説明

永久磁石式回転電機

【課題】スキュー構造の回転子鉄心を有する永久磁石式回転電機において、短絡コイルを永久磁石の周囲に簡単な手法で組み込む。
【解決手段】スキュー角度に合わせて、導電性の板30の両面に導電性バー31a,32aと31b,32bを、導電性の板30の表面と裏面とで回転子の周方向にずれた位置に設ける。両面の導電性バー31a〜32bを短絡コイル挿入孔22a,22bに挿入した状態で、導電性の板30を鉄心部20a,20bに挟持させる。導電性バー31aと32aの先端、及び導電性バー31bと32bの先端同士を短絡接続して、短絡接続部33a,33bを形成する。鉄心部20a内には、導電性の板30−導電性バー31a−短絡接続部33a−導電性バー32aから成る短絡コイルが、鉄心部20b内には、導電性の板30−導電性バー31b−短絡接続部33b−導電性バー32bから成る短絡コイルが形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転子内部に短絡コイルを内蔵した永久磁石式回転電機とその製造方法に関するものであって、特に、回転子の鉄心にスキューを形成した永久磁石式回転電機に係る。
【背景技術】
【0002】
回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。
【0003】
そこで、回転子内に、固定子巻線のd軸電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では、可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、全鎖交磁束量を調整する技術が提案されている。(特許文献1、特許文献2参照)
【0004】
なお、永久磁石の磁束量は、保磁力と磁化方向厚の積によって決定されるため、実際に回転子鉄心内に可変磁力磁石と固定磁力磁石とを組み込む場合には、可変磁力磁石としては保磁力と磁化方向厚の積が小の永久磁石を、固定磁力磁石としては保磁力と磁化方向厚の積が大の永久磁石を使用する。また、一般に、可変磁力磁石としては、アルニコ磁石やサマリウムコバルト磁石(サマコバ磁石)、フェライト磁石を使用し、固定磁力磁石としてはネオジム磁石(NdFeB磁石)を使用する。
【0005】
ところで、この種の永久磁石式回転電機において、高速回転域でいったん減磁した可変磁力磁石を増磁する場合に、可変磁力磁石に近接配置した固定磁力磁石の磁界が、d軸電流が作る増磁用の磁界の妨げとなり、その分増磁のためのd軸電流(磁化電流)が増大する現象がある。このような現象に対応するため、本発明者等は、固定磁力磁石の近傍に短絡コイルを配置し、この短絡コイルを貫通するd軸電流による磁界によって短絡コイルに誘導電流を発生させ、その誘導電流により前記固定磁力磁石により発生する磁界を打ち消すことにより、増磁時のd軸電流の増加を押さえた永久磁石式回転電機を提案した(特願2008−162203)。
【0006】
【特許文献1】特開2006−280195号公報
【特許文献2】特開2008−48514号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、前記の短絡コイルは、回転子鉄心内に配置した永久磁石の周囲に設ける必要があるため、如何にして簡単な手法で鉄心内に組み込むかが検討されている。例えば、短絡コイルと永久磁石とを密着して配置する場合には、永久磁石の周囲に短絡コイルを巻き付けた後、永久磁石とコイルとを鉄心内に開口させた永久磁石装着スペースにはめ込むことができる。しかし、永久磁石と短絡コイルとが離れ、両者の間に鉄心部分が存在すると、細いコイル挿入孔に、1本ずつ短絡コイルを挿入していかねばならず、その組立は甚だ困難になる。
【0008】
特に、この種の永久磁石式回転電機、特に、小型・高出力化を要求されるハイブリッド車両用の永久磁石式回転電機では、限られた空間内での高トルク、高出力が要求され、それに伴い、トルクリップル、振動、騒音の減少が要求されている。そのため、回転子積層鉄心をブロック状にして、それらを円周方向にずらしたスキュー構造が採用される。このようなスキュー構造とした永久磁石式回転電機において、回転子鉄心内に組み込まれた永久磁石の周囲に、更に、前記のような短絡コイルを設けることは、極めて面倒な作業であった。
【0009】
本発明は前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、スキュー構造の回転子鉄心を有する永久磁石式回転電機において、短絡コイルを永久磁石の周囲に簡単な手法で組み込むことを可能とした永久磁石式回転電機及びその製造方法を提供することにある。
【課題を解決するための手段】
【0010】
前記の目的を達成するために、本発明の永久磁石式回転電機は、回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設け、各鉄心部の短絡コイルを、各鉄心部のスキュー角度に応じて回転子の周方向にずれた角度で配置すると共に、各鉄心部の短絡コイルを鉄心の境界部において段差部をもって接続することを特徴とする。
【発明の効果】
【0011】
前記のような構成を有する本発明の永久磁石式回転電機では、スキュー構造の回転子鉄心の鉄心部に対して、そのスキュー角度だけずれた構造の短絡コイルを組み込むことが可能になる。その結果、スキューした鉄心部に対する短絡コイルの組み込み作業が簡単になり、短絡コイルを有する永久磁石式回転電機を容易に得ることができる。
【発明を実施するための最良の形態】
【0012】
(1)第1実施形態
以下、本発明の第1実施形態を図1〜図5に従って具体的に説明する。図1は本実施形態の永久磁石式回転電機の回転軸と直交する方向の断面図で、減磁時の磁束の方向を示す図、図2は同じく増磁時の磁束の方向を示す図である。図3は本実施形態の永久磁石式回転電機の組立途中の状態を示す分解斜視図、図4は同じく回転軸と平行な方向の断面図、図5は同じく完成状態の断面図である。
【0013】
(1−1)永久磁石式回転電機の構成
本発明の第1の実施形態の回転子1は、図1に示すように回転子鉄心2、可変磁力磁石3、固定磁力磁石4から構成される。回転子鉄心2は珪素鋼板を積層して構成し、前記の永久磁石は回転子鉄心2内に埋め込む。回転子鉄心2内を通過する磁束が可変磁力磁石3と固定磁力磁石4の厚さ方向に通過するように、可変磁力磁石3と固定磁力磁石4の端部に磁気障壁となる空洞5を設ける。
【0014】
本実施形態では、可変磁力磁石3はフェライト磁石またはアルニコ磁石とし、この実施形態ではフェライト磁石を使用した。固定磁力磁石4は、NdFeB磁石を使用した。この可変磁力磁石の保磁力は280kA/mとし、固定磁力磁石の保磁力は1000kA/mとする。可変磁力磁石3は磁極中央のd軸に沿って回転子鉄心2内に配置し、その磁化方向はほぼ周方向である。固定磁力磁石4は磁化方向がd軸方向に対して所定の角度を持つように、前記可変磁力磁石3の両側の回転子鉄心2内に配置する。
【0015】
前記回転子鉄心2内に埋め込まれた固定磁力磁石4を取り囲むように、短絡コイル8を設ける。この短絡コイル8は、リング状の導電性部材から構成し、回転子鉄心2内に設けた空洞5の縁の部分にはめ込むように装着する。なお、後述する他の実施形態のように回転子の鉄心の穴に高温で溶けた導電性物質を流し込んで鋳造して製作することも可能である。
【0016】
この短絡コイル8は、電機子巻線にd軸電流を通電させた場合に発生する磁束で、短絡電流が発生するものである。そのため、この短絡コイル8は、可変磁力磁石3を除いた固定磁力磁石4の磁路部分に設ける。その場合、固定磁力磁石4の磁化方向を中心軸として、固定磁力磁石4周囲に短絡コイル8を設ける。
【0017】
本実施形態では、この短絡コイル8は、固定磁力磁石4の上下にそれぞれ設けられているが、上下いずれか一方でも良い。また、短絡コイル8を固定磁力磁石の上下の面(磁化方向と直行する方向)と平行に設けたが、短絡コイルの対角線方向に1本あるいはX字状に2本設けることもできる。さらに、固定磁力磁石の表面に密着して設ける以外に、図示のように固定磁力磁石、及び固定磁力磁石と可変磁力磁石との間のブリッジ部分6を取り囲むように設けることもできる。
【0018】
短絡コイル8は、可変磁力磁石3の磁化が変化する程度の短絡電流が1秒以内に流れ、その後1秒以内にその短絡電流を50%以上減衰させるものであることが好ましい。また、短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。
【0019】
前記回転子2の外周には、エアギャップ9を介して固定子10を設ける。この固定子10は、電機子鉄心11と電機子巻線12とを有する。この電機子巻線12に流れる磁化電流により、短絡コイル8には誘導電流が誘起され、その誘導電流によって短絡コイル8を貫通する磁束が形成される。
【0020】
また、この電機子巻線12に流れる磁化電流により、可変磁力磁石3の磁化方向が可逆的に変化する。すなわち、可変磁力磁石と固定磁力磁石に対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石3を磁化させて可変磁力磁石3の磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。
【0021】
また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石と固定磁力磁石とで生じる電機子巻線の鎖交磁束量(回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の可変磁力磁石と固定磁力磁石とによって生じる磁束とから構成される電機子巻線全体の鎖交磁束量)をほぼ可逆的に変化させる。
【0022】
特に、本実施形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。すなわち、大きなd軸電流で可変用磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変用磁石3の極性を反転させているので、端子電圧を低下させるような負のd軸電流を流しても、可変用磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変用磁石3は減磁することなく、端子電圧の大きさを調整することができる。
【0023】
(1−2)減磁及び増磁作用
次に、前記のような構成を有する本実施形態の永久磁石式回転電機における増磁時と減磁時の作用について説明する。なお、各図中に、電機子巻線12や短絡コイル8によって発生した磁力の方向を矢印により示す。
【0024】
本実施形態では、固定子10の電機子巻線12に通電時間が0.1ms〜100ms程度の極短時間となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界Aを作用させる(図1参照)。永久磁石を磁化するための磁界Aを形成するパルス電流は、固定子10の電機子巻線12のd軸電流成分とする。
【0025】
2種類の永久磁石の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変る。永久磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線12にパルス的に通電する。負のd軸電流によって変化した磁石内の磁界Aが−280kA/mになったとすると、可変磁力磁石3の保磁力が280kA/mなので可変磁力磁石3の磁力は不可逆的に大幅に低下する。
【0026】
一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。さらに−280kA/mよりも大きな逆磁界をかけると可変磁力磁石3は逆方向に磁化して極性は反転する。この場合、可変磁力磁石3の磁束と固定磁力磁石4の磁束は打ち消しあうので永久磁石の全鎖交磁束は最小になる。
【0027】
この場合、固定磁力磁石4によって生じる磁界の磁力の方向は、図1のBに示すように、固定磁力磁石4から可変磁力磁石3の方向となるので、前記電機子巻線12による磁界の磁力の方向と一致するため、可変磁力磁石3の減磁させる方向に強い磁力が作用する。同時に、短絡コイル8には、電機子巻線12の磁界Aを打ち消すような誘導電流が発生し、その誘導電流によって図1矢印Cで示すような磁力の方向を有する磁界が発生する。この短絡コイル8による磁力Cも、可変磁力磁石3の磁化方向を逆方向に向けるように作用する。これらより、可変磁力磁石3の減磁及び極性の反転が効率的に行われる。すなわち、短絡コイル8に誘起された誘導電流により発生した磁界Cの磁力の方向は、可変磁力磁石3を貫通する部分においては、磁化電流による磁界Aの方向と一致するので、減磁方向の磁化も効果的に行われる
【0028】
つぎに、永久磁石の全鎖交磁束を増加させて最大に復元させる過程(増磁過程)を説明する。減磁完了の状態では、図2に示すように、可変磁力磁石3の極性は反転しており、反転した磁化とは逆方向(図1に示す初期の磁化方向)の磁界を発生する正のd軸電流を電機子巻線12に通電する。反転した逆極性の可変磁力磁石3の磁力は前記磁界が増すに連れて減少し、0になる。さらに正のd軸電流による磁界を増加させると極性は反転して初期の極性の方向に磁化される。ほぼ完全な着磁に必要な磁界である350kA/mをかけると、可変磁力磁石3は着磁されてほぼ最大に磁力を発生する。
【0029】
この場合、減磁時と同様に、d軸電流は連続通電で増加させる必要はなく、目標の磁力にする電流を瞬間的なパルス電流を流せばよい。一方、固定磁力磁石4の保磁力が1000kA/mなので、d軸電流による磁界が作用しても固定磁力磁石4の磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。
【0030】
以上のようにd軸電流による瞬時的な磁界を可変磁力磁石3と固定磁力磁石4に作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。
【0031】
(1−3)短絡コイル8の作用
つぎに、短絡コイル8の作用について述べる。可変磁力磁石3と固定磁力磁石4は回転子鉄心2内に埋め込まれて磁気回路を構成しているので、前記d軸電流による磁界は可変磁力磁石3のみでなく、固定磁力磁石4にも作用する。本来、前記d軸電流による磁界は可変磁力磁石3の磁化を変化させるために行う。そこで、前記d軸電流による磁界が固定磁力磁石4に作用しないようにし、可変磁力磁石3に集中するようにすればよい。
【0032】
本実施形態では、固定磁力磁石4の周囲に短絡コイル8を配置している。この場合、短絡コイル8は、固定磁力磁石4の磁化方向を中心軸として配置する。図2に示す、可変磁力磁石3の増磁方向の磁化を行う場合、前記d軸電流による磁界Aが固定磁力磁石4に作用すると、前記磁界Aを打ち消すような誘導電流が短絡コイル8に流れる。したがって、固定磁力磁石4中には、前記d軸電流による磁界Aと短絡電流による磁界Cが作用し両者が打ち消し合うために、磁界の増減はほとんど生じない。
【0033】
さらに、短絡電流による磁界Cは可変磁力磁石3にも作用し、d軸電流による磁界Aと同方向になる。したがって、可変磁力磁石3を磁化させる磁界Aが強まり、少ないd軸電流で可変磁力磁石3を磁化できることになる。また、この短絡コイル8による磁界Cの磁力の方向は、固定磁力磁石4によって生じる磁界Bの磁力の方向と反対なので、この磁界Bの磁力を打ち消す方向にも作用する。よって少ない磁化電流により、可変磁力磁石3を効果的に増磁することができる。
【0034】
このとき、固定磁力磁石4は短絡コイル8により前記d軸電流の影響を受けなく、磁束の増加はほとんど生じないので、d軸電流による電機子鉄心11の磁気飽和も緩和できる。すなわち、電機子鉄心11は、d軸電流によって発生する磁界Aが電機子巻線12間に形成された磁路を通過することにより、その部分の磁気飽和が生じる可能性がある。しかし、本実施形態では、短絡コイル8の磁界Cのうち、電機子鉄心11の磁路を通過する部分が、d軸電流による磁界Aと逆方向に作用するので、電機子鉄心11の磁路が磁気飽和することが緩和される。
【0035】
(1−4)永久磁石式回転電機の製造方法
前記のような構成を有する本実施形態の永久磁石式回転電機は、次のようにして製造される。図3において、符号20は本実施形態の永久磁石式回転電機の回転子を示すものであって、この回転子20はその軸方向中央部から2分割されており、第1の鉄心部20aと、第2の鉄心部20bとから構成される。この各鉄心部20a,20bには、図1及び図2において説明したように、固定磁力磁石及び可変磁力磁石の装着孔、磁気障壁となる空洞部、短絡コイルの挿入孔22a,22bが、回転子の軸と平行に鉄心部を貫通するように形成されている。
【0036】
各鉄心部20a,20bの間には、鉄心部と同一外径の導電性の板30が配設されている。この導電性の板30は、前記短絡コイルと同様な銅、アルミなどの導電性の材料によって構成される。導電性の板30の表面には、一方の鉄心部20a内において短絡コイルの一部を構成する一対の導電性バー31a,32aが、また導電性の板30の裏面には、他方の鉄心部20b内において短絡コイルの一部を構成する一対の導電性バー31b,32bの一端が溶接、ろう付けなどの手段で固定されている。この導電性バー31a〜32bは、各鉄心部20a,20bの回転軸方向の寸法よりも、短絡コイルの回転子周方向の長さの1/2だけ長いものであって、各鉄心部の内側(回転子中心側)からこの導電性バー31a〜32bを短絡コイル装着孔22に挿入した場合に、その先端部が各鉄心部の外側(回転子の外側面)に突出する寸法である。
【0037】
この導電性バー31a,30bは、導電性の板30の両面に設けられているが、導電性の板30の表面と裏面とでは、その配設位置が異なっている。すなわち、本実施形態の永久磁石式回転電機は、回転子の鉄心部20a,20bがスキュー構造を採用しているため、回転子の左右の鉄心部20a,20bでは、可変磁力磁石や固定磁力磁石、あるいはその周囲に配置される短絡コイルの位置が、回転子の円周方向にずれている。従って、スキュー角度に合わせて、導電性の板30の両面に設けられた導電性バー31a,32aと31b,32bも、導電性の板30の表面と裏面とで回転子の周方向にずれた位置に設けられている。同様に、これらの導電性バー31a〜32bを挿入する短絡コイル挿入孔22a,22bもスキュー角度ずれた位置に設けられている。
【0038】
なお、図では、短絡コイル挿入孔22a,22b及び導電性バー31a〜32bの一部のみを示しているが、この挿入孔及び導電性バーの数は、磁極数、各磁極に設ける永久磁石数、また、各永久磁石に設ける短絡コイル数に応じて設定される。
【0039】
このような構成を有する導電性の板30を、その両面の導電性バー31a〜32bを短絡コイル挿入孔22a,22bに挿入した状態で、左右の鉄心部20a,20bに挟持させることで、本実施形態の回転子20が構成される。この場合、回転子の左右の鉄心部20a,20bがスキューしており、磁極を構成する可変磁力磁石や固定磁力磁石の位置が周方向にずれていても、導電性の板30に設けた導電性バー31a〜32bも導電性の板の表面と裏面でスキュー角度ずれた位置にあるので、左右の鉄心部20a,20bで導電性の板30を挟持するように結合することで、鉄心の適切な位置(固定磁力磁石を取り囲む位置)に導電性バーを挿入することができる。
【0040】
左右の鉄心部20a,20bにより導電性の板30を挟持すると、回転子20軸方向端面には導電性バー31a〜32bの先端が突出する。そこで、この突出した導電性バー31aと32aの先端、及び導電性バー31bと32bの先端同士を、溶接やろう付けなどの手段で短絡接続して、短絡接続部33a,33bを形成する。その結果、一方の鉄心部20a内には、導電性の板30−導電性バー31a−短絡接続部33a−導電性バー32aから成る短絡コイルが形成され、他方の鉄心部20b内には、導電性の板30−導電性バー31b−短絡接続部33b−導電性バー32bから成る短絡コイルが形成される。この短絡接続部33a,33bの外側は、絶縁材料または導電性バーよりも電気抵抗が大きな部材から成る端板34a,34bによって被覆する。
【0041】
なお、前記のようにして導電性バー31a〜32bの先端同士を接続して短絡接続部33a,33bを形成する代わりに、別途用意した導電性の部材によって導電性バー導電性バー31a〜32bの先端を短絡させることもできる。
【0042】
前記のような構成を有する第1実施形態によれば、導電性の板20の両面に導電性バー31a〜32bを形成しておき、これを左右の鉄心部20a,20bにはめ込むという簡単な作業で、スキュー構造の鉄心内に短絡コイルを配置することができる。特に、短絡コイルを永久磁石とその周囲のブリッジ部とを取り囲むように設ける場合、従来の手法では、鉄心内に貫通した短絡コイル挿入孔内に、コイルを1本ずつ通して行く必要があり、その作業が繁雑であった。しかし、本実施形態では、左右の鉄心部で導電性の板を挟持する場合に、導電性の板に設けた導電性バーを鉄心部の挿入孔内に一括して挿入することで、鉄心内に設けるすべての短絡コイルを一挙に鉄心内に組み込むことができる。その結果、短絡コイルの組み込み作業が、従来技術に比較して格段に向上する。
【0043】
また、回転子の中央部では、すべての短絡コイルの一部を導電性の板30によって共用することで、コイルの結線作業や組み込み作業の簡略化が可能となる。特に、スキュー構造の回転子であっても、導電性の板30に固定する導電性バー31a〜32bの位置を変更するだけで、スキュー角度や磁極の位置に柔軟に対応することができる。
【0044】
(2)第2実施形態
この第2実施形態は、第1実施形態のような導電性の板を使用することなく、個々の導電性バーごとにスキュー角度に応じた段差部を設けることにより、左右の鉄心部20a,20b内を貫通する短絡コイルを得るものである。すなわち、図6は、第2実施形態における各短絡コイルを形成する一対の導電性バー41,42を示す平面図、図7は、この導電性バー41,42によって形成された短絡コイルを有する回転子の断面図である。
【0045】
この導電性バー41,42は、中央の段差部43によって一体化された左右の鉄心挿入部41a〜42bを備えている。この鉄心挿入部41a〜42bは、各鉄心部20a,20bの回転軸方向の寸法よりも、短絡コイルの回転子周方向の長さの1/2だけ長いものであって、各鉄心部の内側(回転子中心側)からこの鉄心挿入部41a〜42bを短絡コイル装着孔に挿入した場合に、その先端部が各鉄心部の外側(回転子の外側面)に突出する寸法である。
【0046】
第2実施形態において、回転子20が一定のスキュー角度を有する左右の鉄心部20a,20bから構成されている。また、左右の鉄心部20a,20bに、可変磁力磁石や固定磁力磁石の装着孔、磁気障壁となる空洞部、及び短絡コイル挿入孔が、スキュー角度分だけずれた位置に設けられている点は、第1実施形態と同様である。
【0047】
一方、左右の鉄心部20a,20bには、第1実施形態の導電性の板に代えて、スペーサ円板44が設けられている。このスペーサ円板44は、鉄心部20a,20bと同様に珪素鋼板によって構成されている。すなわち、このスペーサ円板44は、短絡コイルの一部を構成するものではないので、第1実施形態のような導電性は不要であり、銅やアルミなどの材料で構成する必要はない。このスペーサ円板44には、前記導電性バー41,42の段差部43が入り込む空間部45が形成されている。
【0048】
なお、この一対の導電性バー41,42とその段差部43が入り込む空間部45は、各短絡コイルごとに設けられている。従って、磁極ごとに1個あるいは複数個の短絡コイルを設ける場合、その数に応じて、一対の導電性バー41,42と空間部45を用意する。
【0049】
このような構成を有する第2実施形態では、導電性バー41,42の一方の端部(例えば、鉄心挿入部41a,42a)を、回転子の分割された鉄心部20aの短絡コイル挿入孔内に差し込み、次いで、スペーサ円板44をその空間部45に導電性バー41,42の段差部43が位置するように鉄心部20aに重ね合わせる。更に、スペーサ円板44から突出している導電性バー41,42の反対側の鉄心挿入部41b,42bが短絡コイル挿入孔に入り込むようにして、スペーサ円板44に反対側の鉄心部20bを重ね合わせる。その後、鉄心部20a,20bの軸方向端部より突出した導電性バー41,42の先端部を折り曲げて接続し、短絡接続部46a,46bを形成することで、短絡コイルを構成する。
【0050】
なお、この場合、別途用意した部材で、導電性バー41,42の先端を短絡させても良い。また、第1実施形態のように、中央のスペーサ円板44に各短絡コイルを構成する多数の導電性バー41,42をセットしておき、その両側から左右の鉄心部20a,20bを装着することも可能である。
【0051】
その後、第1実施形態のように、短絡接続部46a,46bの外側を、絶縁材料あるいは導電性バーよりも電気抵抗が大きな部材から成る端板48a,48bによって被覆する。なお、絶縁材料の端板48a,48bの代わりに、端板として珪素鋼板を使用する場合には、図示のように短絡接続部の外側に絶縁部材47a,47bを設ける。
【0052】
以上のような第2実施形態では、左右の鉄心部20a,20b内を貫通した導電性バー41,42と、鉄心部20a,20bの軸方向端面において形成された短絡接続部46a,46bとにより、回転子鉄心内には、スペーサ円板44部分においてスキュー分屈曲した1本の短絡コイルが形成され、回転子鉄心内でスキュー角度ずれた位置に配置された各鉄心部20a,20b内の永久磁石の周囲に短絡コイルを配置することができる。
【0053】
特に、第2実施形態では、中央に導電性の板を使用することがないので、短絡コイルを形成する個々の導電性バーと導電性の板との溶接やろう付けなどの接合作業が不要となり、その製造作業が簡単になる。また、回転子の中央に導電性の板が存在せず、スペーサ円板として鉄心部と同質の珪素鋼板を使用することが可能になるので、磁気特性も優れている。
【0054】
(3)第3実施形態
この第3実施形態は、短絡コイルを溶融した導電性材料を回転子鉄心の導電性部材注入孔に流し込んで、導電性材料が固化したときに短絡コイルを形成するものである。以下、図8の断面図により、第3実施形態を説明する。
【0055】
この第3実施形態においては、左右の鉄心部20a,20bの間にスペーサ円板51を配置すると共に、鉄心部20a,20bの軸方向端部には端板52a,52bを配置する。各鉄心部20a,20b内には、短絡コイルの位置に合わせて導電材料注入孔53a,53bが回転子の軸方向と平行に形成されている。この場合、左右の鉄心部20a,20bの導電部材注入孔53a,53bの位置は、鉄心部20a,20bのスキュー角度だけずれた位置に形成されている。
【0056】
中央のスペーサ円板51には、左右鉄心部に形成した導電部材注入孔53a,53bの鉄心中央側の開口部と連通する空間部54が形成されている。また、左右の端板52a,52bには、導電部材注入孔53a,53bの鉄心端部側の開口部と連通する短絡接続部55a,55bが設けられている。一方の端板(図では、端板52a)には、この短絡接続部55aと連通する導電材料の注入口56が設けられている。
【0057】
このような構成を有する第3実施形態では、左右の鉄心部20a,20b、スペーサ円板51及び左右の端板52a,52bを一体に密着固定した状態で、注入口56から溶融した銅、アルミなどの導電材料を注入する。すると、この導電材料が、導電材料注入孔53a,53b、空間部54及び短絡接続部55a,55b内に流入し、それが固化することにより、回転子鉄心内にスキュー角度ずれた構造の短絡コイルが形成される。
【0058】
この第3実施形態によれば、鉄心内に個々の導電性バーを挿入する手間がなくなり、一挙に複雑な形状をした多数の短絡コイルを形成することができる。
【0059】
(4)第4実施形態
第4実施形態は、直線状の導電性バーを左右の鉄心部に挿入しておき、左右の鉄心部をそれぞれ逆方向にスキューする角度だけひねりを加えることにより、鉄心中央部でスキュー角度分ずれた形状の短絡コイルを形成するものである。図9は、そのひねりを加える前の断面図、図10はひねりを加えた結果得られたスキュー角度分の段差を有する短絡コイルの断面図である。
【0060】
第4実施形態においては、左右の鉄心部20a,20bがスペース板61を介して積層されている。このスペース板61には、短絡コイルの形成時に、スキュー角度に応じた段差部が入り込むことのできる空間部62が設けられている。また、左右の鉄心部20a,20bには、それぞれ一対の短絡コイルの挿入孔63a,63bが、回転子の軸方向と平行に設けられている。この場合、各挿入孔63a,63bは、スペース板61の空間部62に開口しており、各鉄心のスキュー前の状態では、一直線上に配置されている。この短絡コイルの挿入孔63a,63bには、U字形をした導電性バー64の2本の足がそれぞれが挿入されている。
【0061】
この図9に示すように、左右の鉄心部20a,20bとスペース板61を重ね合わせた状態で、短絡コイル挿入孔63a,63bに導電性バー64を挿入し、左右の鉄心部に対して、そのスキュー角度分のひねりを加える。すると、図10に示すように、導電性バー64は、鉄心中央のスペース板61部分において屈曲し、そこにスキュー角度に応じた段差部65が形成される。その後、回転子鉄心の一方の端面に露出しているU字形の導電性バー64の足の部分の先端同士を溶接やろう付けなどで接合することで、一方の短絡接続部66aを形成する。なお、U字形の連結部分が他方の短絡接続部66bとなる。
【0062】
以上のような構成を有する第4実施形態によれば、直線状に配置された挿入孔63a,63bにU字形の導電性バー64を挿入し、鉄心部にひねりを加えるだけで、鉄心内部で段差が付いた短絡コイルを簡単に作製することができる。特に、鉄心の一方向から導電性バー64を挿入するだけでよいので、導電性バーの両側にそれぞれ鉄心部をはめ込む技術に比較して、製造工程が簡単になる。また、導電性バーも単なるU字形でよいので、加工も簡単であり、スキュー角度も鉄心部のひねり量によって決まるため、導電性バー自体はスキュー角度を考慮する必要がなく、どのようなスキュー角度の回転電機に対しても適用可能である。
【図面の簡単な説明】
【0063】
【図1】本発明の第1実施形態を示す回転子と固定子の部分断面図で、可変磁力磁石の減磁時を示す。
【図2】本発明の第1実施形態を示す回転子と固定子の部分断面図で、可変磁力磁石の増磁時を示す。
【図3】本発明の第1実施形態の回転子の組立途中の状態を示す分解斜視図。
【図4】本発明の第1実施形態を示す回転軸と平行な方向の断面図で、鉄心の組立途中の状態を示す。
【図5】本発明の第1実施形態を示す回転軸と平行な方向の断面図で、鉄心の完成状態を示す。
【図6】本発明の第2実施形態における導電性バーの平面図。
【図7】本発明の第2実施形態を示す回転軸と平行な方向の断面図で、鉄心の完成状態を示す。
【図8】本発明の第3の実施形態を示す回転子の断面図で、鉄心の完成状態を示す。
【図9】本発明の第4の実施形態を示す回転子の断面図で、鉄心の組立途中の状態を示す。
【図10】本発明の第4の実施形態を示す回転子の断面図で、鉄心の完成状態を示す。
【符号の説明】
【0064】
1…回転子
2…回転子鉄心
3…保持力と磁化方向厚さの積が小さい永久磁石(可変磁力磁石)
4…保持力と磁化方向厚さの積が大きい永久磁石(固定磁力磁石)
5…永久磁石端の空洞
6…ブリッジ部
9…エアギャップ
10…固定子
11…電機子鉄心
12…電機子巻線
20a,20b…鉄心部
22a,22b,63a,63b…短絡コイル挿入孔
30…導電性の板
31a〜32b,41,42,64…導電性バー
41a〜42b…鉄心挿入部
43,65…段差部
44,51,61…スペーサ円板
45,54,62…空間部
52a,52b…端板
53a,53b…導電部材注入孔
55a,55b,66a,66b…短絡接続部
56…注入口

【特許請求の範囲】
【請求項1】
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させた永久磁石式回転電機において、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設け、
各鉄心部の短絡コイルを、各鉄心部のスキュー角度に応じて回転子の周方向にずれた角度で配置すると共に、各鉄心部の短絡コイルを鉄心の境界部において段差部をもって接続することを特徴とする永久磁石式回転電機。
【請求項2】
前記短絡コイルを、
各鉄心部の境界部に配置された導電性の板と、
この導電性の板の表裏両面のスキュー角度に相当した分だけ回転子の周方向にずれた場所から、各鉄心部に向かって回転子の軸方向に突出した導電性バーと、
この導電性バーの先端を鉄心部の軸方向端部で接続する短絡接続部とから構成することを特徴とする請求項1に記載の永久磁石式回転電機。
【請求項3】
前記短絡コイルを、中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性バーと、この導電性バーを鉄心部の軸方向端部で接続する短絡接続部とから構成し、
前記鉄心部の境界にスペース板を配置し、このスペース板に前記導電性バーの段差部が入る空間部を形成することを特徴とする請求項1に記載の永久磁石式回転電機。
【請求項4】
前記短絡コイルを、中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性部材注入孔と、鉄心部の軸方向端部で接続する短絡接続部と、前記鉄心部の境界に配置されたスペース板に形成された空間部に、溶融した導電性材料を流し込んで固化することにより形成することを特徴とする請求項3に記載の永久磁石式回転電機。
【請求項5】
前記短絡接続部を、鉄心部の軸方向端部から突出した導電性バーの先端を折り曲げて短絡接続して構成することを特徴とする請求項2または請求項3に記載の永久磁石式回転電機。
【請求項6】
前記回転子鉄心の軸方向外側に回転子鉄心を軸方向に挟み込んで押える端板を設け、この端板を回転子鉄心内に設けた導電性部材の抵抗率より大きな抵抗率の材料又は絶縁材料で構成することを特徴とする請求項1から請求項5のいずれか1項に記載の永久磁石式回転電機。
【請求項7】
前記回転子鉄心の軸方向外側に回転子鉄心を軸方向に挟み込んで押える端板を設け、この端板の回転子鉄心内に設けた導電性部材と接触する箇所に絶縁処理を施したことを特徴とする請求項1から請求項6のいずれか1項に記載の永久磁石式回転電機。
【請求項8】
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
前記短絡コイルを、
分割した鉄心部の境界部に配置さる導電性の板の表裏両面に、鉄心部のスキュー角度に相当した分だけ回転子の周方向にずれた場所から、各鉄心部に向かって回転子の軸方向に突出した導電性バーを一体に設け、
前記分割した鉄心部を、その短絡コイル挿入孔内に前記導電性バーが入り込むようにして、回転子の軸方向から前記導電性の板に重ね合わせ、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。
【請求項9】
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
中央部でスキューに相当する長さ分だけ段差部を有する一対の導電性バーと、この導電性バーの段差部が入る空間部を有するスペース板を使用し、
前記分割された鉄心部の境界にスペース板を配置し、このスペース板の空間部に前記導電性バーの段差部を収容すると共に、一対の導電性バーを各鉄心部の短絡コイル挿入孔内に挿入し、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。
【請求項10】
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
分割された各鉄心部内にそれぞれ一対の導電性材料注入孔を、各鉄心部の一対の導電性部材注入孔をスキューに相当する長さ分だけずれた位置に形成すると共に、各鉄心部の中央部に各鉄心部の導電性材料注入孔を連通する空間部を有するスペース板を設け、各鉄心の軸方向端部には短絡接続部を有する端板を設け、
これら各鉄心部、スペース板及び端板を一体化した状態で、導電性材料注入孔、空間部及び短絡接続部内に溶融した導電性材料を注入し、
注入した導電性材料を固化することにより、短絡コイルを得ることを特徴とする永久磁石式回転電機の製造方法。
【請求項11】
保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石を用いて磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外径にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個を磁化させ、
前記回転子の鉄心を軸方向において2つ以上に分割し、この分割した鉄心部同士の磁極位置を周方向にスキューさせ、各鉄心部には永久磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の短絡コイルを設けた永久磁石式回転電機の製造方法において、
前記軸方向に分割した各鉄心部に形成した短絡コイルの挿入孔の位置一致させ、各鉄心部の間に、鉄心部がスキューされた状態においても各回転子鉄心の短絡コイル挿入孔が連通するような空間を有するスペース板を配置し、
各鉄心部とスペース板が並んだ状態において、導電性バーを回転子の軸方向から挿入し、
その後、軸方向に分割した鉄心部をスキューする角度分だけひねることにより、各鉄心部の境界部においてスキュー角度分段差の付いた導電性バーを形成し、
各鉄心部の軸方向端面において前記導電性バーの先端を接続して短絡接続部を形成することにより、短絡コイルを構成することを特徴とする永久磁石式回転電機の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−142059(P2010−142059A)
【公開日】平成22年6月24日(2010.6.24)
【国際特許分類】
【出願番号】特願2008−317955(P2008−317955)
【出願日】平成20年12月15日(2008.12.15)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】