮定する。更に、各気筒に供給される燃料量(重量)がF0であるとき、空燃比A0/F0は理論空燃比に一致すると仮定する。この仮定によれば、「特定気筒に対して供給される燃料の量のみが40%だけ過剰な量となった場合」の機関の空燃比は、4・A0/(4.4・F0)=A0/(1.1・F0)である。
【0112】
これに対し、「各気筒に対して供給される燃料の量が均等に10%だけ過剰となった場合」に排ガスに含まれる水素Hの総量SH2は、図8によれば、SH2=H1+H1+H1+H1=4・H1となる。この場合の機関の空燃比も、4・A0/(4.4・F0)=A0/(1.1・F0)である。量H1は量H0よりも僅かに大きいが、量H1及び量H0は共に極めて微量である。即ち、量H1と量H0とは、量H3に比べた場合、互いに略等しいと言える。従って、水素総量SH1は水素総量SH2よりも極めて大きくなる(SH1>>SH2)。
【0113】
このように、機関10の真の平均空燃比が同一であっても、空燃比気筒間インバランスが発生した場合に排ガスに含まれる水素の総量SH1は、空燃比気筒間インバランスが発生していない場合に排ガスに含まれる水素の総量SH2よりも、顕著に大きくなる。
【0114】
従って、特定気筒に対して供給される燃料の量のみが40%だけ過剰な量となった場合、拡散抵抗層674における「水素Hの選択的拡散」に起因して、上流側空燃比センサの出力値Vabyfsにより表される検出空燃比abyfsは「機関10の真の平均空燃比(A0/(1.1・F0))」よりもリッチ側の空燃比(小さい空燃比)となる。
【0115】
つまり、排ガスの真の空燃比の平均値が同じであっても、空燃比気筒間インバランスが発生している場合(気筒間における空燃比の不均一性が大きい場合)には、空燃比気筒間インバランスが発生していない場合よりも、上流側空燃比センサ67の排ガス側電極層672における水素Hの濃度が高くなるから、上流側空燃比センサ67の出力値Vabyfsは「排ガスの真の空燃比」よりもリッチ側の空燃比を示す値となるのである。
【0116】
その結果、出力値Vabyfsにより表される空燃比を「理論空燃比等の基準空燃比に設定された目標空燃比abyfr」に一致させるメインフィードバック制御を実行すると、機関10の真の平均空燃比は、基準空燃比よりもリーン側に制御されてしまう。第1制御装置及び本発明の他の実施形態に係る制御装置は、このようなリーン側への補正(リーン誤制御)を目標空燃比を修正することにより補償し、以って、窒素酸化物の排出量を低減する。
【0117】
インバランス気筒の空燃比が、非インバランス気筒の空燃比よりもリーン側に偏移した場合においても、「リーン誤制御」が発生する。このような状況は、例えば、特定気筒に対して備えられている燃料噴射弁39の噴射特性が「指示燃料噴射量よりも相当に少ない量の燃料を噴射する特性」になった場合に生じる。
【0118】
いま、ある一つの特定気筒(便宜上、第1気筒とする。)に対して供給される燃料の量が40%だけ過小な量(即ち、0.6・F0)であり、残りの3気筒(第2、第3及び第4気筒)に対して供給される燃料の量はそれらの気筒の空燃比が理論空燃比と一致するような燃料の量(即ち、F0)となった場合を想定する。なお、この場合、失火は発生しないものと仮定している。
【0119】
この場合、メインフィードバック制御により、第1気筒乃至第4気筒に供給される燃料の量は同じ所定量(10%)だけ増大されたと仮定する。このとき、第1気筒に供給される燃料の量は0.7・F0となり、第2乃至第4気筒のそれぞれに供給される燃料の量は1.1・F0となる。
【0120】
係る状態においては、4気筒エンジンである機関10に供給される空気量の総量(各気筒がそれぞれ一回の燃焼行程を終了する間に機関10全体に供給される空気量)は4・A0である。また、メインフィードバック制御の結果、機関10に供給される燃料量の総量(各気筒がそれぞれ一回の燃焼行程を終了する間に機関10全体に供給される燃料の量)は4・F0(=0.7・F0+1.1・F0+1.1・F0+1.1・F0)となる。よって、機関10の真の平均空燃比は、4・A0/(4・F0)=A0/F0、即ち、理論空燃比となる。
【0121】
しかしながら、実際には、この状態における「排ガスに含まれる水素Hの総量SH3」は、SH3=H4+H1+H1+H1=H4+3・H1となる。H4は、空燃比がA0/(0.7・F0)であるときに発生する水素量であり、H1及びH0(空燃比が理論空燃比であるときに発生する水素量)よりも小さく且つH0と略等しい。従って、総量SH3は、実質的に(H0+3・H1)となる。
【0122】
これに対し、空燃比気筒間インバランスが発生しておらず且つ機関10の真の平均空燃比が理論空燃比である場合、「排ガスに含まれる水素Hの総量SH4」は、SH4=H0+H0+H0+H0=4・H0となる。前述したように、H1はH0よりも僅かに大きい。従って、総量SH3(=H0+3・H1)は総量SH4(=4・H0)よりも大きくなる。
【0123】
従って、「インバランス気筒の空燃比が、非インバランス気筒の空燃比よりもリーン側に偏移した場合」においても、水素の選択的拡散の影響が上流側空燃比センサ67の出力値Vabyfsに現れる。即ち、出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより得られる検出空燃比abyfsは、排ガスの真の空燃比よりもリッチ側の空燃比となる。その結果、メインフィードバック制御が更に実行されることにより、機関10の真の平均空燃比は、基準空燃比よりもリーン側に補正されてしまう。第1制御装置及び本発明の他の実施形態に係る制御装置は、目標空燃比を修正することにより補償し、以って窒素酸化物の排出量を低減する。
【0124】
(燃料噴射量制御の概要)
次に、第1制御装置が実行する燃料噴射量制御の概要について説明する。
第1制御装置は、上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsが、目標空燃比(上流側目標空燃比)abyfrに一致するように、指示燃料噴射量を増減するフィードバック補正(メインフィードバック制御)を実行する。
【0125】
即ち、第1制御装置は、目標空燃比abyfrを得るための基本燃料噴射量を算出するとともに、検出空燃比abyfsを目標空燃比abyfrに一致させるためのメインフィードバック量を算出し、そのメインフィードバック量に基いて基本燃料噴射量をフィードバック補正する。目標空燃比abyfrは、三元触媒(上流側触媒53)のウインドウ内の所定の空燃比である基準空燃比(
通常、理論空燃比)に設定される。基本燃料噴射量は何らの補正もなされない状態において指示燃料噴射量となる。従って、メインフィードバック制御は、指示燃料噴射量をメインフィードバック量によりフィードバック補正する制御である、と言うこともできる。
【0126】
気筒別空燃比の不均一性の程度が大きくなった場合、上述したリーン誤制御により、機関の真の平均空燃比は、目標空燃比abyfrよりもリーン側の空燃比に制御される。従って、気筒別空燃比の不均一性の程度が大きくなった場合に、目標空燃比abyfrが基準空燃比abyfr0に維持されていると、機関の真の平均空燃比は「基準空燃比abyfr0よりもリーン側の空燃比」に制御される。この結果、NOx排出量が増大する。
【0127】
そこで、第1制御装置は、気筒別空燃比の不均一性がない場合(即ち、後に詳述する空燃比不均衡指標値RIMBの値が基準値である場合)、目標空燃比abyfrを基準空燃比abyfr0(例えば、理論空燃比stoich)に維持する。更に、第1制御装置は、気筒別空燃比の不均一性の程度が大きくなるほど(即ち、空燃比不均衡指標値RIMBが基準値から離れるように大きくなるほど)、目標空燃比abyfrを「基準空燃比abyfr0よりも、よりリッチ側の空燃比(即ち、修正後空燃比)」へと変更する。これにより、メインフィードバック制御の結果として得られる機関の真の平均空燃比を、基準空燃比abyfr0又は基準空燃比abyfr0よりもリッチ側の空燃比(基準空燃比abyfr0よりも小さい空燃比)へと制御することができる。その結果、NOxの排出量が増大することを回避することができる。
【0128】
より具体的に述べると、第1制御装置は、「第1修正量としてのストイキ補正項α」を空燃比不均衡指標値RIMBに基づいて決定する。ストイキ補正項αは0以上の値である。第1制御装置は、「第2修正量としてのリッチ化補正項β」を空燃比不均衡指標値RIMBに基いて決定する。リッチ化補正項βは0以上の値である。第1制御装置は、ストイキ補正項α及びリッチ化補正項βを用いて基準空燃比abyfr0を修正(補正)することにより、修正後空燃比γを算出する。即ち、第1制御装置は、例えば、下記の(1)式に従って修正後空燃比γを求める。第1制御装置は、この修正後空燃比γを目標空燃比abyfrとして設定する。

γ=(abyfr0−α)−β …(1)

【0129】
上記(1)式の右辺における値(abyfr0−α)は、基準空燃比abyfr0をストイキ補正項αにより修正した空燃比であり、第1修正空燃比と称呼される。従って、修正後空燃比γは、第1修正空燃比(abyfr0−α)をリッチ化補正項βにより修正した空燃比であり、第2修正空燃比とも称呼される。換言すると、ストイキ補正項αは、基準空燃比abyfr0をストイキ補正項αにより修正することにより、第1修正空燃比(abyfr0−α)を求めるための値である。同様に、リッチ化補正項βは、第1修正空燃比(abyfr0−α)をリッチ化補正項βにより修正することにより、第2修正空燃比{(abyfr0−α)−β}を求めるための値である。
【0130】
このように、第1制御装置は、「基準空燃比abyfr0を第1修正量(ストイキ補正項α)に基づいて修正することにより得られる第1修正空燃比(abyfr0−α)」に対して第2修正量(リッチ化補正項β)を用いて更に修正を加えることにより得られる第2修正空燃比{(abyfr0−α)−β}を「修正後空燃比γ」として求める。
【0131】
ストイキ補正項αは0以上の値であるから、第1修正空燃比(abyfr0−α)は基準空燃比abyfr0以下の空燃比である。第1修正空燃比(abyfr0−α)は、目標空燃比abyfrが第1修正空燃比(abyfr0−α)であるときに機関10の真の平均空燃比が前記メインフィードバック制御により「基準空燃比abyfr0」に一致するように定められる空燃比である。
【0132】
リッチ化補正項βは0以上の値であるから、第2修正空燃比{(abyfr0−α)−β}は第1修正空燃比(abyfr0−α)以下の空燃比である。第2修正空燃比{(abyfr0−α)−β}は、目標空燃比abyfrが第2修正空燃比{(abyfr0−α)−β}であるときに機関10の真の平均空燃比が前記メインフィードバック制御により「基準空燃比abyfr0以下の空燃比(基準空燃比abyfr0又は基準空燃比abyfr0よりもリッチ側の空燃比)」に一致するように定められる空燃比である。
【0133】
このように、第2修正空燃比{(abyfr0−α)−β}は、機関10の真の平均空燃比を基準空燃比abyfr0「以下」の空燃比に一致させる空燃比であるから、第1修正空燃比(abyfr0−α)と等しくなる場合もある。換言すると、リッチ化補正項βは、「第1修正空燃比(abyfr0−α)を修正しない量」、即ち、「0」となる場合もある。
【0134】
例えば、空燃比不均衡指標値RIMBが「基準値とは異なる所定の値」であるとき、メインフィードバック制御の結果として得られる「機関10の真の平均空燃比」を基準空燃比abyfr0に一致させるために、目標空燃比abyfrをいかなる空燃比に設定すればよいかは、予め実験により求めることができる。その求められた目標空燃比abyfrが第1修正空燃比(abyfr0−α)である。従って、空燃比不均衡指標値RIMBとストイキ補正項αとの関係を予め定めておくことができる。
【0135】
加えて、例えば、空燃比不均衡指標値RIMBが「基準値とは異なる所定の値」であるとき、メインフィードバック制御の結果として得られる「機関10の真の平均空燃比」を「所定のリッチ空燃比(例えば、NOxの排出量が増大しないような空燃比)」に一致させるために、目標空燃比abyfrをいかなる空燃比に設定すればよいかは、予め実験により求めることができる。その求められた目標空燃比abyfrが第2修正空燃比{(abyfr0−α)−β}である。従って、その目標空燃比abyfrと、ストイキ補正項αと、に基いて、空燃比不均衡指標値RIMBとリッチ化補正項βとの関係を予め定めておくことができる。
【0136】
以上、説明したように、第1制御装置は、目標空燃比abyfrを修正後空燃比γ(=(abyfr0−α)−β)に設定する。従って、リッチ化補正項βが「0」であるとき(リッチ化補正項βが第1修正空燃比(abyfr0−α)を修正しない値であるとき)、機関10の真の平均空燃比は基準空燃比abyfr0に一致させられる。リッチ化補正項βが「0」でないとき(リッチ化補正項βが第1修正空燃比(abyfr0−α)を修正する値であるとき)、機関10の真の平均空燃比は「基準空燃比abyfr0よりもリッチな空燃比であって、第2修正空燃比である修正後空燃比γ(=(abyfr0−α)−β)よりもリーンな空燃比」に一致させられる。この結果、気筒別空燃比の不均一性の程度が大きくなった場合においても、NOx排出量が増大することを回避することができる。
【0137】
なお、第1制御装置は、更に、目標空燃比abyfr(=修正後空燃比γ)を、下流側空燃比センサの出力値に基づいて算出されるサブフィードバック量KSFBと、吸入空気量Gaに基いて決定されるウインドウ補正項KCATと、により補正し、補正後の目標空燃比をメインフィードバック制御の最終的な目標空燃比abyfrに設定する。即ち、第1制御装置は、下記の(2)式に従って最終的な目標空燃比abyfrを求める。

abyfr=γ/(1+KSFB+KCAT) …(2)

【0138】
(空燃比不均衡指標値の取得、及び、空燃比気筒間インバランス判定の概要)
次に、第1制御装置が採用した空燃比不均衡指標値の取得及び空燃比気筒間インバランス判定について説明する。
【0139】
空燃比気筒間インバランス判定は、その空燃比の不均一性の程度が警告必要値以上となったか否かを判定するための判定である。第1制御装置は、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさ(気筒別空燃比差)が「エミッション上許容できない程度」以上となっている場合、空燃比気筒間インバランス状態が発生したと判定する。第1制御装置は、空燃比不均衡指標値がインバランス判定用閾値以上となったか否かを判定し、空燃比不均衡指標値がインバランス判定用閾値以上となったとき、空燃比気筒間インバランス状態が発生したと判定する。
【0140】
第1制御装置は、空燃比不均衡指標値を次のようにして取得する。
(1)第1制御装置は、所定のパラメータ取得条件(空燃比不均衡指標値取得条件)が成立している場合、「上流側空燃比センサ67の出力値Vabyfsにより表される空燃比(検出空燃比abyfs)」の「単位時間(一定のサンプリング時間ts)当たりの変化量」を取得する。
【0141】
この「検出空燃比abyfsの単位時間当たりの変化量」は、その単位時間が例えば4m秒程度の極めて短い時間であるとき、検出空燃比abyfsの時間についての微分値(時間微分値d(abyfs)/dt、一階微分値d(abyfs)/dt)であると言うこともできる。従って、「検出空燃比abyfsの単位時間当たりの変化量」は「検出空燃比変化率ΔAF」とも称呼される。更に、検出空燃比変化率ΔAFは「基本指標量」とも称呼される。
【0142】
(2)第1制御装置は、一つの単位燃焼サイクル期間において取得された複数の検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFを求める。単位燃焼サイクル期間は、一つの上流側空燃比センサ67に到達する排ガスを排出している気筒の総てにおいて、各一回の燃焼行程が終了するのに要するクランク角度が経過する期間である。本例の機関10は、直列4気筒・4サイクル・エンジンであり、且つ、一つの上流側空燃比センサ67には第1〜第4気筒からの排ガスが到達する。よって、単位燃焼サイクル期間は720°クランク角度が経過する期間である。
【0143】
(3)第1制御装置は、複数の単位燃焼サイクル期間のそれぞれに対して求めた平均値AveΔAFの平均値を求め、その値を空燃比不均衡指標値RIMB(インバランス判定用パラメータ)として採用する。空燃比不均衡指標値RIMBは、空燃比気筒間インバランス割合指標値、又は、インバランス割合指標値、とも称呼される。なお、空燃比不均衡指標値RIMBは、このように求められる値に限定されることはなく、後述する種々の方法により取得され得る。
【0144】
上述したように求められる空燃比不均衡指標値RIMB(検出空燃比変化率ΔAFに相関する値)は、「気筒間における空燃比の不均一性(不均衡)の程度、即ち、気筒別空燃比差」が大きくなるほど大きくなる値である。即ち、空燃比不均衡指標値RIMBは、複数の気筒のそれぞれの燃焼室に供給される混合気の空燃比の気筒間における差(気筒別空燃比差)が大きいほど大きくなる値である。以下、この理由について説明する。
【0145】
上流側空燃比センサ67には、各気筒からの排ガスが点火順(故に、排気順)に到達する。気筒別空燃比差がない場合(気筒別空燃比の不均一性が生じていない場合)、各気筒から排出され且つ上流側空燃比センサ67に到達する排ガスの空燃比は互いに略同一である。従って、気筒別空燃比差がない場合の検出空燃比abyfsは、例えば、図10の(B)において破線C1により示したように変化する。即ち、気筒間における空燃比の不均一性がない場合、空燃比センサ67の出力値Vabyfsの波形は略平坦である。このため、図10の(C)において破線C3により示したように、気筒別空燃比差がない場合、検出空燃比変化率ΔAFの絶対値は小さい。
【0146】
一方、「特定気筒(例えば、第1気筒)に対して燃料を噴射する燃料噴射弁39」の特性が「指示燃料噴射量よりも多い燃料を噴射する特性」となると、気筒別空燃比差が大きくなる。即ち、その特定気筒の排ガスの空燃比(インバランス気筒の空燃比)と、その特定気筒以外の気筒の排ガスの空燃比(非インバランス気筒の空燃比)と、は大きく相違する。
【0147】
従って、空燃比気筒間インバランス状態が発生している場合の検出空燃比abyfsは、例えば図10の(B)の実線C2により示したように、単位燃焼サイクル期間毎に大きく変動する。このため、図10の(C)において実線C4により示したように、空燃比気筒間インバランス状態が発生している場合、検出空燃比変化率ΔAFの絶対値は大きくなる。
【0148】
しかも、検出空燃比変化率ΔAFの絶対値|ΔAF|は、インバランス気筒の空燃比が非インバランス気筒の空燃比から乖離するほど大きく変動する。例えば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが第1の値であるときの検出空燃比abyfsが図10(B)の実線C2のように変化するとすれば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが「第1の値の値よりも大きい第2の値」であるときの検出空燃比abyfsは図10(B)の一点鎖線C2aのように変化する。
【0149】
従って、図11に示したように、検出空燃比変化率ΔAFの絶対値|ΔAF|の「複数の単位燃焼サイクル期間」における平均値AveΔAF(空燃比不均衡指標値RIMB)は、インバランス気筒の空燃比が非インバランス気筒の空燃比から乖離するほど(気筒別空燃比の不均一性の程度が大きくなるほど)大きくなる。
【0150】
第1制御装置は、空燃比不均衡指標値RIMBを取得すると、その空燃比不均衡指標値RIMBとインバランス判定用閾値RIMBthとを比較する。第1制御装置は、空燃比不均衡指標値RIMBがインバランス判定用閾値RIMBthよりも大きいとき、空燃比気筒間インバランス状態が発生したと判定する。これに対し、第1制御装置は、空燃比不均衡指標値RIMBがインバランス判定用閾値RIMBthよりも小さいとき、空燃比気筒間インバランス状態が発生していないと判定する。
【0151】
(実際の作動)
<燃料噴射量制御>
第1制御装置のCPU71は、図12に示した燃料噴射制御ルーチンを、任意の気筒のクランク角度が吸気上死点前の所定クランク角度となる毎に、その気筒に対して繰り返し実行するようになっている。前記所定クランク角度は、例えば、BTDC90°CA(吸気上死点前90°クランク角度)である。クランク角度が前記所定クランク角度に一致した気筒は「燃料噴射気筒」とも称呼される。CPU71は、この燃料噴射制御ルーチンにより、指示燃料噴射量Fiの計算及び燃料噴射の指示を行う。
【0152】
任意の気筒のクランク角度が吸気上死点前の所定クランク角度と一致すると、CPU71はステップ1200から処理を開始し、ステップ1210にてフューエルカット条件(以下、「FC条件」と表記する。)が成立しているか否かを判定する。
【0153】
いま、FC条件が成立してないと仮定する。この場合、CPU71は、ステップ1210にて「No」と判定してステップ1220に進み、目標空燃比(上流側目標空燃比)abyfrを読み込む。目標空燃比abyfrは、後述する図14に示したルーチンにより別途算出されている。その後、CPU71は、以下に述べるステップ1230乃至ステップ1260の処理を順に行い、ステップ1295に進んで本ルーチンを一旦終了する。
【0154】
ステップ1230:CPU71は、「エアフローメータ61により計測された吸入空気量Ga、クランクポジションセンサ64の信号に基いて取得された機関回転速度NE、及び、ルックアップテーブルMapMc」に基いて「燃料噴射気筒の1回の吸気行程において、その燃料噴射気筒に吸入される空気量」である「筒内吸入空気量Mc(k)」を取得する。筒内吸入空気量Mc(k)は、各吸気行程に対応されながらRAM内に記憶される。筒内吸入空気量Mc(k)は、周知の空気モデル(吸気通路における空気の挙動を模した物理法則に従って構築されたモデル)により算出されてもよい。
【0155】
ステップ1240:CPU71は、筒内吸入空気量Mc(k)を目標空燃比abyfrで除することにより基本燃料噴射量Fbaseを求める。換言すると、基本燃料噴射量Fbaseは、目標空燃比abyfrを得るために計算上必要な燃料噴射量のフィードフォワード量である。即ち、ステップ1240は、機関10に吸入される吸入空気量に基いて、機関に供給される混合気の空燃比(機関の空燃比)を目標空燃比abyfrに一致させるための基本燃料噴射量をFbaseを算出する基本燃料噴射量算出手段を構成している。
【0156】
ステップ1250:CPU71は、基本燃料噴射量Fbaseをメインフィードバック量DFiにより補正する。より具体的には、CPU71は、基本燃料噴射量Fbaseにメインフィードバック量DFiを加えることにより、最終的な指示燃料噴射量(最終燃料噴射量)Fiを算出する。メインフィードバック量DFiは、上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsを目標空燃比abyfrに一致させるように求められる空燃比のフィードバック量である。メインフィードバック量DFiは、後述する図13に示したルーチンにより別途算出される。
【0157】
ステップ1260:CPU71は、ステップ1250にて求めた「指示燃料噴射量Fiの燃料」を「燃料噴射気筒に対応して設けられている燃料噴射弁39」から噴射させるための噴射指示信号を、その燃料噴射弁39に送出する。即ち、ステップ1260は、指示燃料噴射量Fiに応じた量の燃料が「複数の燃料噴射弁39」から噴射されるように、その複数の燃料噴射弁39に噴射指示信号を送出する噴射指示信号送出手段を構成している。
【0158】
なお、CPU71がステップ1210の処理を実行する時点において、FC条件が成立していると、CPU71はそのステップ1210にて「Yes」と判定し、ステップ1295に直接進んで本ルーチンを一旦終了する。この場合、ステップ1260の処理による燃料噴射が実行されないので、フューエルカット制御(燃料供給停止制御)が実行される。
【0159】
<メインフィードバック量の算出>
CPU71は図13にフローチャートにより示した「メインフィードバック量算出ルーチン」を所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ1300から処理を開始し、ステップ1305に進んで「メインフィードバック制御条件(上流側空燃比フィードバック制御条件)」が成立しているか否かを判定する。
【0160】
メインフィードバック制御条件は以下の総ての条件が成立したときに成立する。
(A1)上流側空燃比センサ67が活性化している。
(A2)機関の負荷KLが閾値KLth以下である。
(A3)フューエルカット制御中でない。
【0161】
なお、負荷KLは、ここでは下記の(3)式により求められる負荷率である。この負荷KLに代え、アクセルペダル操作量Accpが用いられても良い。(1)式において、Mcは筒内吸入空気量であり、ρは空気密度(単位は(g/l))、Lは機関10の排気量(単位は(l))、「4」は機関10の気筒数である。

KL=(Mc/(ρ・L/4))・100% …(3)

【0162】
いま、メインフィードバック制御条件が成立しているものとして説明を続ける。この場合、CPU71はステップ1305にて「Yes」と判定して以下に述べるステップ1310乃至ステップ1340の処理を順に行い、ステップ1395に進んで本ルーチンを一旦終了する。
【0163】
ステップ1310:CPU71は、図14に示したルーチンにより別途算出されている目標空燃比abyfrを読み込む。
【0164】
ステップ1315:CPU71は、下記(4)式に示したように、上流側空燃比センサ67の出力値Vabyfsを図8に示したテーブルMapabyfsに適用することにより、検出空燃比abyfsを得る。

abyfs=Mapabyfs(Vabyfs) …(4)

【0165】
ステップ1320:CPU71は、下記(5)式に従って、「現時点よりもNサイクル前の時点において燃焼室25に実際に供給された燃料の量」である「筒内燃料供給量Fc(k−N)」を求める。即ち、CPU71は、「現時点よりもNサイクル(即ち、N・720°クランク角度)前の時点における筒内吸入空気量Mc(k−N)」を「検出空燃比abyfs」により除すことにより、筒内燃料供給量Fc(k−N)を求める。

Fc(k−N)=Mc(k−N)/abyfs …(5)

【0166】
このように、筒内燃料供給量Fc(k−N)を求めるために、現時点からNサイクル前の筒内吸入空気量Mc(k−N)を検出空燃比abyfsで除すのは、「燃焼室25内での混合気の燃焼により生成された排ガス」が空燃比センサ67に到達するまでに「Nサイクルに相当する時間」を要しているからである。
【0167】
ステップ1325:CPU71は、下記(6)式に従って、「現時点よりもNサイクル前の時点において燃焼室25に供給されるべきであった燃料の量」である「目標筒内燃料供給量Fcr(k−N)」を求める。即ち、CPU71は、現時点からNサイクル前の筒内吸入空気量Mc(k−N)を目標空燃比abyfrで除すことにより、目標筒内燃料供給量Fcr(k−N)を求める。

Fcr=Mc(k−N)/abyfr …(6)

【0168】
ステップ1330:CPU71は、下記(7)式に従って、筒内燃料供給量偏差DFcを取得する。即ち、CPU71は、目標筒内燃料供給量Fcr(k−N)から筒内燃料供給量Fc(k−N)を減じることにより、筒内燃料供給量偏差DFcを求める。この筒内燃料供給量偏差DFcは、Nストローク前の時点で筒内に供給された燃料の過不足分を表す量となる。

DFc=Fcr(k−N)−Fc(k−N) …(7)

【0169】
ステップ1335:CPU71は、下記(8)式に従って、メインフィードバック量DFiを求める。この(6)式において、Gpは予め設定された比例ゲイン、Giは予め設定された積分ゲインである。更に、(6)式の「値SDFc」は「筒内燃料供給量偏差DFcの積分値」である。つまり、CPU71は、検出空燃比abyfsを目標空燃比abyfrに一致させるための比例積分制御により「メインフィードバック量DFi」を算出する。

DFi=Gp・DFc+Gi・SDFc …(8)

【0170】
ステップ1340:CPU71は、その時点における筒内燃料供給量偏差DFcの積分値SDFcに上記ステップ1330にて求められた筒内燃料供給量偏差DFcを加えることにより、新たな筒内燃料供給量偏差の積分値SDFcを取得する。
【0171】
以上により、メインフィードバック量DFiが比例積分制御により算出され、このメインフィードバック量DFiが前述した図12のステップ1250の処理により指示燃料噴射量Fiに反映される。
【0172】
一方、図13のステップ1305の判定時において、メインフィードバック制御条件が不成立であると、CPU71はそのステップ1305にて「No」と判定してステップ1345に進み、メインフィードバック量DFiの値を「0」に設定する。次いで、CPU71は、ステップ1350にて筒内燃料供給量偏差の積分値SDFcに「0」を格納する。その後、CPU71は、ステップ1395に進んで本ルーチンを一旦終了する。このように、メインフィードバック制御条件が不成立であるとき、メインフィードバック量DFiは「0」に設定される。従って、基本燃料噴射量Fbaseのメインフィードバック量DFiによる補正は行われない。
【0173】
<目標空燃比の決定>
CPU71は図14にフローチャートにより示した「目標空燃比の決定(算出)ルーチン」を所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ1400から処理を開始してステップ1410に進み、上述した「メインフィードバック制御条件」が成立しているか否かを判定する。
【0174】
いま、メインフィードバック制御条件が成立しているものとして説明を続ける。この場合、CPU71はステップ1410にて「Yes」と判定して以下に述べるステップ1420乃至ステップ1470の処理を順に行い、ステップ1495に進んで本ルーチンを一旦終了する。
【0175】
ステップ1420:CPU71は、空燃比不均衡指標値RIMB(空燃比不均衡指標値RIMBの学習値)をバックアップRAM74から読み出す。空燃比不均衡指標値RIMBは、後述する図16に示したルーチンにより別途算出され、算出される毎にバックアップRAM74に格納される。
【0176】
ステップ1430:CPU71は、空燃比不均衡指標値RIMBに基いてストイキ補正項αを算出する。より具体的に述べると、CPU71は、図14のブロックB1内に記載した第1修正量決定テーブル(空燃比不均衡指標値RIMBとストイキ補正項αとの関係であって、ROM72内に格納されている関係)に、ステップ1420にて読み込んだ空燃比不均衡指標値RIMBを適用することにより、ストイキ補正項αを算出する。
【0177】
第1修正量決定テーブルによれば、ストイキ補正項αは、空燃比不均衡指標値RIMBが大きくなるほど、「0」から次第に大きくなるように決定される。前述したように、ストイキ補正項αは、メインフィードバック制御による「リーン誤制御」を補償するために、目標空燃比abyfrを変更する補正項である(後述するステップ1470を参照。)。ストイキ補正項αは、「メインフィードバック制御の結果として得られる機関10の真の平均空燃比」が「理論空燃比である基準空燃比abyfr0」に一致するように目標空燃比abyfrを修正するための量である。
【0178】
なお、ストイキ補正項αは、空燃比不均衡指標値RIMBが「0から第1の値R1までの範囲」にある場合「0」(目標空燃比を修正しない値)に設定され、空燃比不均衡指標値RIMBが値R1よりも大きくなるにつれて「0」から次第に増大するように求められてもよい。
【0179】
ステップ1440:CPU71は、空燃比不均衡指標値RIMBに基いてリッチ化補正項βを算出する。より具体的に述べると、CPU71は、図14のブロックB2内に記載した第2修正量決定テーブル(空燃比不均衡指標値RIMBとリッチ化補正項βとの関係)に、ステップ1420にて読み込んだ空燃比不均衡指標値RIMBを適用することにより、リッチ化補正項βを算出する。
【0180】
第2修正量決定テーブルによれば、リッチ化補正項βは、空燃比不均衡指標値RIMBが大きくなるほど、「0」から次第に大きくなるように決定される。前述したように、リッチ化補正項βは、ストイキ補正項αとリッチ化補正項βとに基いて基準空燃比abyfr0を修正することによって得られる修正後空燃比γを算出するための値であり、その修正後空燃比γが目標空燃比に設定されてメインフィードバック制御が実行されたときの機関10の真の平均空燃比が、「基準空燃比abyfr0よりもリッチ側の所定空燃比」に一致するように、定められた量である。
【0181】
なお、リッチ化補正項βは、空燃比不均衡指標値RIMBが「0から第2の値R2までの範囲」にある場合「0」(目標空燃比を修正しない値)に設定され、空燃比不均衡指標値RIMBが値R2よりも大きくなるにつれて「0」から次第に増大するように求められてもよい。このとき、第2の値R2は「前記第1の値R1」よりも大きい値に設定される。
【0182】
ステップ1450:CPU71は、サブフィードバック量KSFBを読み込む。サブフィードバック量KSFBは、後述する図15に示したルーチンにより別途算出されている。なお、サブフィードバック量KSFBは「0」に設定されてもよい。即ち、第1制御装置は、サブフィードバック量KSFBを用いたサブフィードバック制御を実行しなくてもよい。
【0183】
ステップ1460:CPU71は、吸入空気量Gaに基いてウインドウ補正項KCATを算出する。上流側触媒53の浄化効率が所定値以上となる空燃比の範囲は、触媒のウインドウと称呼される。触媒のウインドウは、吸入空気量Gaが大きくなるほど理論空燃比から次第に小さい空燃比(よりリッチ側の空燃比)になる。ウインドウ補正項KCATは、この触媒のウインドウの変化を考慮して、目標空燃比abyfrを「吸入空気量Gaが大きくなるほど理論空燃比よりもより小さい空燃比」に移行するための補正項である。なお、ウインドウ補正項KCATについては、特開2005−48711号公報に詳細に記載されている。また、第1制御装置は、ウインドウ補正項KCATを「0」に設定してもよい。即ち、第1制御装置は、ウインドウ補正項KCATによる目標空燃比abyfrの修正を行わなくてもよい。
【0184】
ステップ1470:CPU71は、下記の(9)式に従って、目標空燃比abyfrを算出する。(9)式においてabyfr0は、上流側触媒53のウインドウ内の所定の空燃比であり、基準空燃比(ベース目標空燃比)と称呼される空燃比である。本例において、基準空燃比abyfr0は、理論空燃比stoich(例えば、14.6)に設定される。

abyfr={(abyfr0−α)−β}/(1+KSFB+KCAT) …(9)

【0185】
(9)式から理解されるように、ストイキ補正項αが大きくなるほど、目標空燃比abyfrは基準空燃比abyfr0(ここでは、理論空燃比stoich)から次第に小さくなる。換言すると、ストイキ補正項αが大きくなるほど、目標空燃比abyfrは基準空燃比abyfr0よりも小さい範囲において基準空燃比abyfr0との差の大きさが大きくなるように次第に小さくなる。
【0186】
(9)式から理解されるように、リッチ化補正項βが大きくなるほど、目標空燃比abyfrは次第に小さくなる。換言すると、リッチ化補正項βが大きくなるほど、目標空燃比abyfrは基準空燃比abyfr0よりも小さい範囲において基準空燃比abyfr0との差の大きさが大きくなるように次第に小さくなる。更に、具体的には、リッチ化補正項βが大きくなるほど、第2修正空燃比{(abyfr0−α)−β}は、第1修正空燃比(abyfr0−α)よりも小さい範囲において第1修正空燃比(abyfr0−α)との差の大きさが大きくなるように次第に小さくなる。
【0187】
一方、CPUがステップ1410の処理を行う時点において、メインフィードバック制御条件が成立していなければ、CPU71はそのステップ1410にて「No」と判定してステップ1480に進む。CPU71は、そのステップ1480にて、ストイキ補正項αを「0」に設定するとともに、リッチ化補正項βを「0」に設定する。その後、CPU71は、ステップ1450乃至ステップ1470の処理を実行する。この結果、目標空燃比abyfrは、サブフィードバック量KSFBとウインドウ補正項KCATとのみにより修正される。
【0188】
<サブフィードバック量KSFB及びサブFB学習値KSFBgの算出>
CPU71は図15にフローチャートにより示した「サブフィードバック量KSFB及びサブFB学習値KSFBgの算出ルーチン」を所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ1500から処理を開始してステップ1505に進み、リッチ化補正項βが所定の閾値(所定値)βth以上であるか否かを判定する。リッチ化補正項βが所定の閾値βth以上であることは、サブフィードバック制御条件の一つである。閾値βthは「0」であってもよく、「0」よりも大きい所定値であってもよい。
【0189】
サブフィードバック量KSFBは下流側空燃比センサ68の出力値Voxsを下流側目標値Voxsrefに一致させるための補正量である。下流側目標値Voxsrefは、基準空燃比abyfr0(本例においては理論空燃比stoich)に対応した値Vst(例えば、0.5V)」に設定されている。一方、リッチ化補正項βは、機関10の真の平均空燃比を、基準空燃比abyfr0よりも小さい(リッチな)空燃比へと移行させるための量である。従って、リッチ化補正項βが所定の閾値βth以上であるときに、サブフィードバック量KSFBが更新され、そのサブフィードバック量KSFBにより機関10に供給される混合気の空燃比の補正(指示燃料噴射量Fiの補正)がなされると、リッチ化補正項βによる効果が出現しなくなる。従って、リッチ化補正項βが所定の閾値βth以上である場合、サブフィードバック量KSFBの更新は停止(禁止)される。
【0190】
いま、リッチ化補正項βが閾値βthよりも小さいと仮定する。この場合、CPU71はステップ1505にて「No」と判定してステップ1510に進み、サブフィードバック制御条件が成立しているか否かを判定する。
【0191】
サブフィードバック制御条件は以下の総ての条件が成立したときに成立する。
(B1)メインフィードバック制御条件が成立している。
(B2)下流側空燃比センサ68が活性化している。
【0192】
いま、サブフィードバック制御条件が成立していると仮定して説明を続ける。この場合、CPU71はステップ1510にて「Yes」と判定し、以下に述べるステップ1515乃至ステップ1535の処理(サブフィードバック量算出処理)を実行し、その後、ステップ1540に進む。
【0193】
ステップ1515:CPU71は、下記(10)式に従って、「下流側目標値Voxsref」と「下流側空燃比センサ68の出力値Voxs」との差である「出力偏差量DVoxs」を取得する。即ち、CPU71は、「下流側目標値Voxsref」から「現時点の下流側空燃比センサ68の出力値Voxs」を減じることにより「出力偏差量DVoxs」を求める。

DVoxs=Voxsref−Voxs …(10)

【0194】
ステップ1520:CPU71は、下記(11)式に従って、「その時点における出力偏差量の積分値SDVoxs(=SDVoxs(n−1))」に「上記ステップ1515にて求めた出力偏差量DVoxsとゲインKとの積」を加えることにより、新たな出力偏差量の積分値SDVoxs(=SDVoxs(n))を求める。なお、ゲインKはここでは「1」に設定されている。

SDVoxs(n)=SDVoxs(n−1)+K・DVoxs …(11)

【0195】
ステップ1525:CPU71は、「上記ステップ1515にて算出した出力偏差量DVoxs」から「本ルーチンを前回実行した際に算出された出力偏差量である前回出力偏差量DVoxsold」を減じることにより、新たな出力偏差量の微分値DDVoxsを求める。
【0196】
ステップ1530:CPU71は、下記(12)式に従って、サブフィードバック量KSFBを求める。この(12)式において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。

KSFB=Kp・DVoxs+Ki・SDVoxs+Kd・DDVoxs …(12)

【0197】
ステップ1535:CPU71は、「上記ステップ1515にて算出した出力偏差量DVoxs」を「前回出力偏差量DVoxsold」として格納する。
【0198】
このように、CPU71は、下流側空燃比センサ68の出力値Voxsを下流側目標値Voxsrefに一致させるための比例・積分・微分(PID)制御により「サブフィードバック量KSFB」を算出する。このサブフィードバック量KSFBは、上述した(9)式に示したように、目標空燃比abyfrを算出するために使用される。
【0199】
即ち、出力値Voxsが下流側目標値Voxsrefよりも小さいとき(リーンであるとき)、サブフィードバック量KSFBは次第に大きくなる。サブフィードバック量KSFBが大きくなるほど目標空燃比abyfrは小さくなる(リッチ側の空燃比になる)ように修正される。その結果、機関10の真の平均空燃比は小さくなる(リッチ側の空燃比になる)ので、出力値Voxsが下流側目標値Voxsrefに一致するように増大する。
【0200】
逆に、出力値Voxsが下流側目標値Voxsrefよりも大きいとき(リッチであるとき)、サブフィードバック量KSFBは次第に小さくなる。サブフィードバック量KSFBが小さくなるほど目標空燃比abyfrは大きくなる(リーン側の空燃比となる)ように修正される。その結果、機関10の真の平均空燃比は大きくなる(リーン側の空燃比になる)ので、出力値Voxsが下流側目標値Voxsrefに一致するように減少する。
【0201】
CPU71は、ステップ1540に進むと、前回のサブフィードバック量の学習値(サブFB学習値)KSFBgの更新時点から第1時間T1が経過しているか否かを判定する。このとき、前回のサブFB学習値KSFBgの更新時点から第1時間T1が経過していなければ、CPU71はステップ1540にて「No」と判定し、ステップ1595に直接進んで本ルーチンを一旦終了する。
【0202】
これに対し、CPU71がステップ1540の処理を実行する時点において、前回のサブFB学習値KSFBgの更新時点から第1時間T1が経過していると、CPU71はステップ1540にて「Yes」と判定してステップ1545に進み、その時点の積分値SDVoxsと積分ゲインKiとの積(Ki・SDVoxs)をサブFB学習値KSFBgとしてバックアップRAM74に格納する。その後、CPU71はステップ1595に進んで本ルーチンを一旦終了する。
【0203】
このように、CPU71は、サブフィードバック量KSFBが更新される期間よりも長い期間が経過した時点におけるサブフィードバック量KSFBの定常項Ki・SDVoxsを、サブFB学習値KSFBgとして取り込む。
【0204】
一方、CPU71がステップ1505の処理を実行する時点において、リッチ化補正項βの値が閾値βth以上である場合、CPU71はステップ1505にて「Yes」と判定してステップ1550に進み、サブFB学習値KSFBgをサブフィードバック量KSFBとして設定する。即ち、CPU71は、サブフィードバック量KSFBの更新を停止する。次いで、CPU71はステップ1555に進み、サブFB学習値KSFBgを積分ゲインKiで除した値(サブFB学習値KSFBg/積分ゲインKi)を、積分値SDVoxsとしてバックアップRAM74に格納する。その後、CPU71はステップ1595に進み、本ルーチンを一旦終了する。
【0205】
ところで、サブフィードバック量KSFB及びサブFB学習値KSFBgは、機関10の真の平均空燃比を基準空燃比abyfr0に一致させるための値に設定されるべきである。従って、仮に、ストイキ補正項αとリッチ化補正項βとを区別することなく、目標空燃比abyfrを空燃比不均衡指標値RIMBが大きいほどリッチ側の空燃比に修正するように構成されていると、サブフィードバック量KSFB及びサブFB学習値KSFBgの更新(算出)の停止を目標空燃比abyfrに基いて行わざるを得ない。しかしながら、目標空燃比abyfr自体がサブフィードバック量KSFB等によって補正されるので、目標空燃比abyfrがいかなる値であるときにサブフィードバック量KSFB及びサブFB学習値KSFBgの更新(算出)の停止を行うべきか正確に判断することができない。これに対し、第1制御装置は、上述したように、ストイキ補正項αとリッチ化補正項βとを区別して求めているので、リッチ化補正項βの値により、機関10の真の平均空燃比が基準空燃比abyfr0(又は、基準空燃比abyfr0から所定値以内の空燃比)に制御されようとしているか否かを容易に判定することができる。この結果、サブFB学習値KSFBgが誤った値に設定されてしまうことを回避することができる。
【0206】
なお、CPU71がステップ1510の処理を実行する時点において、サブフィードバック制御条件が成立していない場合、CPU71はステップ1510にて「No」と判定し、ステップ1550及びステップ1555を経由してステップ1595に進む。
【0207】
下流側空燃比センサ68の出力値Voxsは、機関10の真の平均空燃比(従って、メインフィードバック制御によって「過度にリーン側に補正された空燃比」)を反映する値となる。これは、気筒間における空燃比の不均一性が生じた際に発生する多量の水素が、上流側触媒53において浄化されるからである。従って、出力値Voxsを下流側目標値Voxsrefに一致させるためのサブフィードバック量を用いたサブフィードバック制御により、機関10の真の平均空燃比は「三元触媒53のウインドウ内の基準空燃比abyfr0に対応した値」へと修正される。従って、サブフィードバック量が適切な値に収束していれば、NOx排出量が多量になることを回避することができる。
【0208】
しかしながら、サブフィードバック制御は「機関の空燃比の平均」を徐々に変化させる制御である。よって、一般に、サブフィードバック量KSFBは目標空燃比abyfrを緩慢に変化するように更新される。従って、例えば、機関の始動後等において、サブフィードバック量が適値になっていない期間が発生する。加えて、「リーン誤制御」の程度は、気筒別空燃比の不均一性の程度が「ある特定の値」であっても、機関10の運転状態に応じて変化する。例えば、リーン誤制御の程度は、吸入空気流量Gaが大きくなるほど大きくなる。
【0209】
従って、気筒間における空燃比の不均一性が存在している場合であって、機関の始動後及び吸入空気量が急激に変化(特に、増大)するような過渡運転時等においては、サブフィードバック量が不適切な値となっている期間が長くなり、機関10の真の平均空燃比は基準空燃比abyfr0へと修正されない場合が生じる。
【0210】
これに対し、第1制御装置は、ストイキ補正項αを用いて目標空燃比abyfrを修正する。従って、サブフィードバック量KSFBが適切な値になっていなくても、機関10の真の平均空燃比を基準空燃比abyfr0の近傍に維持することができる。換言すると、ストイキ補正項αは、サブフィードバック量KSFBの「フィードフォワード量」に対応する量であると言うこともできる。
【0211】
<空燃比不均衡指標値の取得、及び、空燃比気筒間インバランス判定>
次に、「空燃比不均衡指標値の取得及び空燃比気筒間インバランス判定」を実行するための処理について説明する。CPU71は、4ms(所定の一定サンプリング時間ts)が経過する毎に、図16にフローチャートにより示したルーチンを実行するようになっている。
【0212】
従って、所定のタイミングになると、CPU71はステップ1600から処理を開始してステップ1610に進み、パラメータ取得許可フラグXkyokaの値が「1」であるか否かを判定する。
【0213】
このパラメータ取得許可フラグXkyokaの値は、絶対クランク角度CAが0°クランク角度になった時点において後述するパラメータ取得条件(空燃比不均衡指標値取得許可条件)が成立しているときに「1」に設定され、パラメータ取得条件が不成立になった時点において直ちに「0」に設定される。
【0214】
パラメータ取得条件は、以下の総ての条件(条件C1乃至条件C5)が成立したときに成立する。従って、パラメータ取得条件は、以下の総ての条件(条件C1乃至条件C5)のうちの少なくとも一つが不成立であるとき、成立しない。勿論、パラメータ取得条件を構成する条件は、以下の条件C1乃至条件C5に限定されることはない。
【0215】
(条件C1)エアフローメータ61により取得される吸入空気量Gaが、所定範囲内である。即ち、吸入空気量Gaが、低側閾値空気流量GaLoth以上であり且つ高側閾値空気流量GaHith以下である。
(条件C2)機関回転速度NEが所定範囲内である。即ち、機関回転速度NEが、低側閾値回転速度NELoth以上であり且つ高側閾値回転速度NEHith以下である。
(条件C3)冷却水温THWが閾値冷却水温THWth以上である。
(条件C4)メインフィードバック制御条件が成立している。
(条件C5)フューエルカット制御中でない。
【0216】
いま、パラメータ取得許可フラグXkyokaの値が「1」であると仮定する。この場合、CPU71はステップ1610にて「Yes」と判定してステップ1615に進み、「その時点の上流側空燃比センサ67の出力値Vabyfs」をAD変換することにより取得する。
【0217】
次に、CPU71はステップ1620に進み、ステップ1615にて取得した出力値Vabyfsを図8に示した空燃比変換テーブルMapabyfsに適用することにより、今回の検出空燃比abyfsを取得する。なお、CPU71は、ステップ1620の処理の前に、本ルーチンを前回実行したときに取得した検出空燃比abyfsを前回の検出空燃比abyfsoldとして記憶する。即ち、前回の検出空燃比abyfsoldは、現時点から4ms(サンプリング時間ts)前の時点における検出空燃比abyfsである。前回の検出空燃比abyfsoldの初期値は、イニシャルルーチンにおいて理論空燃比に相当する値に設定されている。イニシャルルーチンは、機関10が搭載された車両のイグニッション・キー・スイッチがオフからオンに変更されたときにCPU71により実行されるルーチンである。
【0218】
次に、CPU71はステップ1625に進んで、
(A)検出空燃比変化率ΔAF(微分値d(abyfs)/dt)を取得し、
(B)検出空燃比変化率ΔAFの絶対値|ΔAF|の積算値SAFDを更新し、且つ、
(C)検出空燃比変化率ΔAFの絶対値|ΔAF|の、積算値SAFDへの積算回数カウンタCnを更新する。
以下、これらの更新方法について具体的に説明する。
【0219】
(A)検出空燃比変化率ΔAFの取得。
検出空燃比変化率ΔAF(微分値d(abyfs)/dt)は、空燃比不均衡指標値RIMBの元データとなるデータ(基本指標量)である。CPU71は、この検出空燃比変化率ΔAFを、今回の検出空燃比abyfsから前回の検出空燃比abyfsoldを減じることによって取得する。即ち、今回の検出空燃比abyfsをabyfs(n)、前回の検出空燃比abyfsoldをabyfs(n−1)と表記すると、CPU71はステップ1625にて「今回の検出空燃比変化率ΔAF(n)」を下記の(13)式に従って求める。

ΔAF(n)=abyfs(n)−
abyfs(n−1) …(13)

【0220】
(B)検出空燃比変化率ΔAFの絶対値|ΔAF|の積算値SAFDの更新。
CPU71は今回の積算値SAFD(n)を下記の(14)式に従って求める。即ち、CPU71は、ステップ1625に進んだ時点における前回の積算値SAFD(n−1)に上記算出した今回の検出空燃比変化率ΔAF(n)の絶対値|ΔAF(n)|を加えることにより、積算値SAFDを更新する。

SAFD(n)=SAFD(n−1)+|ΔAF(n)| …(14)

【0221】
積算値SAFDに「今回の検出空燃比変化率の絶対値|ΔAF(n)|」を積算する理由は、図10の(B)及び(C)からも理解されるように、検出空燃比変化率ΔAF(n)は正の値にも負の値にもなるからである。なお、積算値SAFDも、上述したイニシャルルーチンにおいて「0」に設定されるようになっている。
【0222】
(C)検出空燃比変化率ΔAFの絶対値|ΔAF|の、積算値SAFDへの積算回数カウンタCnの更新。
CPU71は、下記の(15)式に従って、カウンタCnの値を「1」だけ増大する。Cn(n)は更新後のカウンタCnであり、Cn(n−1)は更新前のカウンタCnである。このカウンタCnの値は上述したイニシャルルーチンにおいて「0」に設定されるとともに、後述するステップ1675及びステップ1680にても「0」に設定される。従って、カウンタCnの値は、積算値SAFDに積算された検出空燃比変化率ΔAFの絶対値|ΔAF|のデータ数を示す。

Cn(n)=Cn(n−1)+1 …(15)

【0223】
次に、CPU71はステップ1630に進み、基準気筒(本例では第1気筒)の圧縮上死点を基準としたクランク角度CA(絶対クランク角度CA)が720°クランク角度になっているか否かを判定する。このとき、絶対クランク角度CAが720°クランク角度未満であると、CPU71はステップ1630にて「No」と判定してステップ1695に直接進み、本ルーチンを一旦終了する。
【0224】
なお、ステップ1630は、検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値を求めるための最小単位の期間を定めるステップであり、ここでは「単位燃焼サイクル期間である720°クランク角度」がその最小期間に相当する。勿論、この最小期間は720°クランク角度よりも短くてもよいが、サンプリング時間tsの複数倍の長さ以上の期間であることが望ましい。更に、最小期間は、単位燃焼サイクル期間の自然数倍の期間であることが望ましい。
【0225】
一方、CPU71がステップ1630の処理を行う時点において、絶対クランク角度CAが720°クランク角度になっていると、CPU71はそのステップ1630にて「Yes」と判定し、ステップ1635に進む。
【0226】
CPU71は、ステップ1635にて、
(D)検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFを算出し、
(E)平均値AveΔAFの積算値Saveを更新し、且つ、
(F)積算回数カウンタCsを更新する。
以下、これらの更新方法について具体的に説明する。
【0227】
(D)検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFの算出。
CPU71は、下記の(16)式に示したように、積算値SAFDをカウンタCnの値により除することにより、検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFを算出する。この後、CPU71は積算値SAFD及びカウンタCnの値を「0」に設定する。

AveΔAF=SAFD/Cn …(16)

【0228】
(E)平均値AveΔAFの積算値Saveの更新。
CPU71は今回の積算値Save(n)を下記の(17)式に従って求める。即ち、CPU71は、ステップ1635に進んだ時点における前回の積算値Save(n−1)に上記算出した今回の平均値AveΔAFを加えることにより、積算値Saveを更新する。この積算値Save(n)の値は上述したイニシャルルーチンにおいて「0」に設定されるとともに、後述するステップ1675にても「0」に設定される。

Save(n)=Save(n−1)+AveΔAF …(17)

【0229】
(F)積算回数カウンタCsの更新。
CPU71は、下記の(18)式に従って、カウンタCsの値を「1」だけ増大する。Cs(n)は更新後のカウンタCsであり、Cs(n−1)は更新前のカウンタCsである。このカウンタCsの値は上述したイニシャルルーチンにおいて「0」に設定されるとともに、後述するステップ1675にても「0」に設定される。従って、カウンタCsの値は、積算値Saveに積算された平均値AveΔAFのデータ数を示す。

Cs(n)=Cs(n−1)+1 …(18)

【0230】
次に、CPU71はステップ1640に進み、カウンタCsの値が閾値Csth以上であるか否かを判定する。このとき、カウンタCsの値が閾値Csth未満であると、CPU71はそのステップ1640にて「No」と判定し、ステップ1695に直接進んで本ルーチンを一旦終了する。なお、閾値Csthは自然数であり、2以上であることが望ましい。
【0231】
一方、CPU71がステップ1640の処理を行う時点において、カウンタCsの値が閾値Csth以上であると、CPU71はそのステップ1640にて「Yes」と判定してステップ1645に進む。CPU71は、そのステップ1645にて、下記(19)式に従って積算値SaveをカウンタCsの値(=Csth)によって除することにより、空燃比不均衡指標値RIMB(=空燃比変動指標量AFD)を取得する。空燃比不均衡指標値RIMBは、検出空燃比変化率ΔAFの絶対値|ΔAF|の各単位燃焼サイクル期間における平均値AveΔAFを、複数(Csth個)の単位燃焼サイクル期間について平均した値である。空燃比不均衡指標値RIMBは、インバランス判定用パラメータとも称呼される。

RIMB=AFD=Save/Csth …(19)

【0232】
空燃比不均衡指標値RIMBは、バックアップRAM74内に空燃比不均衡指標値RIMBの学習値RIMBgakuとして格納(記憶)される。
【0233】
次にCPU71はステップ1650に進み、指標値取得フラグXIMBgetの値が「0」であるか否かを判定する。指標値取得フラグXIMBgetは、上述したイニシャルルーチンにおいて「0」に設定されるようになっている。従って、今回の機関10の始動後において空燃比不均衡指標値RIMBが取得されていない場合、指標値取得フラグXIMBgetの値は「0」である。この場合、CPUはステップ1650にて「Yes」と判定してステップ1655に進み、空燃比不均衡指標値RIMBがインバランス判定用閾値RIMBthよりも大きいか否かを判定する。即ち、CPU71は、空燃比気筒間インバランス状態が発生しているか否かを判定する。
【0234】
このとき、空燃比不均衡指標値RIMBがインバランス判定用閾値RIMBthよりも大きいと、CPU71はステップ1655にて「Yes」と判定してステップ1660に進み、インバランス発生フラグXIMBの値を「1」に設定する。即ち、CPU71は空燃比気筒間インバランス状態が発生していると判定する。更に、このとき、CPU71は図示しない警告ランプを点灯してもよい。なお、インバランス発生フラグXIMBの値はバックアップRAM74に格納される。その後、CPU71はステップ1670に進む。
【0235】
これに対し、CPU71がステップ1655の処理を行う時点において、空燃比不均衡指標値RIMBがインバランス判定用閾値RIMBth未満であると、CPU71はステップ1655にて「No」と判定してステップ1665に進み、インバランス発生フラグXIMBの値を「2」に設定する。即ち、「空燃比気筒間インバランス判定の結果、空燃比気筒間インバランス状態が発生していないと判定された旨」を記憶する。その後、CPU71はステップ1670に進む。
【0236】
なお、CPU71は、ステップ1655において、空燃比不均衡指標値RIMBとインバランス判定用閾値RIMBthとを比較することに代え、空燃比不均衡指標値RIMBの学習値RIMBgakuとインバランス判定用閾値RIMBthとを比較して、インバランス判定を実行してもよい。
【0237】
CPU71は、ステップ1670にて指標値取得フラグXIMBgetの値を「1」に設定する。次いで、CPUはステップ1675に進み、「空燃比不均衡指標値RIMBを算出するために用いられる各値(ΔAF,SAFD,Cn,AveΔAF,Save,及び,Cs等)」を「0」に設定(クリア)する。その後、CPU71はステップ1695に進んで本ルーチンを一旦終了する。
【0238】
この時点以降、CPU71はステップ1650に進んだとき、そのステップ1650にて「No」と判定し、ステップ1675に直接進む。従って、CPU71は、空燃比気筒間インバランス状態が発生しているか否かの判定を、機関10の運転が一旦停止され、その後、機関10が始動されて新たな空燃比不均衡指標値RIMBが取得されるまで、実行しない。但し、CPU71は、機関10が始動されてから停止されるまでの1回の運転中に、空燃比不均衡指標値RIMBを繰り返し更新する。なお、CPU71は、空燃比不均衡指標値RIMBが取得される毎にステップ1655を実行することにより、機関10が始動されてから停止されるまでの1回の運転中に空燃比気筒間インバランス状態が発生しているか否かを繰り返し判定してもよい。
【0239】
一方、CPU71がステップ1610に進んだ際にパラメータ取得許可フラグXkyokaの値が「1」でなければ、CPU71はそのステップ1610にて「No」と判定してステップ1680に進む。CPU71は、そのステップ1680にて「平均値AveΔAFを算出するために用いられる各値(ΔAF,SAFD,及び,Cn等)」を「0」に設定(クリア)する。次いで、CPU71はステップ1695に進んで本ルーチンを一旦終了する。
【0240】
このように求められる空燃比不均衡指標値RIMBは、気筒別空燃比の不均一性が生じていないとき(即ち、総ての気筒の空燃比が同一であるとき)には検出空燃比変化率ΔAFが「0」となるから、基準値「0」となる。
【0241】
以上、説明したように、第1制御装置は、複数の気筒を有する多気筒内燃機関10に適用される。機関10は、複数の気筒(少なくとも2以上の気筒、好ましくは3以上の気筒、本例において、第1気筒#1〜第4気筒#4の4気筒)のそれぞれに対応して配設されるとともに、その複数の気筒のそれぞれの燃焼室25に供給される混合気に含まれる燃料であって指示燃料噴射量Fiに応じた量の燃料をそれぞれ噴射する複数の燃料噴射弁39を備える。
【0242】
更に、第1制御装置は、
上流側空燃比センサ67の出力値Vabyfsにより表される空燃比(検出空燃比abyfs)が目標空燃比abyfrに一致するように燃料噴射弁39から噴射される燃料の量をフィードバック補正するためのメインフィードバック量DFiを、上流側空燃比センサ67の出力値Vabyfsに基いて算出するとともに(図13のルーチンを参照。)、その算出されたメインフィードバック量DFiを用いたメインフィードバック制御を実行することにより「燃料噴射弁39から噴射される燃料の量の指示値である指示燃料噴射量Fi」を決定する指示燃料噴射量決定手段(図12のステップ1220乃至ステップ1250を参照。)と、
指示燃料噴射量Fiに応じた量の燃料が複数の燃料噴射弁39から噴射されるように前記複数の燃料噴射弁39に噴射指示信号を送出する噴射指示信号送出手段(図12のステップ1260を参照。)と、を備える内燃機関の燃料噴射量制御装置である。
【0243】
更に、第1制御装置は、
「複数の気筒のそれぞれの燃焼室に供給される混合気の空燃比(気筒別空燃比)」の同複数の気筒間における差がないときに所定の基準値(「0」)となり、前記気筒別空燃比の前記複数の気筒間における不均一性の程度が大きいほど大きくなる空燃比不均衡指標値RIMBを取得する不均衡指標値取得手段(図16のステップ1610乃至ステップ1645を参照。)と、
目標空燃比abyfrが、空燃比不均衡指標値RIMBと前記基準値との差がないとき(即ち、空燃比不均衡指標値RIMBが「0」であるとき)には上流側触媒53(三元触媒)のウインドウ内の所定の基準空燃比abyfr0となり、且つ、空燃比不均衡指標値RIMBと前記基準値との差の大きさが大きくなるほど(空燃比不均衡指標値RIMBが大きくなるほど)「基準空燃比abyfr0よりも小さい範囲において小さくなる修正後空燃比γ」となるように、目標空燃比abyfrを決定する目標空燃比決定手段(図14のステップ1420、ステップ1440及びステップ1470を参照。)と、
を備える。
【0244】
更に、前記目標空燃比決定手段は、
第1修正量(ストイキ補正項α)と第2修正量(リッチ化補正項β)とを空燃比不均衡指標値RIMBに基いて算出し、基準空燃比abyfr0を第1修正量に基づいて修正することにより得られる第1修正空燃比(abyfr0−α)に対して第2修正量を用いて更に修正を加えることにより得られる第2修正空燃比{(abyfr0−α)−β}を、修正後空燃比γとして算出するように構成されている。
【0245】
この結果、機関10の真の平均空燃比は、気筒別空燃比の不均一性の程度が大きくなった場合であっても、基準空燃比abyfr0以下の空燃比へと制御されるので、NOx排出量が増大することを回避することができる。
【0246】
<第2実施形態>
次に、本発明の第2実施形態に係る制御装置(以下、単に「第2制御装置」と称呼する。)について説明する。第2制御装置は、第1修正量(ストイキ補正項α)及び第2修正量(リッチ化補正項β)を、空燃比不均衡指標値RIMBと、吸入空気量Ga等の機関の負荷等応じた値と、に基いて決定する点のみにおいて、第1制御装置と相違している。
【0247】
(実際の作動)
第2制御装置のCPU71は、図14のステップ1430に進んだとき、図17に示したルーチンを実行する。
【0248】
より具体的に述べると、CPU71は、図14のステップ1420の処理を終了すると図17のステップ1710に進み、吸入空気量Gaに基いてベースストイキ補正項α0を算出する。より具体的に述べると、CPU71は、図17のステップ1710内に記載した第1修正ベース量決定テーブル(吸入空気量Gaとベースストイキ補正項α0との関係であって、ROM72内に格納されている関係)に、実際の吸入空気量Gaを適用することにより、ベースストイキ補正項α0を算出する。ベースストイキ補正項α0は、吸入空気量Gaが大きくなるほど大きくなるように算出される。
【0249】
次に、CPU71はステップ1720に進み、空燃比不均衡指標値RIMBに基いて第1反映率Kaを算出する。より具体的に述べると、CPU71は、図17のステップ1720内に記載した第1反映率決定テーブル(空燃比不均衡指標値RIMBと第1反映率Kaとの関係であって、ROM72内に格納されている関係)に、実際の空燃比不均衡指標値RIMBを適用することにより、第1反映率Kaを算出する。第1反映率Kaは、空燃比不均衡指標値RIMBが大きくなるほど大きくなるように算出される。
【0250】
次に、CPU71はステップ1730に進み、ベースストイキ補正項α0に第1反映率Kaを乗じることによってストイキ補正項αを算出する。その後、CPU71は図14のステップ1440に進む。
【0251】
更に、CPU71は、図14のステップ1440に進んだとき、図18のステップ1810に進み、吸入空気量Gaに基いてベースリッチ化補正項β0を算出する。より具体的に述べると、CPU71は、図18のステップ1810内に記載した第2修正ベース量決定テーブル(吸入空気量Gaとベースリッチ化補正項β0との関係であって、ROM72内に格納されている関係)に、実際の吸入空気量Gaを適用することにより、ベースリッチ化補正項β0を算出する。ベースリッチ化補正項β0は、吸入空気量Gaが大きくなるほど大きくなるように算出される。
【0252】
次に、CPU71はステップ1820に進み、空燃比不均衡指標値RIMBに基いて第2反映率Kbを算出する。より具体的に述べると、CPU71は、図18のステップ1820内に記載した第2反映率決定テーブル(空燃比不均衡指標値RIMBと第2反映率Kbとの関係であって、ROM72内に格納されている関係)に、実際の空燃比不均衡指標値RIMBを適用することにより、第2反映率Kbを算出する。第2反映率Kbは、空燃比不均衡指標値RIMBが大きくなるほど大きくなるように算出される。
【0253】
次に、CPU71はステップ1830に進み、ベースリッチ化補正項β0に第2反映率Kbを乗じることによってッチ化補正項βを算出する。その後、CPU71は図14のステップ1450に進む。
【0254】
以上、説明したように、第2制御装置によれば、ストイキ補正項αは、吸入空気量Gaが大きいほど、且つ、空燃比不均衡指標値RIMBが大きいほど、大きくなるように算出される。換言すると、第1修正空燃比(abyfr0−α)は、吸入空気量Gaが大きいほど、且つ、空燃比不均衡指標値RIMBが大きいほど、基準空燃比abyfr0との差が大きくなるように、小さくなる。
【0255】
「リーン誤制御」の程度は、気筒間における空燃比の不均一性の程度がある特定の値であっても、例えば、吸入空気流量Gaが大きくなるほど大きくなる。従って、第2制御装置のように、第1修正量としてのストイキ補正項αを吸入空気量Gaに基づいて決定することにより、目標空燃比abyfrが第1修正空燃比(abyfr0−α)に設定されているときにメインフィードバック制御により得られる機関10の真の平均空燃比を基準空燃比abyfr0の近傍へとより確実に制御することができる。
【0256】
加えて、第2制御装置によれば、リッチ化補正項βは、吸入空気量Gaが大きいほど、且つ、空燃比不均衡指標値RIMBが大きいほど、大きくなるように算出される。換言すると、第2修正空燃比{(abyfr0−α)−β}は、吸入空気量Gaが大きいほど、且つ、空燃比不均衡指標値RIMBが大きいほど、小さくなる。
【0257】
前述したように、「リーン誤制御」の程度は、気筒間における空燃比の不均一性の程度がある特定の値であっても、例えば、機関の吸入空気量が大きくなるほど大きくなる。従って、第2制御装置のように、第2修正量としてのリッチ化補正項βを吸入空気量Gaに基づいて決定することにより、機関10の真の平均空燃比を「基準空燃比よりもリッチ側の狙いの空燃比の近傍」へとより確実に制御することができる。
【0258】
なお、第2制御装置は、空燃比不均衡指標値RIMB及び吸入空気量Gaからなる組み合わせと、ストイキ補正項αと、の関係を定めたテーブルに、実際の空燃比不均衡指標値RIMB及び実際の吸入空気量Gaを適用することにより、ストイキ補正項αを算出してもよい。
【0259】
更に、第2制御装置は、機関回転速度NEにも基づいてストイキ補正項αを算出してもよい。例えば、第2制御装置は、機関回転速度NE及び吸入空気量Gaからなる組み合わせと、ベースストイキ補正項α0と、の関係を定めたテーブルに、実際の機関回転速度NE及び実際の吸入空気量Gaを適用することによりベースストイキ補正項α0を算出し、そのベースストイキ補正項α0に上記第1反映率Kaを乗じることによって、ストイキ補正項αを算出してもよい。
【0260】
加えて、第2制御装置は、ストイキ補正項αを求める際に用いる吸入空気量Gaに代え、吸入空気量Gaに相関するパラメータ(例えば、スロットル弁開度TA、アクセルペダル操作量Accp及び機関の負荷率KL等)を使用してもよい。
【0261】
また、第2制御装置は、空燃比不均衡指標値RIMB及び吸入空気量Gaからなる組み合わせと、リッチ化補正項βと、の関係を定めたテーブルに、実際の空燃比不均衡指標値RIMB及び実際の吸入空気量Gaを適用することにより、リッチ化補正項βを算出してもよい。
【0262】
更に、第2制御装置は、機関回転速度NEにも基づいてリッチ化補正項βを算出してもよい。例えば、第2制御装置は、機関回転速度NE及び吸入空気量Gaからなる組み合わせと、ベースリッチ化補正項β0と、の関係を定めたテーブルに、実際の機関回転速度NE及び実際の吸入空気量Gaを適用することによりベースリッチ化補正項β0を算出し、そのベースリッチ化補正項β0に上記第2反映率Kbを乗じることによって、リッチ化補正項βを算出してもよい。
【0263】
加えて、第2制御装置は、リッチ化補正項βを求める際に用いる吸入空気量Gaに代え、吸入空気量Gaに相関するパラメータ(例えば、スロットル弁開度TA、アクセルペダル操作量Accp及び機関の負荷率KL等)を使用してもよい。
【0264】
以上、説明したように、本発明に係る実施形態は、気筒別空燃比の不均一性の程度が大きくなった場合においても、NOx排出量が増大することを回避することができる。なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。
【0265】
例えば、上記サブフィードバック量KSFBは、(9)式及び図14のステップ1470に示したように、目標空燃比abyfrを直接修正する量であったが、図13のステップ1315にて取得される検出空燃比abyfsの基礎となる上流側空燃比センサ67の出力値Vabyfs(即ち、図8に示したテーブルMapabyfsに適用される値)を修正する値であってもよい。即ち、「ステップ1315において検出空燃比abyfsを得るためにテーブルMapabyfsに適用される値」を制御用出力値Vabyfscと表記すると、サブフィードバック量KSFBは下記(20)式のように出力値Vabyfsを補正する値であってもよい。このようなサブフィードバック量KSFBは、メインフィードバック制御における目標空燃比abyfrを実質的に補正する量である。

Vabyfsc=Vabyfs+KSFB …(20)

【0266】
更に、目標空燃比abyfrの算出方法は、上記(9)式に限定されない。例えば、目標空燃比abyfrは、下記の(21)式乃至(27)式の何れかの式、又は、他の式に従って求められてもよい。

abyfr=(abyfr0−α)−β …(21)

abyfr=abyfr/(1+α+β) …(22)

abyfr=abyfr/(1+KSFB+KCAT+α+β) …(23)

abyfr=(abyfr0・α)/(1+β) …(24)

abyfr=(abyfr0・α)/(1+KSFB+KCAT・β) …(25)

abyfr=(abyfr0−α)/(1+β) …(26)

abyfr=(abyfr0−α)/(1+KSFB+KCAT+β) …(27)


【0267】
更に、メインフィードバック制御(及びサブフィードバック制御)は、例えば、特開2008−128022号公報及び特開平2008−215106号公報に記載された手法により実行されてもよい。なお、この場合、サブフィードバック量Fisubは上流側目標空燃比abyfrを修正するように構成されることが好ましい。加えて、上流側空燃比センサは「下流側空燃比センサ68と同様の起電力式酸素濃度センサ」であってもよい。
【0268】
更に、空燃比不均衡指標値RIMBを取得する不均衡指標値取得手段は次のような態様であってもよい。
【0269】
(A−1)
前記不均衡指標値取得手段は、
上流側空燃比センサ67の出力値Vabyfsの時間についての微分値d(Vabyfs)/dtを取得するとともに、取得した微分値d(Vabyfs)/dtに相関する値を空燃比不均衡指標値RIMBとして取得するように構成され得る。
【0270】
取得した微分値d(Vabyfs)/dtに相関する値の一例は、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された微分値d(Vabyfs)/dtの絶対値の平均値である。この平均値は、図16のルーチンと同様のルーチンにより取得され得る。取得した微分値d(Vabyfs)/dtに相関する値の他の一例は、単位燃焼サイクルにおいて複数個取得された微分値d(Vabyfs)/dtの絶対値の最大値を、複数の単位燃焼サイクルについて平均化した値である。
【0271】
(A−2)
前記不均衡指標値取得手段は、
上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsの時間についての微分値d(abyfs)/dtを取得するとともに、その取得した微分値d(abyfs)/dt値に相関する値を空燃比不均衡指標値RIMBとして取得するように構成され得る。この一例が、図16に示されている。
【0272】
取得した微分値d(abyfs)/dt値に相関する値の一例は、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された微分値d(abyfs)/dtの絶対値の平均値である(図16のルーチンを参照。)。取得した微分値d(abyfs)/dtに相関する値の他の一例は、単位燃焼サイクルにおいて複数個取得された微分値d(abyfs)/dtの絶対値の最大値を、複数の単位燃焼サイクルについて平均化した値である。
【0273】
(A−3)
前記不均衡指標値取得手段は、
上流側空燃比センサ67の出力値Vabyfsの時間についての二階微分値d2(Vabyfs)/dt2を取得するとともに、その取得した二階微分値d2(Vabyfs)/dt2に相関する値を空燃比不均衡指標値RIMBとして取得するように構成され得る。出力値Vabyfsと検出空燃比abyfsとは実質的に比例関係にあるので(図8を参照。)、二階微分値d2(Vabyfs)/dt2は、検出空燃比abyfsの時間についての二階微分値d2(abyfs)/dt2と同様の傾向を示す。従って、二階微分値d2(Vabyfs)/dt2は、気筒別空燃比差が小さい場合には図10の(D)の破線C5に示したように相対的に小さい値となり、気筒別空燃比差が大きい場合には図10の(D)の実線C6に示したように相対的に大きい値となる。
【0274】
なお、二階微分値d2(Vabyfs)/dt2は、現時点の出力値Vabyfsから一定のサンプリング時間前の出力値Vabyfsを減じることにより、一定のサンプリング時間毎の微分値d(Vabyfs)/dtを求め、新たに求められた微分値d(Vabyfs)/dtから一定のサンプリング時間前の微分値d(Vabyfs)/dtを減じることにより求めることができる。
【0275】
取得した二階微分値d2(Vabyfs)/dt2値に相関する値の一例は、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された二階微分値d2(Vabyfs)/dt2の絶対値の平均値である。取得した二階微分値d2(Vabyfs)/dt2値に相関する値の他の一例は、単位燃焼サイクルにおいて複数個取得された二階微分値d2(Vabyfs)/dt2値の絶対値の最大値を、複数の単位燃焼サイクルについて平均化した値である。
【0276】
(A−4)
前記不均衡指標値取得手段は、
上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsの時間についての二階微分値d2(abyfs)/dt2を取得するとともに、その取得した二階微分値d2(abyfs)/dt2に相関する値を空燃比不均衡指標値RIMBとして取得するように構成され得る。二階微分値d2(abyfs)/dt2は、気筒別空燃比差が小さい場合には図10の(D)の破線C5に示したように相対的に小さい値となり、気筒別空燃比差が大きい場合には図10の(D)の実線C6に示したように相対的に大きい値となる。
【0277】
なお、二階微分値d2(abyfs)/dt2は、図16のステップ1625において得られた検出空燃比変化率ΔAFから、一定のサンプリング時間前に得られた検出空燃比変化率ΔAFを減じることにより求めることができる。
【0278】
取得した二階微分値d2(abyfs)/dt2値に相関する値の一例は、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された二階微分値d2(abyfs)/dt2の絶対値の平均値である。取得した二階微分値d2(abyfs)/dt2に相関する値の他の一例は、単位燃焼サイクルにおいて複数個取得された二階微分値d2(abyfs)/dt2の絶対値の最大値を、複数の単位燃焼サイクルについて平均化した値である。
【0279】
なお、「微分値d(Vabyfs)/dt、微分値d(abyfs)/dt、二階微分値d2(Vabyfs)/dt2、及び、二階微分値d2(abyfs)/dt2」のそれぞれに相関する値は、吸入空気量Gaの影響を受けるものの、機関回転速度NEの影響を受け難い。これは、「上流側空燃比センサ67の外側保護カバー67b及び内側保護カバー67c」の内部における排ガスの流速が、外側保護カバー67bの流出孔67b2近傍を流れる排ガスEXの流速(従って、単位時間あたりの吸入空気量である吸入空気量Ga)に応じて変化するからである。従って、これらの値に基いて得られる空燃比不均衡指標値RIMBは、機関回転速度NEの影響を受けることなく気筒別空燃比差を精度よく表すので、ストイキ補正項α及びリッチ化補正項βを算出することにとって好ましいパラメータである。
【0280】
(A−5)
前記不均衡指標値取得手段は、
上流側空燃比センサ67の出力値Vabyfsの所定期間(例えば、単位燃焼サイクル期間の自然数倍の期間)における最大値と最小値との差ΔXに相関する値、又は、上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsの所定期間における最大値と最小値との差ΔYに相関する値を、空燃比不均衡指標値RIMBとして取得するように構成され得る。図10の(B)に示した実線C2及び破線C1から明らかなように、この差ΔY(ΔYの絶対値)は、気筒別空燃比差が大きいほど大きくなる。従って、差ΔX(ΔXの絶対値)は、気筒別空燃比差が大きいほど大きくなる。差ΔX(又は差ΔY)に相関する値の一例は、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された差ΔX(又はΔY)の絶対値の平均値である。
【0281】
(A−6)
前記不均衡指標値取得手段は、
空燃比不均衡指標値RIMBとして、上流側空燃比センサ67の出力値Vabyfsの所定期間おける軌跡長に相関する値、又は、上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsの前記所定期間における軌跡長に相関する値を取得するように構成され得る。これらの軌跡長は、図10の(B)からも明らかなように、気筒別空燃比差が大きいほど大きくなる。軌跡長に相関する値は、例えば、単位燃焼サイクル又は単位燃焼サイクルの自然数倍の期間において複数個取得された軌跡長の絶対値の平均値である。
【0282】
なお、例えば、検出空燃比abyfsの軌跡長は、一定サンプリング時間tsが経過する毎に出力値Vabyfsを取得するとともに、その出力値Vabyfsを検出空燃比abyfsへと変換し、その検出空燃比abyfsと、一定サンプリング時間ts前に取得した検出空燃比abyfsと、の差の絶対値を積算することによって求めることができる。
【0283】
(B)前記不均衡指標値取得手段は、
機関10の回転速度の変動が大きくなるほど大きくなる値(回転変動相関値)を空燃比不均衡指標値として取得するように構成されてもよい。回転変動相関値は、例えば、一定のサンプリング毎に機関回転速度NEの変化量ΔNEの絶対値を複数個求め、その変化量ΔNEの絶対値の単位燃焼サイクル内における平均値であってもよい。
【0284】
加えて、上記各制御装置は、V型エンジンにも適用することができる。その場合、V型エンジンは右バンクに属する2以上の気筒の排気集合部よりも下流に右バンク上流側触媒(前記機関の排気通路であって前記複数の気筒のうちの少なくとも2以上の気筒の燃焼室から排出された排ガスが集合する排気集合部よりも下流側の部位に配設された触媒)を備える。更に、そのV型エンジンは、左バンクに属する2以上の気筒の排気集合部よりも下流に左バンク上流側触媒(前記機関の排気通路であって前記複数の気筒のうちの少なくとも2以上の気筒以外の残りの2以上の気筒の燃焼室から排出された排ガスが集合する排気集合部よりも下流側の部位に配設された触媒)を備える。
【0285】
加えて、そのV型エンジンは、右バンク上流側触媒の上流及び下流に右バンク用の上流側空燃比センサ及び下流側空燃比センサをそれぞれ備え、左バンク上流側触媒の上流及び下流に左バンク用の上流側空燃比センサ及び下流側空燃比センサをそれぞれ備えることができる。各上流側空燃比センサは、上記空燃比センサ67と同様、各バンクの排気集合部と各バンクの上流側触媒との間に配設される。この場合、右バンク用のメインフィードバック制御及びサブフィードバック制御が実行され、それとは独立して左バンク用のメインフィードバック制御及びサブフィードバック制御が実行される。
【0286】
この場合、制御装置は、右バンク用の上流側空燃比センサの出力値に基いて「右バンク用の空燃比不均衡指標値RIMB」を求め、それを用いて右バンクに属する気筒に対するメインフィードバック制御の目標空燃比abyfrを修正する。同様に、制御装置は、左バンク用の上流側空燃比センサの出力値に基いて「左バンク用の空燃比不均衡指標値RIMB」を求め、それを用いて左バンクに属する気筒に対するメインフィードバック制御の目標空燃比abyfrを修正する。
【0287】
加えて、上記実施形態に係る制御装置は、インバランス気筒の空燃比が理論空燃比stoichよりもリッチ側に偏移した場合と、インバランス気筒の空燃比が理論空燃比stoichよりもリーン側に偏移した場合と、を区別することなく、空燃比不均衡指標値RIMBに応じて「ストイキ補正項α及びリッチ化補正項β」を算出した。これは、その何れの場合においても、空燃比不均衡指標値RIMBが同じであれば、リーン誤制御の度合いが同程度であることに依る。
【0288】
これに対し、インバランス気筒の空燃比が理論空燃比stoichよりもリッチ側に偏移した場合の「ストイキ補正項α及びリッチ化補正項β」と、インバランス気筒の空燃比が理論空燃比stoichよりもリーン側に偏移した場合の「ストイキ補正項α及びリッチ化補正項β」とを、互いに独立して算出してもよい。
【0289】
なお、インバランス気筒の空燃比が理論空燃比stoichよりもリッチ側に偏移しているのか理論空燃比stoichよりもリーン側に偏移しているのかは、回転変動に基いて判別しても良く(インバランス気筒の空燃比が理論空燃比stoichよりもリーンに偏移しているときの回転変動は、インバランス気筒の空燃比が理論空燃比stoichよりもリッチ側に偏移しているときの回転変動よりも大きくなる)、或いは、次のようにして判別することができる。
【0290】
CPUは、微分値d(abyfsvir)/dtのうち「正の値である微分値d(abyfsvir)/dt」の平均値PAFを単位燃焼サイクルにおいて求める。
CPUは、微分値d(abyfsvir)/dtのうち「負の値である微分値d(abyfsvir)/dt」の絶対値平均値NAFを単位燃焼サイクルにおいて求める。
CPUは、平均値NAFが平均値PAFよりも大きければ、インバランス気筒の空燃比が理論空燃比stoichよりもリッチ側に偏移していると判定する。
CPUは、平均値NAFが平均値PAFよりも小さければ、インバランス気筒の空燃比が理論空燃比stoichよりもリーン側に偏移していると判定する。
【符合の説明】
【0291】
10…多気筒内燃機関、25…燃焼室(気筒)、39…燃料噴射弁、51…エキゾーストマニホールド、51b…集合部(排気集合部HK)、52…エキゾーストパイプ、53…上流側触媒(三元触媒)、67…上流側空燃比センサ、67a…空燃比検出部、671…固体電解質層、672…排ガス側電極層、673…大気側電極層、674…拡散抵抗層(多孔質層)、68…下流側空燃比センサ、70…電気制御装置。

【特許請求の範囲】
【請求項1】
多気筒内燃機関が有する複数の気筒から排出された排ガスが集合する前記機関の排気通路の排気集合部よりも下流側の位置に配設された三元触媒と、
複数の燃料噴射弁であって、それぞれが前記複数の気筒のそれぞれの燃焼室に供給される混合気に含まれる燃料を噴射するように構成された複数の燃料噴射弁と、
前記排気通路であって前記排気集合部と前記三元触媒との間の位置に配設されるとともに、空燃比検出素子と、前記空燃比検出素子を挟んで対向するように配設された排ガス側電極層及び基準ガス側電極層と、前記排ガス側電極層を覆う多孔質層と、を有する空燃比センサであって、前記空燃比センサが配設された位置を通過する排ガスのうち前記多孔質層を通って前記排ガス側電極層に到達した排ガスに含まれる酸素の量及び未燃物の量に応じた出力値を出力する上流側空燃比センサと、
前記上流側空燃比センサの出力値により表される空燃比が目標空燃比に一致するように前記燃料噴射弁から噴射される燃料の量をフィードバック補正するためのメインフィードバック量を前記上流側空燃比センサの出力値に基いて算出するとともに、同算出されたメインフィードバック量を用いたメインフィードバック制御を実行することにより前記燃料噴射弁から噴射される燃料の量の指示値である指示燃料噴射量を決定する指示燃料噴射量決定手段と、
前記指示燃料噴射量に応じた量の燃料が前記複数の燃料噴射弁から噴射されるように前記複数の燃料噴射弁に噴射指示信号を送出する噴射指示信号送出手段と、
を備える内燃機関の燃料噴射量制御装置であって、
前記複数の気筒のそれぞれの燃焼室に供給される混合気の空燃比である気筒別空燃比の同複数の気筒間における差がないときに所定の基準値となり、前記気筒別空燃比の前記複数の気筒間における不均一性の程度が大きいほど大きくなる空燃比不均衡指標値を取得する不均衡指標値取得手段と、
前記目標空燃比が、前記空燃比不均衡指標値と前記基準値との差がないとき前記三元触媒のウインドウ内の所定の基準空燃比となり、且つ、前記空燃比不均衡指標値と前記基準値との差の大きさが大きくなるほど前記基準空燃比よりも小さい範囲において小さくなる修正後空燃比となるように、前記目標空燃比を決定する目標空燃比決定手段と、
を備え、
前記目標空燃比決定手段は、
第1修正量と第2修正量とを前記空燃比不均衡指標値に基いて算出し、前記基準空燃比を前記第1修正量に基づいて修正することにより得られる第1修正空燃比に対して前記第2修正量を用いて更に修正を加えることにより得られる第2修正空燃比を、前記修正後空燃比として算出するように構成され、
前記第1修正量は、前記第1修正空燃比が、前記基準空燃比以下の空燃比であり、且つ、前記目標空燃比が前記第1修正空燃比であるときに前記複数の気筒の燃焼室に供給される混合気の真の平均空燃比である機関の真の平均空燃比が前記メインフィードバック制御により前記基準空燃比に一致する空燃比となるように、前記基準空燃比を修正する値であり、
前記第2修正量は、前記第2修正空燃比が、前記第1修正空燃比以下の空燃比であり、且つ、前記目標空燃比が前記第2修正空燃比であるときに前記機関の真の平均空燃比が前記メインフィードバック制御により前記基準空燃比以下の空燃比に一致する空燃比となるように、前記第1修正空燃比を修正する値である、
内燃機関の燃料噴射量制御装置。
【請求項2】
請求項1に記載の内燃機関の燃料噴射量制御装置において、
前記目標空燃比決定手段は、
前記排気通路であって前記三元触媒よりも下流の位置に配設されるとともに同配設された位置を通過する排ガスの空燃比に応じた出力値を出力する下流側空燃比センサと、
前記下流側空燃比センサの出力値が前記基準空燃比に対応する下流側目標値に一致するように、前記下流側空燃比センサの出力値に基づいて前記目標空燃比を補正するためのサブフィードバック量を算出するとともに同算出したサブフィードバック量に基いて前記目標空燃比を修正するサブフィードバック制御手段と、
前記第2修正空燃比が、前記機関の真の平均空燃比を前記基準空燃比よりも正の閾値空燃比以上小さい範囲内の空燃比に一致させるための特定空燃比となっているか否かを、前記第2修正量に基づいて判定し、前記第2修正空燃比が前記特定空燃比となっていると判定されたとき、前記サブフィードバック制御手段による前記サブフィードバック量の算出を停止させるサブフィードバック量算出停止手段と、
を更に備えた燃料噴射量制御装置。
【請求項3】
請求項1又は請求項2に記載の内燃機関の燃料噴射量制御装置において、
前記目標空燃比決定手段は、
前記第1修正量が、前記機関の吸入空気量が大きくなるほど前記第1修正空燃比をより小さい空燃比へと修正する値となるように、前記第1修正量を前記吸入空気量に相関するパラメータに基づいて決定するように構成された燃料噴射量制御装置。
【請求項4】
請求項1又は請求項2に記載の内燃機関の燃料噴射量制御装置において、
前記目標空燃比決定手段は、
前記第2修正量が、前記機関の吸入空気量が大きくなるほど前記第2修正空燃比をより小さい空燃比へと修正する値となるように、前記第2修正量を前記吸入空気量に相関するパラメータ基づいて決定するように構成された燃料噴射量制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2012−17657(P2012−17657A)
【公開日】平成24年1月26日(2012.1.26)
【国際特許分類】
【出願番号】特願2010−153772(P2010−153772)
【出願日】平成22年7月6日(2010.7.6)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】