説明

基板上欠陥検査方法及びその装置

【課題】
検査レンズの波面収差は欠陥検出感度を低下させる傾向があり、波面収差の装置間差が、検査感度一致度を下げる原因の一つとなっていた。特に検査レンズの外側は波面収差が大きくなる傾向があるため、(a)像高が高い場合、(b)光が低仰角方向へ強く散乱される欠陥を検出する場合、収差の影響を受けやすくなる。
【解決手段】
本発明では上記課題を達成するために、以下の手段を備えたシステムとして構成されるようにした。
(1):レーザ等の光源、及び照明光学系、
(2):検出光学系レンズの波面収差を測定可能な瞳面観測系、もしくは波面収差測定方式、
(3):収差の大きい瞳面上の領域を遮光可能な2次元空間フィルタ、
(4):(2)及び(3)を持つ散乱光を検出するための1つまたは複数の欠陥検出光学系及び光検出器、
(5):波面収差測定に用いる点光源。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光を用いて得られた被検査対象物の画像と参照画像とを比較し、その差異から微細パターン欠陥や異物などを検出する方法及び装置にかかわり、特に半導体ウェハ、ホトマスク、液晶等の外観検査を行う方法、装置、及びシステムに関するものである。
【背景技術】
【0002】
半導体デバイスの製造では、半導体デバイスが形成される基板(ウェハ)を数百に上る製造工程で処理して製品となる。各工程では基板(ウェハ)上に異物が付着したり、パターン形成の工程ばらつき等によってパターン欠陥が生じるが、これらは半導体デバイスが不良品となる原因である。また半導体デバイスの欠陥検査システムでは、パターンの微細化の進展に伴って、より微細な欠陥や異物を検出するだけではなく、興味のある対象(DOI (Defect Of Interest))の検出が求められると同時に、多種のDOIや検出したくない欠陥を分類に対するニーズが高まっている。このようなニーズに応えるために、近年複数の検出光学系及び画像処理系(以下、検出ヘッドと呼ぶ)を備え、各検出光学系での検出信号を用いることにより、検出可能な欠陥種の増加及び欠陥検出性能向上が図った欠陥検査装置が開発・製造販売されるようになり、このような新しい欠陥検査装置が半導体製造ラインに適用されつつある。
【0003】
半導体デバイスの欠陥検査装置は、例えばリソ工程、成膜工程、エッチ工程等の工程において発生したパターン欠陥や異物を、該工程が完了した後の基板表面を検査することによって検出し、該工程の装置のクリーニング実施指令を出したり、既に致命的な欠陥が生じた状態の基板を次工程以降に流すことによる不良品の発生を、早期に検出するのに使用する。
【0004】
前の工程で所定の処理が施された半導体デバイスを形成途中の基板は、検査装置にロードされる。半導体デバイスを形成途中の基板(ウェハ)の表面の画像が撮像取得され、該画像をもとに、特開2003−83907号公報、特開2003−98113号公報、特開2003−271927号公報等に記載されているような欠陥信号判定しきい値欠陥判定処理を行うことによって欠陥判定が行われ、基板上の欠陥個数他が出力される。
【0005】
予め設定した欠陥個数しきい値Ncに対し、該検出欠陥個数Ntが小さい場合には、そのまま次工程へ送付する。欠陥個数Ntが大きい場合には、前工程装置のクリーニング実施指令を出した後、基板の再生可否を判断する。基板が再生可能と判断された場合には、洗浄工程にて基板を洗浄した後、再度本検査工程を通して次工程へ送付する。
【0006】
被検査対象である半導体デバイスを形成途中の基板(ウェハ)は、図7に示すように同一パターンを持つ部分1および1’(以下ダイと呼ぶ)が規則的に並んでいる。本発明が対象としている欠陥検査方法及び欠陥検査装置は、隣接するダイ同士でダイ内座標が同一である位置の画像を比較して、両者の差をもとに欠陥検出判定するものである。
【0007】
上記収差が原因で生ずる欠陥検出性能低下に対応するため、特開2006−250739号公報にあるように、収差を補正する光学系を備えた欠陥検査装置が提案されている。一般に収差は、対物レンズ視野内の位置によって異なる一方、収差補正光学系で補正が可能な収差は1種類のみであり、例えばCDドライブやDVDドライブ等のピックアップ光学系については、視野中心のみ収差補正ができれば十分性能が発揮されるため、上記の収差補正光学系を適用することで格段の性能向上が認められる。しかしながら半導体検査装置では、スループット向上のため、μmレベルの空間分解能を保ちつつ数mm以上の非常に広い視野を用いて検査を行うのが一般的であり、上記収差補正光学系では収差を補正しきれないという課題があった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−83907号公報
【特許文献2】特開2003−98113号公報
【特許文献3】特開2003−271927号公報
【特許文献4】特開2006−250739号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記のように、半導体欠陥検査システムでは、より微細なDOIの検出、及び高速検査に対する要求の高まる一方、製造ラインには複数台の検査装置が配置されることが多く、装置間の検査感度一致度(マッチング)向上が強く求められている。
【0010】
また従来の半導体欠陥検査システムでは、検査レンズの波面収差は欠陥検出感度を低下させる傾向があり、波面収差の装置間差が、検査感度一致度を下げる原因の一つとなっていた。特に検査レンズの外側は波面収差が大きくなる傾向があるため、(a)像高が高い場合、(b)光が低仰角方向へ強く散乱される欠陥を検出する場合、対物レンズの収差の影響を受けやすくなっている。
【0011】
本発明の目的は、光学式の欠陥検査装置において、対物レンズの収差の装置間差の影響を受けることなく、複数の検査装置間で検査感度のばらつきが少ない欠陥検査方法及びその装置を提供することにある。
【課題を解決するための手段】
【0012】
上記した目的を達成するために、本発明では、検査対象の試料を保持して平面内で移動可能なテーブル手段と、テーブル手段に保持された試料の表面を照明する照明手段と、照明手段で照明された試料からの散乱光を対物レンズで集光して検出する検出部と対物レンズの瞳面を観察する瞳面観察部とを有する検出光学系手段と、検出光学系手段で検出した試料からの散乱光の検出信号を処理して試料上の欠陥を検出する信号処理手段と、テーブル手段と照明手段と検出光学系手段と信号処理手段とを制御する制御手段とを備えた欠陥検査装置において、照明手段にはテーブル手段に保持された試料の表面と同じ高さの位置に点状の光源を形成する点光源形成部を備え、検出光学系手段の瞳面観察部は、点光源部から射出され対物レンズを透過した光の対物レンズの瞳面上における波面を観察する波面観察系と、照明手段で照明された試料から発生して対物レンズを透過した散乱光の対物レンズの瞳面上における強度分布を観察する光強度分布観察系とを更に備えて構成した。
【0013】
また、上記目的を達成するために、本発明では、光源から発射された光を検査対象の試料の表面に照射し、光を照射された試料から発生した散乱光のうち対物レンズで集光されて遮光パタンを有する空間フィルタを透過した散乱光を検出し、検出した試料からの散乱光の検出信号を処理して試料上の欠陥を検出する欠陥検査方法において、試料の表面と同じ高さの位置に配置した点状の光源から発射されて対物レンズを透過した光の対物レンズの瞳面上における波面を観察し、照明光で照明された試料から発生して対物レンズを透過した散乱光の対物レンズの瞳面上における強度分布を観察し、観察して得た対物レンズの瞳面上における波面の情報と観察して得た対物レンズの瞳面上における波面の情報とを用いて空間フィルタの遮光パターンを調整するようにした。
【発明の効果】
【0014】
本願発明によれば、波面収差の影響が低減されて欠陥検出感度を向上させることができる。さらに、波面収差が原因で生じる装置間の欠陥検査感度の差(機差)を低減させることが可能になり、複数の検査装置間の検査データを比較して各プロセス処理装置での欠陥の発生状況を正しく管理することが可能になる。
【図面の簡単な説明】
【0015】
【図1A】欠陥検査装置の概略の構成を示すブロック図である。
【図1B】円錐曲面レンズによりウェハのy軸方向に対してφ回転し、z時期方向にα傾斜した方向からウェハ上のy軸方向の線状の領域を照明する構成を示す円錐曲面レンズとの斜視図である。
【図1C】円錐曲面レンズによりy軸に沿った方向からウェハ上のy軸方向の線状の領域を照明する構成を示す円錐曲面レンズとの斜視図である。
【図2】基板の検査工程の流れを示したフロー図である。
【図3】基板の検査条件の設定の流れを示したフロー図である。
【図4】基板の検査方法の基板検査工程のフローのうち検査装置の検出光学系、画像処理系、制御処理系の動作の流れを示したフロー図である。
【図5】基板の検査工程の欠陥判定処理の流れを示したフロー図である。
【図6A】ウェハ上の隣接するダイ間の同一形状パターンを示すウェハの平面図である。
【図6B】ウェハ上に多数形成されたダイを撮像して得られる参照パターンと検査パターンとの関係を示すウェハの平面図である。
【図6C】差画像と差画像のA−Aライン上の画像信号を示す図である。
【図7A】点光源形成光学系の概略の構成及び搬送系との関係を示すブロック図である。
【図7B】点光源形成光学系の出射側の概略の構成を示す正面の断面図である。
【図8】検出光学系中の対物レンズの収差を実測する処理の流れを示したフロー図である。
【図9】瞳面に設置された空間フィルタにて収差が大きい領域を遮光するように設定する処理の流れを示したフロー図である。
【図10A】波面収差と散乱光の強度分布を観察して得た画像及び空間フィルタの遮光パターンを表示したGUI画面の図である。
【図10B】波面収差の大きな領域及び散乱光強度の津用領域を空間フィルタでマスクした状態及びその時の空間フィルタの遮光パターンを表示したGUI画面の図である。
【図11】瞳面に設置された空間フィルタにて、ウェハ上の一領域のパターンからの回折光を、遮光するように設定する
【図12】瞳面に設置された空間フィルタにて遮光する領域を設定するGUI画面の図である。
【図13A】遮光領域設定用の初期状態のGUI画面の図である。
【図13B】遮光しきい値よりも輝度値が大きい画素を含む空間フィルタのピクセルを自動的に遮光領域と設定された状態を示すGUI画面の図である。
【図14】瞳面に設置された空間フィルタにてウェハ上の複数の領域のパターンからの回折光を遮光するように設定する
【図15】瞳面に設置された空間フィルタにて対物レンズ視野内の複数の像点における収差をもとに指定した対物レンズ視野内点の収差が大きい領域およびパターンからの回折光を遮光するように設定する処理の流れを示したフロー図である。
【図16】瞳面に設置された空間フィルタにて、対物レンズ視野内の複数の像点における収差をもとに、指定した対物レンズ視野内点の収差が大きい領域を遮光するように設定するGUI画面の図である。
【図17】半導体デバイス製造ラインの構成を示したブロック図である。
【発明を実施するための形態】
【0016】
以下、本発明の第1の実施例を、図1乃至図17により説明する。
検査装置1のブロック図を図1Aに示す。
検査装置1は、照明光学系10、基板搬送系20、検出光学系30、フォーカス測定系50、画像処理系60、制御処理系80、インターフェース系90、瞳面観測系310を備えて構成されている。
照明光学系10は、レーザ光源11とビーム整形用のレンズ12を備え、レーザ光源11から出射された光をレンズ12にて適宜整形して、被検査基板(ウェハ)100上の線状の領域をほぼ均一な照度で照明する。
【0017】
基板搬送系20は、Xステージ21、Yステージ22、Zステージ23、基板チャック24、θステージ25を備えている。また、基板チャック24に隣接し、かつ、ウェハ表面とほぼ同じ高さに、後述する対物レンズ31の波面収差を検出するための点光源109が載置されている。図1Aに示した構成においては、基板チャック24として、静電チャックを用いた場合を示している。
【0018】
検出光学系30は、対物レンズ31、2次元空間フィルタ32、結像レンズ33、光センサ35、A/D変換ユニット36を備えている。また、結像レンズ33と光センサ35の間に偏光フィルタ34を設置してもよい。図1Aでは、偏光フィルタ34が含まれた構成図が示されている。さらに、2次元空間フィルタ32には、遮光パターン形状を制御する空間フィルタ制御ユニット86が接続されている。
【0019】
瞳面観測系310は、対物レンズ31のフーリエ変換面上の光強度分布を観測できるように、レンズ311及び313、エリアセンサ315が構成されている。また、ビームスプリッタ318を介してエリアセンサ315と共役な位置にアレイレンズ316が設置され、エリアセンサ317と合わせてシャックハルトマン型の波面センサが構成されている。
フォーカス測定系50は、照明光学系51、検出光学系52、光センサ53、フォーカスずれ算出処理ユニット54を備えている。
【0020】
画像処理系60は、隣接ダイ間画像位置ずれ情報算出ユニット61、ダイ間差画像を用いて欠陥判定・検出処理を行うデータ処理ユニット62を備えている。
【0021】
制御・処理系80は、少なくとも搬送系20を制御するための搬送系制御ユニット81、照明光源制御ユニット82、検出光学系30で搬送系20の動きと同期してフォーカス制御された画像を取得するためのセンサ制御ユニット83、画像処理系60から出力される欠陥情報611を用いて検出した欠陥の分類処理を実施する欠陥情報処理ユニット84、そして全体をつかさどる制御ユニット89を備えている。
【0022】
インターフェース系90は、少なくとも制御・処理系80にて処理・出力された欠陥情報650を蓄積するデータ蓄積部91、検査条件設定や制御処理情報入力を実施する入力部92、欠陥情報650や制御処理情報を表示したり照明条件・検査条件などをユーザが入力するのに用いる表示部93を備えている。また、外部通信ライン94を備え、外部のデータサーバ(図示せず)やデータ処理手段(図示せず)などにつながっていて検査結果のデータを出力したり、検査対象のウェハに関する情報(設計データ、プロセス処理データなど)を受け取ったりする。
【0023】
次に、上記した構成におけるウェハ100上の欠陥検査の動作について説明する。照明光学系10の光源11から出射された光は、レンズ12を透過することにより長手方向には平行光で長手に直角な方向には集光されたシート状ビームに変形されて図1B又は図1Cに示すようなウェハ100の表面の線状の領域199を照射する。
図1Bに、本実施例でウェハ100上の線状の領域199を照明するためにレーザ光源11から発射されたレーザを整形する整形用レンズ12として用いられている円錐曲面レンズの効果について示す。
【0024】
整形用レンズ12である円錐曲面レンズは、ウェハ100のy軸方向に対してφ回転し、かつz軸方向に角度α傾斜した方向から、ウェハ100上のy軸方向に沿った線状の領域199に焦点を合わせてy軸方向には平行でx軸方向には収束させたレーザ光を照射する。このときウェハ100は、搬送系制御ユニット81で制御されたXステージ21が一定の速度で移動することにより、x軸方向に沿って一定の速度で移動し、レーザが照射されるウェハ100上の線状の領域199がx軸方向に沿って走査される。
【0025】
一方、搬送系制御ユニット81でYステージ22を制御してウェハ100をy軸の方向に一定速度で移動させる場合には、ウェハ100上で線状に照明される領域は、ウェハ100の走査方向と直交する方向、すなわちほぼx軸方向に長く照明する。ここで円錐曲面レンズ12を用いると、ウェハ100上でy軸方向に短軸を、x方向に長軸を持つ線状の領域199にあったスリット状ビームを形成することが可能である。
【0026】
照明光のウェハ100上の照射領域199と、光センサ35の位置は、検出光学系30を通して共役の位置になっている。線状の領域199を光センサ35によって一括して検出することによって、ウェハ100の表面画像301を高速に取得することが可能となっている。
【0027】
図1Cには、ウェハ100上への照明光の入射方向とウェハ100上の線状の照明領域の方向とが一致している場合の照明系を示す。この場合に用いる整形用レンズ128は、透過する光をy軸方向には平行でx軸方向には収束させ、ウェハ100上の線状の照明領域のほぼ全域に亘って焦点が合うように整形用レンズ128の長手方向に順次焦点位置が変化する構造になっている。
【0028】
上記に説明した照明光学系10でウェハ100を照明することにより、ウェハ100の表面からは回折光及び散乱光が生じるが、このうち基板100に形成されたパターンからの散乱光・回折光により対物レンズ31の出射瞳位置に形成された回折光パターンを、この出射瞳位置または出射瞳位置と共役な関係にある位置に配置された空間フィルタ32で遮光し、この空間フィルタ32で遮光されずに空間フィルタ32を透過した散乱光を結像レンズ33で偏光フィルタ34を介して第1の検出光学系30の光センサ35の検出面上に結像させて光センサ35で検出する。光センサ35は散乱光を検出し光電変換して検出した散乱光の強度に応じたアナログ信号を出力し、これをA/D変換ユニット36でデジタル信号に変換することにより、表面画像301が得られる。
【0029】
得られた表面画像301は隣接ダイ間画像位置ずれ情報算出ユニット61で処理されて、図7Bに示すように、表面画像301と隣接ダイの同一領域を撮像して得られた画像302からダイ間の差画像303を算出し、データ処理ユニット62に送られてこの差画像303を用いて欠陥判定・検出処理を行う。さらに、検出した欠陥について欠陥の特徴量(欠陥のサイズ、形状、座標等)を抽出し、この抽出した特徴量の情報を用いて欠陥を分類する。得られた処理結果を欠陥情報611(図1参照)として制御・処理系80に伝送する。欠陥情報611には、欠陥座標の他に、欠陥特徴量、欠陥画像、及び検査画像などが含まれる。以上が検出光学系30及び画像処理系60の動作フローである。
【0030】
ここで空間フィルタ32としてMEMS(微小電気機械素子)シャッターアレイを用いても良い。この場合、散乱光の偏光特性が空間フィルタ32によって失われないため、偏光フィルタ34を併用することで、より高感度な欠陥検査が可能となる。
【0031】
次に、制御処理系80及びインターフェース系90の動作フローを説明する。
画像処理系60から伝送された欠陥情報611を各欠陥の座標情報を用いて同一欠陥を判定してマージした後、入出力手段92及び蓄積手段91を通してファイル情報として出力されたり、ディスプレイ93の画面上に画面出力される。
【0032】
次に、本発明に関わる検査装置を用いた基板検査工程のフローを、図2を用いて説明する。
ウェハ100が検査装置1にロードされ(S201)基板チャック24で保持される。検査装置1はアライメント動作することにより(S202)、ウェハ100の傾きをなくすと同時に、ウェハの基準点(ノッチ)を検出してウェハ原点座標を求める(S203)。
【0033】
次に、搬送系制御ユニット81でXステージ21を一定の速度で移動させることによりウェハ100を照明光学系10及び検出光学系30に対して走査して(S204)、照明光学系10からの照明光により線状の領域が照明されたウェハ100の表面近傍の光学的画像301(図7参照)を検出光学系30で撮像して取得する(S205)。得られた画像をもとに、画像処理系60でウェハ100の表面近傍の欠陥及び異物の有無を欠陥判定処理(S206)を行うことによって実施する。なお、表面近傍の光学的画像301の取得が完了し次第、ウェハ100は検査装置1からアンロードされ(S207)、検査結果が出力される(S208)。
本発明に関わる検査装置を用いた基板検査条件の設定フローを図3に示す。
まず被検査ウェハ100のダイサイズや配列等の基本的な設計情報を外部通信ライン94を介して外部の設計データサーバから入力する(S301)。次に、入力した設計情報に基づいて照明角度(方位、仰角)や照明偏光などの照明条件を表示部93の入力画面上で設定する(S302)。次に、空間フィルタ設定以外の検出光学条件(光学倍率、検光の有無等)を表示部93の入力画面上で設定する(S303)。欠陥処理パラメータを表示部93の入力画面上で設定する(S304)。被検査ウェハ100が装置にロード済でなければウェハ100をロードし(S305)、アライメントを合わせる(S306)。次に、ウェハ100上のパターンのうち、空間フィルタで回折光を除去したいパターンのある領域が、照明光が照射される領域に入るようにウェハを移動させる(S307)。
【0034】
次に、検出光学系30のフーリエ変換面に形成されるフーリエ変換面画像を瞳面観察系310で撮像して表示部93の画面上に表示し、このフーリエ変換面画像が表示された表示部93画面上で空間フィルタ32の遮光領域を設定する(S308)。
【0035】
あらかじめ収差の大きさに応じて設定した遮光領域と、前段で設定した遮光領域を足し合わせた領域を検査時の遮光領域として設定する(S309)。なお、この遮光領域の設定の仕方については、後述する。
以上で設定された検査条件でウェハを試し検査し(S310)、十分な欠陥検出感度が達成できれば基板検査条件設定を終了する。
【0036】
図4に、被検査基板表面をスリット状ビームで照明し光センサ35としてTDIセンサ(時間遅延積分型センサ)を用いて基板表面の検査画像を検出する場合の、動作フローを示す。
【0037】
まず基板100を検査装置1の搬送系20にロードし、ウェハチャック34にて基板100を固定する(S401)。次に基板100上のアライメントマーク(図示せず)を用いて、ウェハアライメントを実施し、基板100上の座標と基板走査系の座標とのオフセットと傾きを測定する(S402)。
【0038】
基板100の傾きが予め設定した角度しきい値よりも大きい場合には、搬送系制御ユニット81でθステージ25を制御してウェハチャック34で固定された基板100の傾きがほぼ0になるように調整した後、基板100のアライメントを再度実施して基板100上の座標と基板走査系の座標とのオフセットを再度測定する。測定の結果、基板100の傾きが予め設定した角度しきい値よりも小さくなったら次のステップへ進む。
次に、図3のフロー図で説明したような手順で初期設定したように空間フィルタを制御して、予め設定した領域を遮光する(S403)。
【0039】
次に搬送系制御ユニット81でXステージ21を制御してXステージ21を一定の速度で走査する(S404)。Xステージ21はウェハ上の検査対象領域にスリット状ビームが照射されている間はほぼ等速で移動させる。
スリット状ビームの照明領域がウェハ上になる範囲で、レーザ光源11のシャッタ(図示せず)を開け、スリット状に成形したビームによるウェハ上の線状の領域の照明を実施する(S405)。
【0040】
Xステージ21の走査に同期してTDIセンサによるウェハ100からの散乱光の検出を動作させ、基板100の表面画像301を一括して取得する(S406)。
Xステージ21の1回の走査が完了したら、予め指示しておいた基板上の測定領域全体の基板表面画像が取得するまで(S407)、光センサで一括して測定できる幅だけYステージ22を移動させ(S408)、Xステージ21の走査を繰返し実施する。完了したら基板100をアンロードして(S409)、検査を終了する。
【0041】
次に図5及び図6を用いて欠陥判定処理のフローの例について説明する。
まずXステージ21を連続的に一定の速度で動させながら順次取得した検査画像301、参照画像となる隣接ダイ画像302とを画像処理系60の隣接ダイ間画像位置ずれ情報算出ユニット61で処理して求めた両者間の位置ずれ情報を用いて検査画像301と参照画像302との位置を合わせ、この位置を合わせた両画像間の差画像303を算出(S501)することを、xステージ1回走査分(以下1列分と呼ぶ)だけ繰り返す。
【0042】
次に、1列分の複数ダイの同一部分に相当する場所の差画像303の明るさのばらつき量を各画素ごとに算出する(S502)。
次に、ユーザインタフェースを用いて予め設定しておいた係数αを上記明るさばらつきσに掛け合わせることによって、注目している画素の欠陥判定しきい値Tを決定する(S503)。
そして、決定した欠陥判定しきい値Tと差画像303の明るさの絶対値Lを各画素ごとに比較し、欠陥判定しきい値Tを差画像の明るさの絶対値が上回った場合、その画素位置に相当する基板100上座標に欠陥が存在すると判定する(S504)。
【0043】
このフローを、予め指定した検査領域の画像、もしくは取得された基板100上の全ての検査画像について、繰返し処理することによって、基板100上の欠陥判定及び欠陥座標を算出する。
なお上記では、隣接ダイ間画像の差画像303を求めた後に明るさばらつきσを求め、明るさばらつきσからしきい値Tを算出し、このしきい値Tをもとに欠陥の判定を実施しているが、欠陥の判定方法は、特許文献1に記載されているような、隣接する2つの領域の画像の画像明るさを合わせこんだ後、上記処理と同様に差画像を算出して欠陥判定を実施する方法や、特許文献3に記載されているような、検査対称画像と参照画像の明るさやコントラストなどの特徴を軸に持つ多次元空間に投票したデータをもとに欠陥判定を実施する方法であっても良く、すなわち検査対象画像と参照画像明るさ情報に基づいて欠陥判定するものであれば良い。
【0044】
次に、検査に先立って行う、対物レンズ31の波面収差を検出し、その分布を補正する方法について説明する。
先ず図18を用いて、対物レンズ31の波面収差を検出するための点光源を形成する点光源形成光学系109について説明する。
点光源形成光学系109は、カップリングレンズ192、光ファイバー193、コリメートレンズ195、集光レンズ196、視野絞り197を備えて構成される。
この点光源形成光学系109には、レーザ光源11から発射されたレーザを用いる。すなわち、レーザ光源11から出力されたレーザをレーザの光路に対して出し入れ可能に設置されたミラー191で反射させてカップリングレンズ192に入射させ、カップリングレンズ192を用いて光ファイバー193の一端に導光する。この光ファイバー193に入射したレーザを光ファイバー193のもう一方の端から出力させてレンズ195でコリメートし、対物レンズ31よりもNAの大きいレンズ196で集光し、このレンズ196の焦点近傍に設置した視野絞り197に設けた開口198を通過させ、視野絞りを出てきた光を点光源109として用いる。この視野絞り197の位置は、搬送系20に保持された状態のウェハ100の表面高さとほぼ同じになるように設定する。
【0045】
点光源形成光学系109の構成は、本実施例では簡単のため上記の通りとしたが、他に良く知られている方法でもよい。
また、点光源形成光学系109は基板搬送系20の基板チャック24に隣接して設置されている構成として説明したが、基板搬送系20に着脱可能な構成として、波面収差計測時に基板搬送系20の基板チャック24に隣接させて設置し、ウェハ100の検査時には基板搬送系から取り外すようにしてもよい。
【0046】
次に、図8を用いて収差を実測する処理のフローの例について説明する。
先ず、点光源形成光学系109の視野絞り197の開口部198から検査に使用する光と同一の波長を持つ光、即ちレーザ光源11から発射されてミラー191で反射されてカップリングレンズ192を介して光ファイバー193に入射したレーザを出射させる(S801)。
この視野絞り197の開口部198から出射して対物レンズを透過したレーザ光を瞳面測定系310で観察して波面収差を検出するが、波面収差は対物レンズ31の視野内の位置によって異なるため、波面収差の分布を知るために、予め設定しておいた対物レンズ31の視野内の複数の像点での収差を測定する。そこで、該当する視野内の像点に視野絞り197の開口部198がほぼ位置するように、搬送系20を駆動して各ステージの位置を制御する(S802)。
【0047】
各ステージの位置が制御された状態で点光源109から出射して対物レンズ31を透過した光について瞳面測定系310を用いて対物レンズ31のフーリエ変換面上の光強度分布をエリアセンサ315で、波面収差をアレイレンズ316を介してエリアセンサ317で観測することにより対物レンズ31の瞳面における光強度分布と波面収差とを、それぞれ測定する(S803)。
このとき波面収差は欠陥検出感度に影響を与えうるため、前回測定した波面収差を逐次保存しておき、今回測定した結果との比較を行って、装置状態が前回測定時から大きく変わっていないことを確認してもよい。
【0048】
また、波面収差と合わせてzステージの座標を測定しておき、波面収差を各成分に分解した際のデフォーカス成分をzステージ座標から差し引くことで、装置内における温度変化を主とする環境変化によって生じるデフォーカス量を測定し、フォーカス測定系50が出力するフォーカス測定値を補正してもよい。
以上が、特定点での波面収差測定の手順である。
【0049】
上記の通り、波面収差は対物レンズ31の視野内の位置によって異なるため、予め設定しておいた視野内の全ての点について、それぞれ波面収差を測定してもよい(S804)。
【0050】
ウェハ検査時にはミラー191をレーザの光路から退避させて点光源形成光学系109を消灯し、レーザ光源11から出射したレーザを円錐曲面レンズ12に入射させ成形してウェハ100上の線状の領域109を照明する。(S805)。
【0051】
次に、図9及び図10Aと図10Bを用いて、対物レンズの波面収差が原因で生じる機差を低減するための、遮光領域を設定する実施例について説明する。図9には、遮光領域を設定するための処理フローを、また、図10A及び図10Bには、遮光領域設定用のGUI画面の例を示す。
【0052】
まず、測定済の波面収差分布結果が保存されていればその結果を、保存されていなければ波面収差分布を実測した結果を表示する(S901)。図10Aにその例を示す。GUI画面上には、点光源形成光学系109を用いてエリアセンサ317で検出して得た対物レンズ31の瞳面における波面収差の分布1041と、線状の領域199が照明されたウェハ100からの散乱光による対物レンズ31の瞳面上の光像をエリアセンサ315で検出して得たパターン領域からの瞳面における回折光の強度分布1051と、空間フィルタの遮光領域1054とを重ねて表示する。
【0053】
次に、波面収差が許容範囲を超える領域を遮光するという考え方に基づいて、遮光領域を設定する(S902)。GUI画面上で波面収差に対する許容範囲、及び回折光強度に対する遮光しきい値を設定する。図10Aの波面収差の瞳面分布1041に対しては、図10Bに示すように、GUI画面上に表示されたスライドバー9342を動かすか、もしくは窓9343に数値を入力することにより、収差許容範囲を設定できる。この設定した収差許容範囲から外れた収差が測定された領域を遮光するよう、図10Bに示すように、例えば2次元に配置した開閉シャッタのマトリックスで構成した空間フィルタ32のピクセルを自動的に遮光領域(図10Bの1042で白く塗りつぶされた領域)と指定することができる。
【0054】
また、図10Aに示した回折光強度分布1051に対し、スライドバー9352を動かすか、もしくは窓9353に数値を入力することにより、図10Bの1052に示したように遮光しきい値を設定することができ、設定した遮光しきい値よりも輝度値が大きい領域を空間フィルタのピクセルが遮光領域(図10Bの1052で白く塗りつぶされた領域)に設定した状態を示す。また、図10Bの1055には、遮光パターン1042と1052とをマージした遮光領域(図10Bの1055で白く塗りつぶされた領域)を示している。
【0055】
閾値を用いて自動的に設定した遮光領域に対して、マウス等のポインティングデバイスを用いて、空間フィルタ32の所望のピクセルに対応するGUI上で所望の空間フィルタ32のピクセルをクリックすると、遮光領域の設定がon/offされると同時に、塗りつぶしもon/offされる。
【0056】
また、この方法によって、GUI上で設定した閾値を用いて空間フィルタ32の遮光領域を自動的に設定することの代わりに、GUI上で空間フィルタの各ピクセルの遮光on/offを設定することも可能である。
【0057】
遮光領域が大きくなりすぎると、欠陥検出感度への致命的な影響があるため、全視野に占める遮光領域の割合を一定値以下(例えば40%以下)に設定し、その範囲内で遮光領域を決定するようにする。
【0058】
なお、この図10A及びBのように、現在設定中の遮光領域を検査に適用した場合の、標準欠陥であるPSL球(ポリスチレンラテックス製の球)の検査画像をシミュレーション計算した結果9355を示してもよい。
【0059】
検査画像の計算方法は、ウェハ上PSL球に照明した場合の瞳面上での光散乱光分布を、各照明条件について位相を含めて予め計算しておき、遮光領域を考慮してフーリエ変換及び逆フーリエ変換を用いて結像計算する。
【0060】
このときPSL球のサイズによって散乱光分布が大きく異なるため、遮光条件が同じでも、検査画像が受ける影響の大きさが変わってくる。
【0061】
本実施例では、大小2種類のPSL球のシミュレーション画像を示すことにより、現在設定中の遮光領域による欠陥検査感度への影響を、複数の観点から確認することとしている。
【0062】
次に、図11を用いてウェハ表面に形成されたパターンからの回折光を、瞳面上に設置された空間フィルタを用いて遮光する実施例について説明する。
まず、ウェハ検査に用いる照明条件を設定する(S1101)。
次に、搬送系制御ユニット81で基板搬送計20を制御して基板100を移動させウェハ100の回折光を遮光したいパターン部が照明光学系10による線状の照明領域に入るようにする(S1102)。
【0063】
この状態で、照明光学系10によりレーザ光が照射されたパターンからの回折光を含むウェハ100からの散乱光のうち、対物レンズ31を透過して対物レンズ31の出射側の瞳面上に形成された像を瞳面観察系310のレンズ系311と313を介して光センサ315の検出面上に結像させて瞳面の画像を取得する(S1103)。
【0064】
つぎに、この取得した瞳面の画像のうち、強い回折光を検出した領域(図10Aの1051に相当)を遮光する考え方に基づいて、遮光領域を設定する(S1104)。
ここで、予め設定された割合を超えて瞳面を遮光していないかを確認する(S1105)。これは、上記図9を用いて説明したように、遮光領域を大きくすると検査画像の解像度が落ち、欠陥検出感度が落ちる傾向があるためである。図12に空間フィルタ32による遮光領域の設定状態1261を確認するGUIの実施例を示す。予め取得した瞳面強度分布1051(図10A参照)に対し、空間フィルタ32による遮光領域1254を塗りつぶした形で上書きしたもの(強度分布+遮光領域)1261を表示しておく。
【0065】
続いて、空間フィルタ32が所望の遮光パタンになるように設定されている状態でウェハ100からの回折光を遮光したいパターン部を含む領域からの散乱光により瞳面分布を実測し(S1106)、強い回折光が入射していた領域が遮光されていることを確認する(S1107)。
【0066】
図12に空間フィルタによる遮光領域の設定状態を確認するGUIの実施例を示す。
予め取得した瞳面強度分布1051(図10A参照)に対し、遮光領域1254を塗りつぶした形で上書きしたもの(瞳面強度分布9361)を表示しておく。
【0067】
次に、瞳面強度分布1051(図10A参照)を取得したパターン領域が照明領域109に入るように移動した後、予め設定された遮光パターンが形成されている空間フィルタ32を介して瞳面強度分布1261を新たに取得する。瞳面強度分布1261及び1262を比較することにより、遮光領域1254が設定したとおりに空間フィルタ32によって遮光されていることを確認する。これが作業者の設定ミス等によってうまくいっていない場合、もしくは、追加で遮光したい領域がある場合、設定追加ボタンを押すことで、遮光領域設置画面に戻る。そこで設定を修正することができる。問題ない場合には確認ボタンを押して、空間フィルタの遮光領域確認を完了する。
【0068】
第1の実施例の、ウェハ上パターンからの回折光を遮光するように、空間フィルタの遮光領域を設定する方法の変形例を、図12及び図15を用いて説明する。
図13A及びBに、遮光領域設定用のGUI画面の実施例を示す。
図13Aは初期状態である。
複数の予め設定したパターン領域からの、瞳面における回折光の強度分布1351と1351’とを、空間フィルタの遮光領域を示す図1354とを表示する。各回折光強度分布に対し、スライドバー9452を動かすか、もしくは窓9453に数値を入力することにより、遮光しきい値を設定する。遮光しきい値よりも輝度値が大きい画素を含む、空間フィルタのピクセルを、自動的に遮光領域と指定する。遮光された領域は塗りつぶされる。
【0069】
図13Bに、一部領域が遮光領域と設定された状態を示している。
なお遮光領域については、マウス等のポインティングデバイスを用いて、所望の空間フィルタのピクセルをクリックすると、塗りつぶしがon/offする。この方法によって各ピクセルの遮光on/offを設定することも可能である。
【0070】
各回折光強度分布に対して設定した遮光領域1352、1352’を、マージした遮光領域1355を表示する。遮光領域が大きくなりすぎると、欠陥検出感度への致命的な影響があるため、注意しながら設定を実施する。
【0071】
なお、図13A及び図13Bのように、現在設定中の遮光領域を検査に適用した場合の標準欠陥であるPSL球の検査画像をシミュレーション計算した結果を示してもよい。計算方法は、上記図10の説明と同様である。
【0072】
次に図14を用いて、ウェハ表面近傍に形成された複数の領域からのパターン回折光について、瞳面上に設置された空間フィルタを用いて遮光する実施例について、説明する。
【0073】
パターン回折光を遮光したい1つもしくはそれ以上の領域を、予め指定しておく。
まず、ウェハ検査に用いる照明条件を設定する(S1401)。
次に、回折光を遮光したいパターン部が照明光照射領域に入るよう、ステージ系を動作させて基板100を移動する(S1402)。
パターンからの回折光を含む、瞳面画像を取得する(S1403)。ここで、上記にて指定しておいた1つもしくはそれ以上の、回折光を遮光したいパターンが存在する領域の瞳面画像を取得する(S1404)。
【0074】
必要な瞳面画像が取得できたら、次に強い回折光を遮光する考え方に基づいて、遮光領域を設定する(S1405)。ここで、予め設定された割合を超えて瞳面を遮光していないかを確認する(S1406)。これは、上記図9の説明でも載せたように、遮光領域を大きくすると検査画像の解像度が落ち、欠陥検出感度が落ちる傾向があるためである。特に本実施例のように、複数領域のパターン回折光を遮光する場合には、遮光領域が広くなりがちであるため注意する。遮光領域が広くなりすぎた場合は、遮光する回折光を減らすなどの検討を行って、遮光領域を減らす検討を繰り返す。
【0075】
続いて、空間フィルタが設定されている状態で瞳面画像3235’を実測し(S1407)、強い回折光が入射していた領域が遮光されていることを確認する(S1408)。遮光領域に問題が無ければ、本実施例における空間フィルタ設定は完了である。
【0076】
次に第1の実施例の、対物レンズの収差が原因で生じる機差を低減するために、空間フィルタの遮光領域を設定する方法の変形例を、図15及び図16を用いて説明する。
【0077】
まず図15を用いて、対物レンズの収差が原因で生じる機差を低減するための、遮光領域を設定するフローの実施例について説明する。
【0078】
予め設定した対物レンズの視野内の各点について、波面収差分布が測定・保存されていない場合には、各点にて収差分布を実測する(S1501)。対物視野内の各点における波面収差が、許容範囲を超える領域を遮光する考え方に基づいて、遮光領域を設定する(S1502)。
【0079】
ここで、予め設定された割合を超えて瞳面を遮光していないかを確認する(S1503)。これは、遮光領域を大きくすると対物レンズのNAを小さくしたのと同じ効果があり、検査画像の解像度が落ち、これに伴って欠陥検出感度が落ちる傾向があるため、これを防ぐ。設定した遮光領域を保存し、空間フィルタを制御して遮光領域を設定する(S1504)。
【0080】
続いて、空間フィルタが設定されている状態で対物レンズの収差分布を実測し(S1505)、対物レンズの収差が大きい部分が遮光されていることを確認する(S1506)。
要修正事項があれば、再度遮光領域を設定し、問題なければ、遮光領域を保存する(S1507)。
【0081】
図16に、視野内各点における波面収差が共通して大きくなっている領域を遮光するように設定するためのGUI画面の実施例を示す。複数の予め設定した視野内各点における波面収差を、空間フィルタの遮光領域と重ねて表示する。各回折光強度分布に対し、スライドバー9542を動かすか、もしくは窓9543に数値を入力することにより、収差の許容範囲を設定する。
【0082】
設定した収差の許容範囲を共通して外れている収差測定領域を含む空間フィルタのピクセルを、自動的に遮光領域と指定する。遮光された領域は塗りつぶされる。なお遮光領域については、マウス等のポインティングデバイスを用いて、所望の空間フィルタのピクセルをクリックすると、塗りつぶしがon/offする。この方法によって各ピクセルの遮光on/offを設定することも可能である。
【0083】
各回折光強度分布に対して設定した遮光領域1641、1641’を、マージした遮光領域1644を表示する。遮光領域が大きくなりすぎると、欠陥検出感度への致命的な影響があるため、注意しながら設定を実施する。
【0084】
なお図16にあるように、現在設定中の遮光領域を検査に適用した場合の、標準欠陥であるPSL球の検査画像をシミュレーション計算した結果を示してもよい。計算方法は、前記図10の説明と同様である。
【0085】
なお、図16では示していないが、a) 遮光を提案する領域の明示、b) 現在選択中の遮光領域で検査した場合のシミュレーション画像を表示、といった、要遮光領域入力画面表示でアシスト機能があってもよい。この時、標準状態の画像及び標準状態との差を表す画像が表示されてもよい。
【0086】
次に、本発明を半導体デバイスの製造ラインで用いられる複数の検査装置に適用した実施例を図17を用いて説明する。図17には、半導体デバイスの製造ラインの構成の一例として、複数のプロセス処理装置、すなわち、ウェハ上にスパッタリング又はCVDで薄膜を形成する薄膜形成装置1701、薄膜上にレジストを塗布し回路パターンを露光し現像するレジスト露光現像装置1702、レジストパターンをマスクにして前記薄膜をエッチングして除去するエッチング装置1703、レジストのマスクパターンを除去するレジスト除去装置1704、レジストが除去されて露出した薄膜パターンを保護するための保護膜形成装置1705等を備えた構成をしめす。これらのプロセス処理装置を備えた半導体デバイスの製造ラインにおいて、各プロセス処理装置で処理されたウェハ100上の欠陥を検査するために、複数の欠陥検査装置1711〜1713が並んでいる状態を示す。ここで検査装置1711〜1713は、図1に示したような構成のウェハ上に発生した異物欠陥を検査する検査装置である。このようなライン構成において、本発明を適用した実施例を説明する。
検査装置1711〜1713のそれぞれについて、検査の準備段階で、先ず、図8のフロー図で説明したように、点光源形成光学系109を用いて対物レンズ31の波面収差を測定し対物レンズ31の波面収差の分布を測定して、波面収差が予め設定したレベル以上になる部分を空間フィルタ32で遮光するように遮光パターンを設定する。
【0087】
次に、図3で説明したフローに沿って検査条件を設定する。そして、S308のステップにおいて、線状の領域109を照明されたウェハ100からの散乱光により対物レンズ31の瞳面上に形成された光像を瞳面観測系310のエリアセンサ315で撮像してウェハ上の繰り返しパターンからの散乱光により発生した回折光パターンの発生位置を確認し、この回折光パターンを遮光するように空間フィルタ32の遮光パターンを設定する。更にS309のステップで対物レンズ31の波面収差の分布に対応した空間フィルタ32の遮光パターンとウェハからの回折光パターンに対応した空間フィルタ32の遮光パターンとを組合わせた遮光パターンを形成する。この組合わせた遮光パターンを用いて、図4で説明したフローに沿ってウェハ上の欠陥を検査する。
【0088】
このようにして遮光パターンが調整された空間フィルタを用いて検査を行うことにより、各検査装置1711〜1713特有の対物レンズの波面収差の装置間の差、即ち機差を低減させて検査が行われるので各検査装置1711〜1713間の欠陥検出感度をそろえることが可能になる。これにより、複数の検査装置間の検査データを比較して各プロセス処理装置での欠陥の発生状況を正しく管理することが可能になる。
【0089】
即ち、本発明によれば、上記した実施例で説明したように、機差の発生の重要な要因の一つである対物レンズの収差を各検査装置間で合わせ込む事ができるので、複数の検査装置間の検査データを比較して各プロセス処理装置での欠陥の発生状況を正しく管理することが可能になる。
【符号の説明】
【0090】
1・・・装置本体 10・・・照明光学系 11・・・レーザ光源 12・・・ビーム整形用レンズ 20・・・基板搬送系 21・・・Xステージ 22・・・Yステージ 23・・・Zステージ 24・・・基板固定支持部(ウェハチャック) 25・・・θステージ 30・・・欠陥検出光学系 31・・・対物レンズ 32・・・空間フィルタ 33・・・結像レンズ 34・・・偏光フィルタ 35・・・光センサ 36・・・A/D変換ユニット 50・・・フォーカス測定系 60・・・画像処理系 62・・欠陥判定・検出ユニット 80・・・全体制御系 90・・・インターフェース系 91・・・記憶部 92・・・入出力手段 93・・・表示手段 100・・・被検査基板 109・・・点光源 199・・・サンプル表面の照明領域 310・・・瞳面観察系。

【特許請求の範囲】
【請求項1】
検査対象の試料を保持して平面内で移動可能なテーブル手段と、
該テーブル手段に保持された前記試料の表面を照明する照明手段と、
該照明手段で照明された前記試料からの散乱光を対物レンズで集光して検出する検出部と前記対物レンズの瞳面を観察する瞳面観察部とを有する検出光学系手段と、
該検出光学系手段で検出した前記試料からの散乱光の検出信号を処理して前記試料上の欠陥を検出する信号処理手段と、
前記テーブル手段と前記照明手段と前記検出光学系手段と前記信号処理手段とを制御する制御手段と
を備えた欠陥検査装置であって、
前記照明手段は前記テーブル手段に保持された試料の表面と同じ高さの位置に点状の光源を形成する点光源形成部を有し、
前記検出光学系手段の瞳面観察部は、前記点光源部から発射されて前記対物レンズを透過した光の前記対物レンズの瞳面上における波面を観察する波面観察系と、前記照明手段で照明された前記試料から発生して前記対物レンズを透過した散乱光の前記対物レンズの瞳面上における強度分布を観察する光強度分布観察系とを有することを特徴とする欠陥検査装置。
【請求項2】
画面を有する表示手段を更に備え、該表示手段の画面上に前記検出光学系手段の瞳面観察部の波面観察系で観察した前記対物レンズの瞳面上における前記点光源部から発射され光の波面の分布の情報と、前記検出光学系手段の瞳面観察部の光強度分布観察系で観察した前記対物レンズの瞳面上における前記試料からの散乱光の強度分布の情報とを表示することを特徴とする請求項1記載の欠陥検査装置。
【請求項3】
前記検出光学系手段は前記対物レンズを透過した光のうち特定の領域の光を遮光する空間フィルタ部と該空間フィルタ部の遮光パターンを制御する遮光パターン制御部とを更に有し、該遮光パターン制御部は前記波面観察系で観察された前記点光源部から発射されて前記対物レンズを透過した光の前記対物レンズの瞳面上における波面の情報と、前記光強度分布観察系で観察された前記照明手段で照明された前記試料から発生して前記対物レンズを透過した散乱光の前記対物レンズの瞳面上における強度分布の情報とに基づいて前記空間フィルタ部の遮光パターンを制御することを特徴とする請求項1記載の欠陥検査装置。
【請求項4】
前記波面の情報と前記強度分布の情報とを画面上に表示する表示手段を更に備え、前記遮光パターン制御部は、前記波面の情報と前記強度分布の情報とが表示された画面上で設定された前記空間フィルタ部の遮光パターンの情報に基づいて前記空間フィルタ部の遮光パターンを制御することを特徴とする請求項3記載の欠陥検査装置。
【請求項5】
前記照明手段はビーム整形用レンズを有し、該ビーム整形用レンズを介して前記テーブル手段に保持された前記試料の表面の線状の領域を前記試料の表面の法線方向に対して斜めの方向から照明することを特徴とする請求項1記載の欠陥検査装置。
【請求項6】
前記照明手段はビーム整形用レンズを有し、該ビーム整形用レンズを介して前記テーブル手段に保持された前記試料の表面の線状の領域を前記試料の表面の法線方向に対して斜めの方向から照明することを特徴とする請求項1記載の欠陥検査装置。
【請求項7】
光源から発射された光を検査対象の試料の表面に照射し、
該光を照射された前記試料から発生した散乱光のうち対物レンズで集光されて遮光パタンを有する空間フィルタを透過した散乱光を検出し、
該検出した前記試料からの散乱光の検出信号を処理して前記試料上の欠陥を検出する
欠陥検査方法であって、
前記試料の表面と同じ高さの位置に配置した点状の光源から発射されて前記対物レンズを透過した光の前記対物レンズの瞳面上における波面を観察し、
前記照明光で照明された前記試料から発生して前記対物レンズを透過した散乱光の前記対物レンズの瞳面上における強度分布を観察し、
前記観察して得た前記対物レンズの瞳面上における波面の情報と前記観察して得た前記対物レンズの瞳面上における波面の情報とを用いて前記空間フィルタの遮光パターンを調整することを特徴とする欠陥検査方法。
【請求項8】
前記観察して得た前記対物レンズの瞳面上における前記点光源部から発射された光の波面の分布の情報と、前記観察して得た前記対物レンズの瞳面上における前記試料からの散乱光の強度分布の情報とを表示画面上に並べて表示することを特徴とする請求項7記載の欠陥検査方法。
【請求項9】
前記点光源部から発射された光の波面の分布の情報と前記試料からの散乱光の強度分布の情報とが表示された画面上で前記空間フィルタの遮光パターンを調整することを特徴とする請求項7記載の欠陥検査方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−53186(P2011−53186A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【出願番号】特願2009−204767(P2009−204767)
【出願日】平成21年9月4日(2009.9.4)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】