説明

半導体装置の製造方法

【課題】
本発明の目的は、片面樹脂封止型の半導体装置において、260℃以上という高温環境下においても耐半田クラック性に優れる半導体装置の製造方法を提供する。
【解決手段】
金属製支持体のダイパット上に熱硬化性接着剤組成物を介して半導体素子を載置する工程と、所定の加熱条件Aにより前記接着剤組成物を硬化するとともに前記金属製支持体と前記半導体素子とを接着する工程と、前記金属製支持体のダイパットの前記半導体装置が接着された面と反対面の側を露出させた状態で、前記金属製支持体と半導体素子とを封止用樹脂組成物により封止する工程と、を有する半導体装置の製造方法に用いられる熱硬化性接着剤組成物であって、前記熱硬化性接着剤組成物の所定の反り評価試験Sにおける反り量1と反り量2とが、所定の条件式1および2を満たすものである半導体装置製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の製造方法に関する。
【背景技術】
【0002】
近年電子機器の小型化、軽量化、高性能化に伴い、エリア実装型半導体装置への移行に拍車がかかっている。エリア実装型半導体装置としては、小型化を追求したチップスケールパッケージ(CSP)があり、リードフレームを用いた小型パッケージとしては、Quad Flat Non-leaded Package(以下QFNという)、Small Outline Nonlead Package(以下SONという)といった従来のQuad Flat Package(以下QFPという)やSmall Outline Package(以下SOPという)といった実装エリア面積を小さくしたパッケージがある。QFNやSONは従来のQFPやSOPと同じ設計で製造されてきたが、最近金属基板(たとえば銅リードフレームやニッケルパラジウム+金メッキしたリードフレームにポリイミドフィルムを重ね合わせたものなど)の片側に半導体素子をマトリックス状に搭載し、封止用エポキシ樹脂組成物で一括封止し、その後所定の大きさに格子状にカットして個片化してパッケージを製造する方法により作製されたQFNやSON(以下MAP−QFN、MAP−SONと表現)が増えてきている。(例えば、特許文献1参照。)
【0003】
MAP−QFN、MAP−SONの構造としては、金属基板上に半導体素子を搭載しその
半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物で成型、封止される。
従来の半導体装置ではその中央部のダイパッド部分では封止材が半導体の上下面にあるが、これらの半導体装置の場合、封止材が片側のみであり、その反対側にはダイパッドが露出されている。そのため支持体とエポキシ樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、或いはエポキシ樹脂組成物の成形硬化時の硬化収縮による影響で、従来型である両面に封止材がある半導体装置にくらべ、成形直後から反りが発生しやすい。この場合、半導体装置を実装する際にマザーボードから浮き上がってしまい、電気的接合の信頼性が低下する問題が起こり、また異なる熱膨張係数を有する部材が層状に存在し温度変化に伴う各部材の熱膨張、熱収縮が半導体装置内部で応力として発現し、しばしば剥離、クラックの原因となっている。(例えば、特許文献2参照。)
【0004】
この剥離を抑えるためには、ダイパッドを封止樹脂と物理的密着性の良い構造とすることで、ダイパッドと封止樹脂との密着強度を向上させる手法(例えば、特許文献3参照)、封止樹脂のガラス転移点(Tg)を高め、高温での弾性率を下げるなどの手法が提言されている(例えば、特許文献4参照)。しかしながら、これらの手法だけでは上記半導体装置に生じる不具合を十分に解決できるものではない。
【0005】
また近年、環境対応の一環として半導体装置を基板に搭載する際に使用する半田からの鉛成分の除去撤廃が進められている。鉛成分を含まない半田(以下鉛フリー半田という)を用いる場合は半田リフロー処理の際の設定温度を従来の220〜245℃という範囲から260〜270℃という範囲に高める必要があり、上述の剥離やクラックという問題がより顕著になってきている。このため半導体素子を金属フレーム等に接着するために用いられる熱硬化性接着剤組成物には半田リフロー温度の上昇に伴い発生する熱応力に対する耐性がより一層求められるようになってきている。
【0006】
熱応力を緩和させ半導体素子の剥離等の加熱により発生する問題を低減させる手法としては、液状ゴム成分を使用した熱硬化性接着剤組成物の使用が検討されているが(例えば特許文献5)、このような熱硬化性接着剤組成物を用いて製造された半導体装置であっても、高温環境下における半導体素子と基板等との接着力は充分とはいえず260〜270℃といった高温での半田リフロー時には、それらの剥離が発生するおそれがある。さらにこのような不具合から半導体素子のクラックに進展する場合もあり信頼性の観点からも充分とはいえないものであった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2003−109983号公報
【0008】
【特許文献2】特開2006−188622号公報
【0009】
【特許文献3】特許第3007632号
【0010】
【特許文献4】特開2000−72851号公報
【0011】
【特許文献5】特開2000−239616号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
本発明の目的は、260℃以上という高温環境下においても半導体装置にクラック等の不具合が生じず優れた信頼性を付与することができる片面樹脂封止型の半導体装置を提供することにある。
【課題を解決するための手段】
【0013】
本発明は、以下の[1]〜[12]により達成される。
[1]金属製支持体のダイパット上に熱硬化性接着剤組成物を介して半導体素子を載置する工程と、 所定の加熱条件Aにより前記接着剤組成物を硬化するとともに前記金属製支持体と前記半導体素子とを接着する工程と、 前記金属製支持体のダイパットの前記半導体素子が接着された面と反対面の側を露出させた状態で、前記金属製支持体と半導体素子とを封止用樹脂組成物により封止する工程と、を有する半導体装置の製造方法であって、前記熱硬化性接着剤組成物の以下の反り評価試験Sにおける反り量1および反り量2が、条件式1および2を満たす半導体装置の製造方法である。
[反り評価試験S:シリコンチップ(サイズ:7×7mm、厚み:350μm)を、全体にニッケルーパラジウムメッキした金属製支持体のダイパッド部(サイズ:8.5×8.5mm、厚み:180μm)上に前記熱硬化性接着剤組成物を介して載置し、前記加熱条件Aにより前記熱硬化性接着剤組成物を硬化させ、前記シリコンチップと前記支持体とを接着する(熱硬化性接着剤組成物の硬化層厚み:20μm以上30μm以下)。接着後、175℃×2分間加熱後のシリコンチップの反り量を反り量1とし、260℃×2分間加熱後のシリコンチップの反り量を反り量2とする。]
条件式1:0.1≦反り量1≦10(μm)
条件式2:0.1≦反り量2≦20(μm)
【0014】
[2] 本発明に係る半導体装置の製造方法は前記熱硬化性接着剤組成物がラジカル重合可能な官能基を有するものであるとすることができる。
【0015】
[3] 本発明に係る半導体装置の製造方法は前記化合物のラジカル重合可能な官能基が不飽和炭素−炭素結合であるとすることができる。
【0016】
[4] 本発明に係る半導体装置の製造方法は前記化合物のラジカル重合可能な官能基が、(メタ)アクリロイル基を含むものであるとすることができる。
【0017】
[5] 本発明に係る半導体装置の製造方法は前記ラジカル重合可能な官能基を有する化合物が、マレイミド環を有する化合物を含むものであるとすることができる。
【0018】
[6] 本発明に係る半導体装置の製造方法は前記マレイミド環を有する化合物が、芳香族環を有さないビスマレイミド化合物であるとすることができる。
【0019】
[7] 本発明に係る半導体装置の製造方法は前記ラジカル重合可能な官能基を有する化合物が、ブタジエン化合物の重合体または共重合体であるとすることができる。
【0020】
[8] 本発明に係る半導体装置の製造方法は前記ブタジエン化合物の重合体または共重合体の分子内に少なくとも1つの官能基を有するものであるとすることができる。
【0021】
[9] 本発明に係る半導体装置の製造方法は前記ブタジエン化合物の重合体または共重合体が有する官能基が、ビニル基、エポキシ基、カルボキシ基、水酸基またはマレイン酸基からなる群より選ばれる少なくとも1つの官能基であるとすることができる。
【0022】
[10] 本発明に係る半導体装置の製造方法は前記熱硬化性接着剤組成物が(メタ)アクリロイル基を有する化合物、マレイミド環を有する化合物、ブタジエン化合物およびアリルエステル系化合物からなる群より選ばれる少なくとも2種以上の化合物を含むものであるとすることができる。
【0023】
[11] 本発明に係る半導体装置の製造方法は前記アリルエステル系化合物が、芳香族環を有さないアリルエステル系化合物であるとすることができる。
【0024】
本発明に係る半導体装置の製造方法は、前記封止用樹脂組成物がエポキシ樹脂と無機充填材からなり、前記無機充填が樹脂組成物のうち80重量%以上93重量%以下であるとすることができる。
【発明の効果】
【0025】
本発明によれば、260℃以上の高温環境下においても半導体装置にクラック等の不具合が生じず、高温環境下において優れた信頼性を有する片面樹脂封止型の半導体装置を提供することができる。
【図面の簡単な説明】
【0026】
【図1】本発明により作製することができる片面樹脂封止型半導体装置の一例を示す概略断面図である。
【図2】試験用半導体装置の構成を示す概略断面図である。
【発明を実施するための形態】
【0027】
以下、本発明に係る熱硬化性接着剤組成物について詳細に説明する。
本発明に係る半導体装置の製造方法は、所定の工程を有する半導体装置の製造方法に用いられる熱硬化性接着剤組成物が、以下の反り評価試験Sにおける反り量1および反り量2が、条件式1および2を満たすことを特徴とする。そして当該特徴により高温環境下における半導体装置内の半導体素子の剥離や半導体装置のクラックの発生を低減することができる。
[反り評価試験S:シリコンチップ(サイズ:7×7mm、厚み:350μm)を、全体にニッケルーパラジウムメッキした金属製支持体のダイパッド部(サイズ:8.5×8.5mm、厚み:180μm)上に前記熱硬化性接着剤組成物を介して載置し、前記加熱条件Aにより前記熱硬化性接着剤組成物を硬化させ、前記シリコンチップと前記支持体とを接着する(熱硬化性接着剤組成物の硬化層厚み:20μm以上30μm以下)。接着後、175℃×2分間加熱後のシリコンチップの反り量を反り量1とし、260℃×2分間加熱後のシリコンチップの反り量を反り量2とする。]
条件式1:0.1≦反り量1≦10(μm)
条件式2:0.1≦反り量2≦20(μm)
【0028】
(半導体装置の製造方法)
本発明に係る熱硬化性接着剤組成物が用いられる半導体装置の製造方法(以下本製造方法という)は、金属製支持体のダイパット上に熱硬化性接着剤組成物を介して半導体素子を載置する工程(1)を有する。具体的には、金属製支持体または半導体素子に熱硬化性接着剤組成物を塗布し、該熱硬化性接着剤組成物を介して支持体上に半導体素子を載置する。
【0029】
また、本発明に係る半導体装置の製造方法は、前記工程(1)にて接着されたリードフレームと半導体装置とを封止用樹脂組成物で封止する工程(2)を有する製造方法であって、本工程(2)で用いられる封止用樹脂組成物は熱硬化性樹脂組成物であることが多いため封止後加熱により硬化される場合が多い。
【0030】
更に、本発明に係る半導体装置の製造方法は、前記金属製支持体のダイパット上の半導体素子が接着された面と反対面の側を露出させた状態で、前記金属支持体と半導体素子とを封止用樹脂組成物により封止する工程(3)を有することを特徴としている。
【0031】
(半導体装置の加熱と半導体装置内での応力の発生)
前記工程を経て製造された半導体装置には、更にマザーボードへ搭載するためにIRリフロー工程により半田付けが行われる。上述のように熱硬化性接着剤組成物により金属製支持体と半導体素子とを接着する工程(2)以降IRフローに至るまで、総ての工程において半導体装置は加熱されるものとなる。各部材間の線膨張係数には差があるため、これらの工程における加熱により各部材の変形の違いが生じその結果半導体装置内に応力が発生することとなる。
【0032】
例えば、工程(2)において金属製支持体と半導体素子とを硬化接着する際の所定の加熱条件温度は、通常は150℃〜180℃で行われ、特に175℃付近の温度で行われることが多い。この場合、硬化終了時点では銅フレームおよび半導体素子はほぼ平坦である。これを室温に戻すと半導体素子を上、金属製支持体を下として凸に反る。
【0033】
前記金属支持体と半導体素子とを封止用樹脂組成物により封止する工程(3)は、約175℃で行われる。このため上記工程(2)の後凸に反っていた金属製支持体と半導体素子とは175℃で加熱され再び平坦な状態となり封止されることとなる。
【0034】
また、前記工程(3)において半導体素子を封止した後、更に175℃でポストモールドキュア(以下PMCという)が行われる場合がある。封止終了時点では封止用樹脂組成物の硬化反応は充分ではないため、PMCを行うことにより封止樹脂の硬化を完了させ、機械的強度や寸法安定性を付与する。更にIRフロー工程において260℃という高温に加熱され半田付けが行われるため、半導体の各部材に加わる熱応力は増加する。半田体装置内に生じる応力について以下図面を用いて説明する。
【0035】
図1に示すような半導体装置の中央部にあるダイパッドが露出しており、その反対面が封止用樹脂組成物により封止されている半導体装置の場合は、断面を見ると半導体装置内において、中央に位置するダイパッド部分では、図のように半導体素子3の厚み方向の中心線20より上側部分には半導体素子3と封止用樹脂組成物5があり、前記中心線20の下側部分には半導体素子3と接着剤組成物1を介して金属製支持体2がある。これらの部材は全て材質が異なり、その線膨張係数についても異なるため、各部材間の加熱時の変形に差が生じることとなる。また、この変形の差により各部材間には応力が発生するものとなる。
【0036】
半導体装置10について、その内部の加熱時における具体的な変形は次のとおりとなる。熱硬化性接着組成物1の硬化温度や封止用樹脂組成物5の封止温度が約175℃であることから半導体装置10内の前記中心線20の上側部分、及び下側部分がそれぞれほぼ平らになり応力も最小となる。一方、IRリフロー時のような高温になると、半導体装置10内において、前記中心線20の上側では、封止用樹脂組成物5は、シリコン製である半導体素子3に比べ熱膨張係数が大きいため、封止用樹脂組成物5を上側として凸に変形する。また、前記中心線20の下側では、半導体素子3と熱硬化性接着剤組成物1を介し接着される金属製支持体2では平面の状態が維持されるか、半導体素子3を上に凹に変形する。半導体装置製造工程において一番温度が高くなるIRリフロー時に各部材の変形が最大となるため、半導体装置内に生じる応力も最大となる。このためIRリフロー時に熱硬化性接着剤組成物1からの半導体素子3または金属製支持体2が剥離するという問題が生じる場合がある。
【0037】
(半導体装置内部の応力と半導体装置の反りの関係)
一般的には上記のような応力を緩和するために半導体装置10全体が反ることで各部材間の応力を低減させる。具体的には図1に示されるような金属製支持体2の片面を露出させた形状の半導体装置10(例えばQFN型半導体装置)では封止用樹脂組成物5を上に、金属基板2を下にして凹型に反ることとなる。しかし実際には上記ような半導体装置10について加熱時の反りを測定場合において、175℃よりも低い室温から加熱していくと中央の金属製支持体2のダイパッド部分は半導体素子3を上に徐々に凹に反り始めるものの、175℃よりも高い温度においては反りには差が見られないという現象が生じる。175℃以下において反りが生じるのは、封止用樹脂組成物5の熱膨張係数がダイパッドである銅よりも小さいからである。一方175℃以上の温度域においては、上記のような半導体装置10は、設計上小型化されているため封止用樹脂組成物5の厚みが薄く、また加熱により封止用樹脂組成物5の弾性率も低温域に比べ著しく低下することから封止用樹脂組成物5部分の剛性が金属製支持体に用いられる金属に比べ低いため、本来部材の線膨張係数から予想される半導体素子3を上に凸の反りが生じるものとなっていない。
【0038】
上記のように図1に示されるような片面半導体装置10は、封止用樹脂組成物の伸びによる変形を抑制するような状況になり、そのため半導体装置10の反りによる応力は緩和されないものとなり、半導体装置10内部にはより多くの応力が残留することとなる。この残留応力は半導体装置10内における熱硬化性接着剤組成物1に集中することとなるため、熱硬化性接着剤組成物2の応力を減らすためには半導体装置10全体の反りと同じ方向になれば、応力を低減させることができる。すなわち半導体装置10全体が凹の反りとなる場合は、熱硬化性接着剤組成物1を含む中心線20よりも下側部分の反りも凹にすれば熱硬化性接着剤組成物1に応力が集中することを避けることができ、IRリフローによる不具合を低減することができる半導体装置10を製造することができる。
【0039】
(反り評価方法)
上記反り評価を行うための試験用半導体装置11として、図1に例示すような熱硬化性接着剤組成物層1を介して金属製支持体2とシリコンチップ3とを硬化接着したものを用いる。
【0040】
測定条件としてはシリコンチップ(サイズ:7×7mm、厚み:350μm)を、全体にニッケルーパラジウムメッキしたリードフレームがダイパッド部(サイズ:8.5×8.5mm、厚み:180μm)上に塗布した前記熱硬化性接着剤組成物を介して載置し、前記加熱条件Aにより前記熱硬化性接着剤組成物を硬化させ、前記シリコンチップと前記支持体とを接着し(熱硬化性接着剤組成物の硬化層 厚み:20μm以上30μm以下)、175℃加熱後のシリコンチップの反り量を反り量1とする。260℃加熱後のシリコンチップの反り量を反り量2とする。
【0041】
前記の通り定義した反り量1および反り量2はそれぞれ以下の方法で測定、算出した。
反り量1:温度可変レーザー三次元測定機(日立エンジニアリングアンドサービス社製、LSI−150)を用いてシリコンチップ表面角部の高さおよびシリコンチップ表面中央部の高さを測定し、シリコンチップ表面中央部の高さとシリコンチップ表面角部の高さとの差のを反り1とした。より具体的には、シリコンチップの対角を結ぶ対角線をスキャニングすることにより対角線の形状を求め、角部の高さの平均と中央部の高さの差を求めることにより反り1とする。
【0042】
反り量2:反り1測定後ポストモールドキュア条件である175℃、4時間処理を行い、温度可変レーザー三次元測定機等を用いてシリコンチップ表面角部の高さおよびシリコンチップ表面中央部の高さを測定し、シリコンチップ表面中央部の高さとシリコンチップ表面角部との差の平均値を反り2とした。より具体的には、シリコンチップの対角を結ぶ対角線をスキャニングすることにより対角線の形状を求め、角部の高さの平均と中央部の高さの差を求めることにより反り2とする。
【0043】
反り量1は0.1μm以上10μm以下であり、反り量2は5μm以上20μm以下であることが好ましい。反り量1および2が前記範囲下限値以上であれば熱硬化性接着剤組成物の硬化層について半導体装置製造工程上必要とされる充分な接着強度や弾性率が得られる。また上記範囲上限値以下であれば半導体装置内のチップに加わる力が過剰なものとはならずチップの割れ発生を低減することができる。
【0044】
金属製支持体と半導体素子とを熱硬化性接着剤組成物で硬化接着する場合は、接着後の熱硬化性接着剤組成物の硬化層が厚み20μm以上30μm以下になるように塗布量を調整して接着し、測定することが好ましい。
【0045】
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物は、熱硬化性樹脂および充填剤を含むことが好ましい。熱硬化性樹脂としては、例えば液状シアネート樹脂、液状エポキシ樹脂、(メタ)アクリロイル基を有する化合物、マレイミド環を有する化合物、アリルエステル系化合物等のラジカル重合可能な官能基を有する化合物、アリル基を有するトリアリルイソシアヌレート、フェノール樹脂等が挙げられる。前記液状エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、グリシジルアミン型の液状エポキシ樹脂等が挙げられるが、硬化後に接着性や弾性率など半導体装置の組立てに十分な特性を得られ、かつポストモールドキュア時に好適な変形を生じさせるためにはラジカル重合可能な官能基を有する熱硬化性樹脂を含むことが好ましい。また成形加工性と言う観点からは、硬化性の良いラジカル重合可能な官能基が不飽和炭素−炭素結合である熱硬化性樹脂を含んでいることが好ましい。また本発明の目的を達成することが可能な範囲で、また硬化性、作業性、信頼性等に影響を与えない範囲でラジカル重合可能な官能基を有する化合物と、例えばエポキシ樹脂等と併用することも可能である。
【0046】
本発明に用いることができる熱硬化性樹脂の一つである(メタ)アクリロイル基を有する化合物としては、例えば2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシプロピルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシプロピルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチルメチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシプロピルメチルヘキサヒドロフタル酸、2−(メタ)アクリロイルキシエチルフタル酸、2−(メタ)アクリロイルキシプロピルフタル酸、2−(メタ)アクリロイロキシエチルテトラヒドロフタル酸、2−(メタ)アクリロイロキシプロピルテトラヒドロフタル酸、2−(メタ)アクリロイロキシエチルメチルテトラヒドロフタル酸、2−(メタ)アクリロイロキシプロピルメチルテトラヒドロフタル酸、2−ヒドロキシ1,3ジ(メタ)アクリロキシプロパン、テトラメチロールメタントリ(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートグリセリンジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、1,4―シクロヘキサンジメタノールモノ(メタ)アクリレート、エチル−α−(ヒドロキシメチル)(メタ)アクリレート、4−ヒドロキシブチルアクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャルブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ターシャルブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3−テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4−ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリアルキレングリコールモノ(メタ)アクリレート、オクトキシポリアルキレングリコールモノ(メタ)アクリレート、ラウロキシポリアルキレングリコールモノ(メタ)アクリレート、ステアロキシポリアルキレングリコールモノ(メタ)アクリレート、アリロキシポリアルキレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリアルキレングリコールモノ(メタ)アクリレート、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド、1,2−ジ(メタ)アクリルアミドエチレングリコール、ジ(メタ)アクリロイロキシメチルトリシクロデカン、2−(メタ)アクリロイロキシエチル、N−(メタ)アクリロイロキシエチルマレイミド、N−(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、N−(メタ)アクリロイロキシエチルフタルイミド、n−ビニル−2−ピロリドン、スチレン誘導体、α−メチルスチレン誘導体、(メタ)アクリル変性ポリブタジエンなどがあるが特に限定しない。
【0047】
また、前記(メタ)アクリロイル基を有する化合物は、硬化性、作業性、接着性、信頼性等の点より2種類以上の(メタ)アクリロイル基を有する化合物を併用してもかまわない。また、前記(メタ)アクリロイル基を有する化合物が、1分子に官能基を2つ以上含む多官能の(メタ)アクリロイル基を有する化合物であっても構わない。
【0048】
また本発明に用いられる熱硬化性樹脂の一つであるマレイミド環を有する化合 化合物としては、例えば1,2−ビス(マレイミド)エタン、1,6−ビスマレイミドヘキサン、4,4’−ビスマレイミドジフェニルメタン、6,7−メチレンジオキシ−4−メチルー3−マレイミドクマリン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、N,N’−1,3−フェニレンジマレイミド、N,N’−1,4−フェニレンジマレイミド、N−(1−フェニル)マレイミド、N−(2,4,6−トリクロロフェニル)マレイミド、N−(4−アミノフェニル)マレイミド、N−(4−ニトロフェニル)マレイミド、N−ベンジルマレイミド、N−ブロモメチル−2,3−ジクロロマレイミド、N−シクロヘキシルマレイミド、N−エチルマレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−スクシンイミジル3−マレイミドベンゾエート、N−スクシンイミジル3−マレイミドプロピレート、N−スクシンイミジル3−マレイミドブチレート、N−スクシンイミジル3−マレイミドヘキサノアート、N−[4−(2−ベンズイミドリル)フェニル]マレイミド、炭酸9−フルオレニルメチルN−スクシンイミジル、炭酸2−ブロモベンジルスクシンイミジル 、3,3’−ジチオジプロピオン酸ジ(N−スクシンイミジル)、炭酸ジ(N−スクシンイミジル)、N,N,N’,N’−テトラメチル−O−(N−スクシンイミジル)ウロニウムテトラフルオロボラート、N−(1,2,2,2−テトラクロロエトキシカルボニルオキシ)こはく酸イミド、N−(2−クロロカルボベンゾキシオキシ)こはく酸イミド、N−(tert−ブトキシカルボニル)−O−ベンジル−L−セリンN−スクシンイミジル、N−アミノこはく酸イミド塩酸塩、N−ブロモこはく酸イミド、N−カルボベンゾキシオキシこはく酸イミド、N−クロロこはく酸イミド、N−エチルこはく酸イミド、N−ヒドロキシこはく酸イミド、N−ユードこはく酸イミド、N−フェニルこはく酸イミド、N−サクシニミジル6−(2,4−ジニトロアニリノ)ヘキサノエート、N−サクシニミジル6−マレイミドヘキサノアートなどが挙げられるが、好ましくは1分子中に2つのマレイミド環をもつビスマレイミドが硬化という観点からは好ましい。その2つのマレイミド環を脂肪族や芳香族の炭化水素やそれらの炭化水素からなるアルキレン基をエーテルやエステルなどを介し結合していても構わない。
【0049】
前記マレイミド環を有する化合物の含有量は、特に限定されないが、前記液状樹脂組成物全体の0.5重量%以上25重量%以下が好ましく、特に1重量%以上18重量%以下が好ましい。含有量が前記下限値以上とすることにより半導体素子の支持体への好適な密着力を得ることが可能となる。また前記上限値以下とすることにより接着剤組成物を硬化した後の硬化物の弾性率を好適なものとし、前記硬化物の脆さに起因する半導体素子へのクラック発生を抑制することができる。
【0050】
また本発明では上述の通りラジカル重合可能なブタジエン化合物の重合体または共重合体を使用することができる。ブタジエン化合物の重合体または共重合体を使用することで熱硬化性接着剤組成物の硬化物に低応力性を付与することができる。この低応力性の付与により半導体素子と支持体との密着性が向上し剥離が生じにくいものとなる。なお、熱硬化性接着剤組成物の硬化物に付与される低応力性に対してはブタジエン化合物の重合体または共重合体の主鎖骨格構造の影響が大きい。この点ブタジエンの重合体または共重合体のミクロ構造に着目した場合、溶媒として重クロロホルムを使用した1H−NMR(400MHz)における1.8〜2.2ppm(1,4ビニル結合)および4.8〜5.1ppm(1,2ビニル結合)のピーク面積比より算出した1,4ビニル結合と1,2ビニル結合の合計に対し1,4ビニル結合の割合が50%以上であることが好ましい。1,4ビニル結合の割合が多い方がブタジエン化合物の重合体または共重合体としての粘度が低く、得られた樹脂組成物の支持体への塗布等の作業性が優れ、その硬化物の低温における低応力性に優れるからである。より好ましくは、1,4ビニル結合の割合が、60%以上85%以下である。
【0051】
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物にブタジエン化合物の重合体または共重合体を用いる場合、その好ましい配合量は、樹脂組成物中1重量%以上15重量%以下である。前記範囲内とすることにより好適な作業性と低応力性を得ることができる。
【0052】
本発明においては、他の樹脂との相溶性を高くする目的としては、官能基を有しているポリブタジエンを用いることがより好ましい。ポリブタジエンが有する具体的な官能基としては、ビニル基、エポキシ基、カルボキシ基、水酸基またはマレイン酸基などが挙げられる。これらの官能基の中でも、相溶性が高くなり、塗布作業性に優れた樹脂組成物が得られる点でマレイン酸基を有するポリブタジエンを使用することがより好ましい。
【0053】
また本発明に係る半導体装置の製造方法に用いられる熱硬化性樹脂としては、アリルエステル系化合物を用いることができる。アリルエステル系化合物としては、例えばジアリルフタレート、ジアリルテレフタレート、ジアリルイソフタレート、トリアリルトリメリート、ジアリルマレート、アリルメタクリレート、アリルアセトアセタートなどが挙げられる。
【0054】
アリルエステル系化合物の数平均分子量は、特に限定されないが、500以上10000以下であることが好ましく、特に500以上8000以下であることが好ましい。数平均分子量が前記範囲内であると、硬化収縮を特に小さくすることができ、密着性の低下を防止することができる。
【0055】
上述したような数平均分子量を有するアリルエステル系化合物としては、例えばテレフタル酸、イソフタル酸、フタル酸、5−ノルボルネン−endo−2,3−ジカルボン酸、1,4−ジシクロジカルボン酸、アジピン酸等のジカルボン酸やそのメチルエステル誘導体と炭素数2〜8であるアルキレンジオールにより合成されたポリエステルの末端にアリルアルコールをエステル化により付加した両末端アリルエステル系化合物等が挙げられる。
【0056】
アリルエステル系化合物を使用する場合、その含有量は、特に限定されないが、前記樹脂組成物全体の0.01重量%以上15重量%以下とすることが好ましく、特に1重量%以上11重量%以下が好ましい。含有量を前記下限値以上とすることにより硬化物の脆さを抑え、前記上限値以下とすることによりブリードの発生を抑制することができる。
【0057】
本発明に係る半導体装置の製造方法に用いられる熱硬化性樹脂は、(メタ)アクリロイル基を有する化合物、マレイミド環を有する化合物、ブタジエン化合物およびアリルエステル系化合物の中から選ばれる少なくとも2種以上を含むものとすることができる。これにより、密着性と耐熱性とのバランスに特に優れた熱硬化性接着剤組成物を得ることができる。
【0058】
前記マレイミド環を有する化合物やアリルエステル系化合物は、芳香族環を有さないことが好ましい。芳香族環は剛直な構造であり、その存在により硬化物の剛性が上がりすぎ硬化物が脆くなり、その結果半導体装置にクラックの発生が起こりやすくなるためである。この様な問題を解決するという観点では、ポリアルキレンオキサイドを主骨格に有することが好ましい。ポリアルキレンオキサイドを用いることにより260℃環境温度下において高弾性率でありながら脆さが抑制された接着剤組成物となり、半導体装置のクラック等の発生が抑制されると考えられる。
【0059】
前記ポリアルキレンオキサイド中の繰り返しユニットに含まれるアルキレン基中の炭素数は3以上6以下が好ましい。炭素数が前記下限値以上であることにより、硬化物の吸水特性の低下を抑制し、IRリフロー工程における信頼性に必要な接着性を維持することができる。また炭素数を前記上限値以下とすることにより熱硬化性接着剤組成物自体の疎水性の上昇を抑え金属に対し好適な接着性を得ることができる。
【0060】
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物には、充填剤を含むことが好ましい。これにより粘度やチキソ性の調整や熱時弾性率などを向上させることができ、支持体もしくは半導体素子への塗布作業等の取り扱いが容易なものとなる。
【0061】
前記の充填剤には導電性を付与するために銀、金、ニッケル、鉄等の金属粉を用いることができる。また、絶縁性を付与するためには例えばシリカ、アルミナのようなセラミック粒子または熱硬化性樹脂や熱可塑性樹脂の粒子を使用することができる。一般的に充填剤として使用されている粒子の形状には鱗状、球状、樹脂状、粉状等の種々の形状を有するものがあるが、本発明では形状については特に限定するものではない。
【0062】
前記充填剤の含有量は、例えば銀の場合であれば本願発明に係る熱硬化性接着剤組成物全体の60重量%以上90重量%以下であることが望ましく、特に70重量%以上85重量%以下であることが望ましい。含有量を前記範囲内とすることにより粘度やチキソ性を好適なものとすることができ、作業性を向上させることができる。
【0063】
前記充填剤の平均粒子径は、1μm以上10μm以下であることが好ましく、特に2μm以上7μm以下であることが好ましい。平均粒子径を前記下限値以上とすることにより接着剤組成物の粘度を好適なものとすることができる。また、前記上限値以下とすることによりノズルのつまり等の成形時の問題を低減することができる。なお、前記平均粒子径は、例えばレーザー回析・散乱法を用いた粒度分布測定装置を用いて測定することができる。
【0064】
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物は、熱硬化性樹脂にラジカル重合可能な官能基を有する化合物を含む場合、ラジカル開始剤を併用することが好ましい。
【0065】
前記ラジカル開始剤としては、例えばメチルエチルケトンパーオキサイド、シクロヘキサンパーオキサイド、アセチルアセトンパーオキサイド、1,1−ジ(tert−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(tert−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン、2,2−ジ(tert−ブチルパーオキシ)ブタン、n−ブチルー4,4−ジ(tert−ブチルパーオキシ)バレラート、2,2−ジ(4,4−ジ(tert−ブチルパーオキシ)シクロヘキサン)プロパン、p−メタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、tert−ブチルヒドロパーオキサイド、ジ(2−tert−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5−ジメチルー2,5−ジ(tert−ブチルパーオキシ)ヘキサン、tert−ブチルクミルパーオキサイド、ジーtert−ブチルパーオキサイド、2,5−ジメチル2,5−ジ(tert−ブチルパーオキシ)ヘキシン、ジイソブチルパーオキサイド、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウリルパーオキサイド、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4−メチルベンゾイル)パーオキサイド、ジn−pロピルパーオキシジカルボネート、ジイソプロピルパーオキシジカルボネート、ジ(2−エチルヘキシル)パーオキシジカルボネート、ジsec−ブチルパーオキシジカルボネート、クミルパーオキシネオデカネート、1,1,3,3−テトラメチルブチルパーオキシネオデカネート、tert−ヘキシルパーオキシネオデカネート、tert−ブチルパーオキシネオヘプタネート、tert−ヘキシルパーオキシピバラート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート、2,5−ジメチル−2,5、−ジ(2−ジエチルヘキノイルパーオキシ)ヘキサン、tert−ブチルパーオキシ−2−エチルヘキサネート、tert−ヘキシパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシマレイン酸、tert−ブチルパーオキシ3,5,5−トリメチルヘキサネート、tert−ブチルパーオキシイソプロピルモノカーボネート、tert−ブチルパーオキシ−2−エチルヘキシモノカーボネート、tert−ヘキシルパーオキシベンゾネート、2,5―ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、tert−ブチルパーオキシアセトネート、tert−パーオキシー3−メチルベンゾネート、tert−ブチルパーオキシベンゾネート、tert−ブチルパーオキシアリルモノカーボネート、3,3‘,4,4’−テトラ(tert−ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられるが、これらを必要に応じて複数使用しても良い。また、これらの中でも硬化性の観点から分解開始温度が90℃以上160℃以下であるのものが好ましい。分解開始温度を前記範囲下限値以上とすることにより保存性に優れ、前記範囲上限値以下とすることにより硬化性に優れるものとなる。なお、分解開始温度は示差熱走査分析(DSC)により求められる。ステンレス製の密封型容器に約1mgの開始剤を入れ、10℃/分の昇温速度で試料を加熱し、求められる発熱ピークより分解開始温度を測定できる。
【0066】
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物は、必要によりカップリング剤、消泡剤、界面活性剤等の他の添加剤を含有していても構わない。
【0067】
(半導体装置の製造方法の具体例)
本発明に係る半導体装置の製造方法について具体例を説明する。
本発明に係る半導体装置の製造方法に用いられる熱硬化性接着剤組成物が液状接着剤の場合、上述したよう各種成分を予備混合した後、3本ロールを用いて混練を行い、更に真空脱泡することにより、液状接着剤を得ることができる。得られた液状接着剤は市販のダイボンダーを用いて、例えば支持体(特にリードフレーム)の所定の部位にディスペンス塗布された後、半導体素子をマウントして加熱硬化する。その後、ワイヤーボンディングして、エポキシ樹脂等を主成分とする封止樹脂を用いてトランスファー成形し更に所定の温度で加熱することにより半導体装置を得ることができる。
【0068】
なお、フィルム状接着剤についても上記と同様に使用することができる。この場合、例えば支持体にフィルム状接着剤をラミネートした後、同様の工程により、半導体装置を得ることができる。
【実施例】
【0069】
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定
されるものではない。
【0070】
(実施例1)
(接着剤の調製)
ラジカル重合可能な官能基を有する化合物として2−メタクリロイロキシエチルコハク
酸(共栄社化学(株)製、ライトエステルHO−MS)および1,4−シクロヘキサンジメタノールモノアクリレート(日本化成化学(株)製、CHDMMA)を、マレイミド環を有する化合物としてポリアルキレンマレイミド酢酸エステル(大日本インキ工業(株)製、ルミキュアMIA−200)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、アリルエステル系化合物としてポリアルキレンエステル含有アリルエステル(昭和電工(株)製、アリルエステル樹脂DA101)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を、表1に示すように配合し、3本ロールにて混合し、更に真空脱泡して熱硬化性接着剤組成物を得た。
【0071】
(反り評価)
実施例1の接着剤組成物を用いて銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は1μmであり。反り量2は8μmであった。
【0072】
(半導体装置の製造)
支持体として封止樹脂のにじみ防止のために裏面にカプトンテープを貼り付けたニッケル−パラジウムメッキされた銅フレーム(ダイパッドサイズ:6×6mm、厚み220μm、1パネルあたりダイパッドが4列×6段)と、表面にSiN層を持つ半導体素子(4×4mm、厚さ350μm)とを上述した実施例1の接着剤で接着し、175℃、30分間オーブン内で硬化して接着した。次に、半導体封止用エポキシ樹脂組成物(住友ベークライト社製、EME−G630)を用いて、1パネル44mm×62mm、リードフレームを含めた1パネルの厚みが850μmに封止し、175℃、4時間ポストモールドキュアを行い、その後ダイシングソーなどで個片化し、試験用半導体装置11(48LQFN、サイズ8x8mm、封止樹脂厚み850μm)を得た。以下実施例2乃至5並びに比較例1および2についても同様の方法で試験用半導体装置11を製造した。
【0073】
(実施例2)
接着剤を構成する熱硬化性樹脂として以下のものを用いた以外は、実施例1と同様にし
た。
ラジカル重合可能な官能基を有する化合物としてUM−90(1/1)DA(宇部興産
株式会社製、1,6−ヘキサンジオール/1,4−ジメタノールシクロヘキサン(=1/
1)と炭酸ジメチルから合成したポリカーボネートジオール(分子量約900)にアクロ
イル基を導入したポリカーボネートジアクリレート)、2−メタクリロイロキシエチルコハク酸(共栄社化学(株)製、ライトエステルHO−MS)、1,4−シクロヘキサンジメタノールモノアクリレート(日本化成化学(株)製、CHDMMA)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を表1のように配合した。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は1μmであり。反り量2は10μmであった。
【0074】
(実施例3)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした
。 ラジカル重合可能な官能基を有する化合物としてマレイミド環を有する化合物としてポリアルキレンマレイミド酢酸エステル(大日本インキ工業(株)製、ルミキュアMIA−200)、アリルエステル系化合物としてポリアルキレン含有アリルエステル(昭和電工(株)製、アリルエステル樹脂DA101)、マレイン化ポリブタジエン(Satomer社製、Ricobond1731)、2−メタクリロイロキシエチルコハク酸(共栄社化学(株)製、ライトエステルHO−MS、)、1,4−シクロヘキサンジメタノールモノアクリレート(日本化成化学(株)製、CHDMMA)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を表1のように配合した。
また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は2μmであり。反り量2は11μmであった。
【0075】
(実施例4)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした
。 ラジカル重合可能な官能基を有する化合物としてUM−90(1/1)DA(宇部興産株式会社製、1,6−ヘキサンジオール/1,4−ジメタノールシクロヘキサン(=1/1)と炭酸ジメチルから合成したポリカーボネートジオール(分子量約900)にアクロイル基を導入したポリカーボネートジアクリレート)、マレイン化ポリブタジエン(Satomer社製、Ricobond1731)、2−メタクリロイロキシエチルコ
ハク酸(共栄社化学(株)製、ライトエステルHO−MS)、1,4−シクロヘキサンジメタノールモノアクリレート(日本化成化学(株)製、CHDMMA)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を表1に示すように配合した。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は1μmであり。反り量2は7μmであった。
【0076】
(実施例5)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした
。 ラジカル重合可能な官能基を有する化合物としてプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)および2−エチルヘキシルアクリレート(共栄社化学(株)製、ライトエステルEH)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、ラジカル重合可能な官能基を有しない化合物としてジグリシジルビスフェノールF(日本化薬(社)製、RE−303S)を、硬化促進剤として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(キュアゾール2P4MHZ:四国化成工業(株)製)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)を表1に示すように配合した。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は1μmであり。反り量2は14μmであった。
【0077】
(実施例6)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした
。 ラジカル重合可能な官能基を有する化合物としてアリルエステル系化合物としてポリアルキレン含有アリルエステル(昭和電工(株)製、アリルエステル樹脂DA101)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)を、ラジカル重合可能な官能基を有しない化合物としてジグリシジルビスフェノールF(日本化薬(社)製、RE−303S)およびクレジルグレシジルエーテル(阪本薬品(社)製、CGE)を、上記熱硬化樹脂の硬化剤としてビスフェノールF(大日本インキ工業(株)製、DIC−BPF)およびジシアンジアミド(旭電化(株)製、EH3636AS)を、硬化促進剤として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(キュアゾール2P4MHZ:四国化成工業(株)製)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を表1に示すように配合した。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2測定した。反り量1は1μmであり。反り量2は6μmであった。
【0078】
(比較例1)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。 ラジカル重合可能な官能基を有しない化合物としてジグリシジルビスフェノールF(日本化薬(社)製、RE−303S)およびクレジルグレシジルエーテル(阪本薬品(社)製、CGE)を、上記熱硬化樹脂の硬化剤としてビスフェノールF(大日本インキ工業(株)製、DIC−BPF)およびジシアンジアミド(旭電化(株)製、EH3636AS)を、硬化促進剤として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(キュアゾール2P4MHZ:四国化成工業(株)製)を、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉を、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)、を表1のように配合後、3本ロールを用いて混練、脱泡することで樹脂組成物を得た。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2測定した。反り量1は0μmであり。反り量2は2μmであった。
【0079】
(比較例2)
接着剤を構成する樹脂組成物の配合を以下のようにした以外は、実施例1と同様にした。 ラジカル重合可能な官能基を有する化合物としてマレイミド環を有する化合物としてポリアルキレンマレイミド酢酸エステル(大日本インキ工業(株)製、ルミキュアMIA−200)、アリルエステル系化合物としてポリアルキレン含有アリルエステル(昭和電工(株)製、アリルエステル樹脂DA101)、1,4−シクロヘキサンジメタノールモノアクリレート(日本化成化学(株)製、CHDMMA)およびプロピルジメタクリレート(共栄社化学(株)製、ライトエステル3PG)を、ラジカル開始剤として1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン(日本油脂(株)製、パーヘキサCS)、充填剤として平均粒径3μm、最大粒径20μmのフレーク状銀粉、添加剤としてγ−グリシジルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−403E)およびテトラスルフィドジトリエトキシシラン(ダイソー(株)製、CABRUS4)を表1のように配合した。また得られた接着剤組成物を用いて実施例1と同様にニッケルー−パラジウムメッキした銅製フレームとシリコンチップとを硬化接着し、反り量1及び反り量2を測定した。反り量1は−1μmであり。反り量2は19μmであった。
【0080】
(耐半田クラック性)
各実施例および比較例の熱硬化性接着剤組成物に対して、上記の方法で製造された半導体装置を85℃、相対湿度60%の条件下で168時間吸湿処理した後、IRリフロー処理(260℃、10秒、3回リフロー)を行い、処理後のパッケージを超音波深傷装置(透過型)により剥離の程度を測定した。各符号は、以下の通りである。
パッケージ:QFN(8×8×0.85mm)
リードフレーム:ニッケル−パラジウムメッキした銅リードフレーム
チップサイズ:4□mm 厚み350μm
○:半導体素子剥離発生なし。
×:半導体素子剥離発生あり。
【0081】
【表1】

【産業上の利用可能性】
【0082】
本発明に係る半導体装置の製造方法により、IRリフロー処理等による高温環境下であっても耐半田クラック性に優れた半導体装置を得ることができる。
【符号の説明】
【0083】
1・・・熱硬化性接着剤組成物
2・・・金属製支持体のダイパット
3・・・半導体素子
4・・・金属製支持体のリード
5・・・封止用樹脂組成物
10・・半導体装置
11・・試験用半導体装置
20・・半導体素子の厚み方向の中心線

【特許請求の範囲】
【請求項1】
金属製支持体のダイパット上に熱硬化性接着剤組成物を介して半導体素子を載置する工程と、
所定の加熱条件Aにより前記接着剤組成物を硬化するとともに前記金属製支持体と前記半導体素子とを接着する工程と、
前記金属製支持体のダイパットの前記半導体素子が接着された面と反対面の側を露出させた状態で、前記金属製支持体と半導体素子とを封止用樹脂組成物により封止する工程と、
を有する半導体装置の製造方法であって、
前記熱硬化性接着剤組成物の以下の反り評価試験Sにおける反り量1および反り量2が、
条件式1および2を満たすものである半導体装置の製造方法。
[反り評価試験S:シリコンチップ(サイズ:7×7mm、厚み:350μm)を、全体にニッケルーパラジウムメッキした金属製支持体のダイパッド部(サイズ:8.5×8.5mm、厚み:180μm)上に前記熱硬化性接着剤組成物を介して載置し、前記加熱条件Aにより前記熱硬化性接着剤組成物を硬化させ、前記シリコンチップと前記支持体とを接着する(熱硬化性接着剤組成物の硬化層厚み:20μm以上30μm以下)。接着後、175℃×2分間加熱後のシリコンチップの反り量を反り量1とし、260℃×2分間加熱後のシリコンチップの反り量を反り量2とする。]
条件式1:0.1≦反り量1≦10(μm)
条件式2:0.1≦反り量2≦20(μm)
【請求項2】
前記熱硬化性接着剤組成物がラジカル重合可能な官能基を有するものである化合物を含む請求項1記載の半導体装置の製造方法。
【請求項3】
前記化合物のラジカル重合可能な官能基が不飽和炭素−炭素結合である請求項2記載の半導体装置の製造方法。
【請求項4】
前記化合物のラジカル重合可能な官能基が、(メタ)アクリロイル基である請求項2または3記載の半導体装置の製造方法。
【請求項5】
前記ラジカル重合可能な官能基を有する化合物が、マレイミド環を有する化合物である請求項2乃至4のいずれか1項に記載の半導体装置の製造方法。
【請求項6】
前記マレイミド環を有する化合物が、芳香族環を有さないビスマレイミド化合物である請求項5記載の半導体装置の製造方法。
【請求項7】
前記ラジカル重合可能な官能基を有する化合物が、ブタジエン化合物の重合体または共重合体である請求項3または4に記載の半導体装置の製造方法。
【請求項8】
前記ブタジエン化合物の重合体または共重合体の分子内に少なくとも1つの官能基を有する請求項7記載の半導体装置の製造方法。
【請求項9】
前記ブタジエン化合物の重合体または共重合体が有する官能基が、ビニル基、エポキシ基、カルボキシ基、水酸基またはマレイン酸基からなる群より選ばれる少なくとも1つの官能基である請求項8記載の半導体装置の製造方法。
【請求項10】
前記熱硬化性接着剤組成物が(メタ)アクリロイル基を有する化合物、マレイミド環を有する化合物、ブタジエン化合物およびアリルエステル系化合物からなる群より選ばれる少なくとも2種以上の化合物を含むものである請求項1記載の半導体装置の製造方法。
【請求項11】
前記アリルエステル系化合物が、芳香族環を有さないアリルエステル系化合物である請
求項10に記載の半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−142164(P2011−142164A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2010−1185(P2010−1185)
【出願日】平成22年1月6日(2010.1.6)
【出願人】(000002141)住友ベークライト株式会社 (2,927)
【Fターム(参考)】