説明

熱硬化性樹脂組成物、及び電子機器

【課題】耐熱性、機械的強度、難燃性、密着性、及び電気特性(誘電特性)に優れ、絶縁基板用樹脂等の情報通信関連材料として適する熱硬化性樹脂組成物及び電子機器を提供する。
【解決手段】本発明は、籠状シルセスキオキサン基が共有結合した高分子(A)と、熱硬化性樹脂(B)と、を少なくとも含有することを特徴とする熱硬化性樹脂組成物を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、籠状シルセスキオキサンを含む熱硬化性樹脂組成物、及び電子機器に関し、特に、耐熱性、機械的強度、難燃性、密着性、及び電気特性(誘電特性)に優れ、情報通信関連材料として適する熱硬化性組成物、及び電子機器に関する。
【背景技術】
【0002】
近年、電子機器の高性能化、高機能化、小型化等が急速に進んでおり、電子部品を構成する材料についても、耐熱性、機械的強度、低熱線膨張係数などのさらなる機能向上が強く求められている。
従来、これら電子部品を構成する材料としては、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂や、ポリイミド、ポリエチレンナフタレート等の主鎖芳香属系樹脂等の耐熱性が非常に良好な樹脂が用いられている。これは、電子部品として例えば基板にデバイスを実装する際に経るハンダリフロー工程において、260〜290℃の熱がかかるためである。
【0003】
しかし、樹脂単独では電気的特性、機械的特性、性能安定性等の性能が満足できないのが実情であり、添加剤を加えて樹脂の性能を改質する手段が広く行われている。
添加剤としては、無機物系材料が用いられる場合が多く、その例として、シリカ、クレイ等が挙げられる。これら無機物系材料を充填剤として樹脂に加えた場合、耐熱性の向上、機械的性能の向上、低熱線膨張係数化等の効果が得られる。しかし、一方で、充填剤を加えて樹脂を複合化するためには、例えば、電子回路の配線に用いる場合、配線のファインピッチ化に伴い、ナノレベルでの高分散化が不可欠である。これら充填剤の高分散を実現するためには製造工程が複雑となり、安定的な性能確保のためには高度の分散制御技術、塗工技術等が要求される。
【0004】
最近、無機物系材料として、組成式〔RSiO3/2〕で示されるシルセスキオキサン化合物を添加した樹脂が提案されている。シルセスキオキサンとしては、3次元架橋構造を形成したもの、はしご状に重合したもの(ラダー構造)、及び籠構造を形成したもの等がある。籠状シルセスキオキサンは、それ自体閉じた構造を有し、熱的に安定であり、無機充填剤と同様の効果が期待できる。
【0005】
また、籠状シルセスキオキサンを樹脂へ添加・複合する方法としては、籠状シルセスキオキサンを樹脂中に分散させる方法、籠状シルセスキオキサンの置換基の一部又は全部を反応性基に変性して樹脂に反応させる方法、あるいは、籠状シルセスキオキサンの置換基の一部又は全部を重合性基に変性して単独又は他のモノマーとの共重合により高分子を合成する方法等がある。
【0006】
例えば、高分子としてポリエチレンを用い、高分子側鎖に籠状シルセスキオキサンを共有結合で結合し、特定の熱履歴を与えることにより、籠状シルセスキオキサンを平板状に結晶化させ、少量の籠状シルセスキオキサン添加で大きな耐熱化効果を発現する系が報告されている(例えば、非特許文献1参照)。
一方、エポキシ環を少なくとも2つ有するシルセスキオキサンからなりBステージ化されてなる光半導体封止用樹脂組成物が提案されている(例えば、特許文献1参照)。
【非特許文献1】E.B. Coughlin et.al., Chemistry of Materials, 第15巻、4555−4561ページ、2003年
【特許文献1】特開2005−263869号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、非特許文献1で挙げられた方法では、主鎖と籠状シルセスキオキサンの相溶性、籠状シルセスキオキサンの凝集温度、主鎖の溶融温度(結晶融解温度)、成形の条件、熱履歴、籠状シルセスキオキサンの構造、混合の状態等の各要素によって、組成物中での籠状シルセスキオキサンの結晶の進行が多大な影響を受けるため、安定した性能の組成物を実現することは困難であった。
【0008】
一方、高分子鎖中に導入されていて、かつ、結晶化の進んでいない籠状シルセスキオキサンを添加・導入した場合、例えば機械的な物性向上効果を得るためには、多量の籠状シルセスキオキサンを導入する必要があるため、導入によって樹脂の物性が大きく変化する(例えば硬く脆くなる)、成形・加工が困難になる(例えば溶融混練が困難になる)、コストが高くなる、といった問題があった。
【0009】
また、籠状シルセスキオキサンを単分子状態(高分子鎖中に導入されていない状態)で樹脂中に分散させて導入すると、混練等熱処理では、樹脂中に均一分散することが困難であり、籠状シルセスキオキサンの粒子が巨大粒子状に凝集し分散する状態となりやすい。これは籠状シルセスキオキサンが凝集しやすいことが原因で起こる。このように、籠状シルセスキオキサンが凝集による巨大粒子状となってしまうと、通常の無機微粒子添加と同様となり、耐熱性向上等の効果が十分に得られない。
【0010】
さらに、籠状シルセスキオキサン単分子と樹脂の双方を溶解する溶媒を用いて完全分散型のキャスト成形品を製造することもできるが、これらの場合、完全な均一分散となるため、効果を得るためには多量の籠状シルセスキオキサンを導入する必要があり、上記と同様、籠状シルセスキオキサン導入によって樹脂の物性が大きく変化する(例えば硬く脆くなる)、成形・加工が困難になる(例えば溶融混練が困難になる)、コストが高くなる、といった問題があった。
【0011】
特に、籠状シルセスキオキサンの結晶化を熱硬化性樹脂系組成物にて実現することは困難である。温度履歴により籠状シルセスキオキサンの結晶化を進行させるためには、最初に高温にて籠状シルセスキオキサンをランダムに配置させ、その後、徐冷することにより籠状シルセスキオキサンを結晶させる方法が用いられる(結晶化のプロセスについては非特許文献1参照)が、熱硬化性樹脂の場合、高温にした時点で硬化が開始し、結晶化プロセスをとることが出来ない可能性が高い。また、樹脂を十分に硬化させない状況で籠状シルセスキオキサンを結晶させるために徐令すると、硬化のための温度が不足し、硬化時間がきわめて長くなったり、硬化しない可能性が高い。
【0012】
また、特許文献1で提案された方法では、籠状シルセスキオキサンは均一分散となり、前述したように、多量の籠状シルセスキオキサン添加をしなければ十分な効果は得られず、多量配合の結果として固く脆くなったり、コストが上昇してしまう。
【0013】
このように、特に熱硬化性樹脂において籠状シルセスキオキサンの結晶による耐熱性向上等の効果を得ることは技術的に困難であった。
【0014】
そこで、本発明は、熱硬化性樹脂組成物においても、籠状シルセスキオキサンの結晶構造を利用することにより、トータル量としては少量の籠状シルセスキオキサン添加であっても十分な耐熱性向上、機械的強度向上、及び電気特性の向上等が図られた熱硬化性樹脂組成物及び電子機器を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明者らは、上記課題に鑑み、鋭意研究を重ねた結果、籠状シルセスキオキサン基が共有結合した高分子(A)と、熱硬化性樹脂(B)と、を少なくとも含有する熱硬化性樹脂組成物が、トータル量としては少量の籠状シルセスキオキサン添加であっても十分な耐熱性向上、機械的強度向上、難燃性向上、密着性改良、及び電気特性(誘電特性)の向上等が図られることを見出し、本発明を完成するに至った。
【0016】
すなわち、本発明は、
(1)2以上の籠状シルセスキオキサン基が共有結合した高分子(A)と、熱硬化性樹脂(B)と、を少なくとも含有することを特徴とする熱硬化性樹脂組成物;
(2)前記高分子(A)は、2以上の籠状シルセスキオキサン基が結晶構造を有していることを特徴とする前記(1)に記載の熱硬化性樹脂組成物;
(3)前記高分子(A)中の籠状シルセスキオキサン基が、下記式(1)で表されることを特徴とする前記(1)又は(2)に記載の熱硬化性樹脂組成物
〔RSiO3/2n〔XSiO3/2m (1)
(式(1)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖又は側鎖との結合部位を示す。nは4〜7の整数を示し、mは1〜4の整数を示し、n+m=8である。);
(4)前記高分子(A)中の籠状シルセスキオキサン基が、下記式(2)で表されることを特徴とする前記(1)〜(3)の何れか一項に記載の熱硬化樹脂組成物
【化1】

(式(2)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖との結合部位を示す。);
(5)前記高分子(A)中の籠状シルセスキオキサン基に含まれる置換基Rが芳香族基であることを特徴とする前記(3)又は(4)に記載の熱硬化性樹脂組成物;
(6)前記高分子(A)が、下記式(1’)で表される籠状シルセスキオキサン基を有する化合物(M)を反応させて得られることを特徴とする前記(1)又は(2)に記載の熱硬化性樹脂組成物
〔RSiO3/2n〔YSiO3/2m (1’)
(式(1’)中、Rは炭素数1〜10の有機基であり、Yは高分子(A)の主鎖又は側鎖との結合部位となりうる官能基を示す。nは4〜7の整数を示し、mは1〜4の整数を示し、n+m=8である。);
(7)前記化合物(M)が、下記式(2’)で表されることを特徴とする前記(6)に記載の熱硬化樹脂組成物
【化2】

(式(2’)中、Rは炭素数1〜10の有機基であり、Yは高分子(A)の主鎖との結合部位となりうる官能基を示す。);
(8)前記高分子(A)中の籠状シルセスキオキサン基に含まれる置換基Rが芳香族基であることを特徴とする前記(6)又は(7)に記載の熱硬化性樹脂組成物;
(9)前記熱硬化性樹脂(B)がエポキシ樹脂であることを特徴とする前記(1)〜(8)の何れか一項に記載の熱硬化性樹脂組成物;
(10)前記熱硬化性樹脂(B)がグリシジルエーテル型のエポキシ樹脂である前記(1)〜(9)の何れか一項に記載の熱硬化性樹脂組成物:
(11)前記(1)〜(10)の何れか一項に記載の熱硬化性樹脂組成物を含む電子機器;を提供する。
【発明の効果】
【0017】
本発明の熱硬化性樹脂組成物は、耐熱性、機械的強度、難燃性、密着性、及び電気特性(誘電特性)に優れ、これにより高周波に対応した絶縁基板等の電子回路基板材料等を提供することができる。
また、かかる熱硬化性樹脂組成物を用いることにより、コンピュータ等の情報機器基板をより高性能(高速通信可能)であり、かつ、安定した性能で提供することができる。特に、本発明の熱硬化性樹脂組成物は、絶縁基板の材料として有用である。
【発明を実施するための最良の形態】
【0018】
次に、本発明の実施の形態について説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。
【0019】
本発明の熱硬化性樹脂組成物は、2以上の籠状シルセスキオキサン基が共有結合した高分子(A)と、熱硬化性樹脂(B)と、を少なくとも含有する。
【0020】
〔高分子(A)〕
(籠状シルセスキオキサン基)
上記高分子(A)は2以上の籠状シルセスキオキサン基が共有結合している。ここで、籠状シルセスキオキサン基とは、籠状シルセスキオキサン及びその誘導体の残基、すなわち、籠状シルセスキオキサン及びその誘導体の1又は2以上の原子が脱離し、1又は2以上の結合部位を有する基を意味する。
【0021】
籠状シルセスキオキサンは、下記式(3)で表される化合物の縮合により得られる閉じた構造(籠構造)を有する化合物である。
R−Si(Z)3 (3)
(式(3)中、Rは任意の置換基であり、種類の異なる置換基を複数用いてもよい。ZはCl等のハロゲン、OH、又はOCH3、OC25、OC37等のアルコキシ基を表す。)
【0022】
前記籠状シルセスキオキサン基は、例えば、下記式(4)で表される化合物の残基である。
〔RSiO3/2n (4)
(式(4)中、Rは任意の置換基であり、種類の異なる置換基を複数用いてもよい。nは5〜12の整数である。)
【0023】
上記式(3)ないし(4)において、Rは、例えば、炭素数1〜10の有機基、水素、ヒドロキシ基、又はハロゲンである。籠状シルセスキオキサンの安定性向上の観点からは、Rは炭素数1〜10の有機基であることが好ましい。
【0024】
前記籠状シルセスキオキサン基において、上記式(4)中、nは6、8、10又は12であるものが好ましい。
【0025】
上記式(4)において、nが6、8、10、又は12の場合、シロキサン構造が閉じた籠構造を形成し、例えばnが8の場合、次の式(5)で示される構造となる。
【化3】

【0026】
特に、式(5)で示したnが8である籠状シルセスキオキサンは構造的に安定であり、かつ合成も容易で、市販品も入手容易であるため、好適に用いることができる。
【0027】
一方、上記式(4)において、nが5、7、9、又は11の場合には、籠構造の一部が開いた構造となり、例えばnが7の場合、下記式(6)で表される構造となる。
【化4】

【0028】
本発明においてはnが5、7、9、又は11であってもよい。この場合籠状シルセスキオキサンの構造が若干安定性に欠けるが、一方、残留シラノール基が熱硬化性樹脂(例えばエポキシ樹脂)と反応し、籠状シルセスキオキサンと熱硬化性樹脂間の強固な結合を形成する可能性がある。これらnが5、7、9、又は11の場合、製造時及び使用時に反応等の物性変化を勘案して用いる必要がある。
【0029】
前記高分子(A)は、2以上の籠状シルセスキオキサン基が結晶構造を有していることが好ましい。
【0030】
高分子(A)中の籠状シルセスキオキサン基は次の式(1)で表されるものであることが好ましい。
〔RSiO3/2n〔XSiO3/2m (1)
(式(1)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖又は側鎖との結合部位を示す。nは4〜7の整数を示し、mは1〜4の整数を示し、n+m=8である。)
【0031】
式(1)は籠状シルセスキオキサン基の一般式(4)において、1〜4個のRが高分子(A)との結合部位Xに置換されたものである。
【0032】
前記高分子(A)中の籠状シルセスキオキサン基は、下記式(2)で表されるものであることが好ましい。
【化1】

(式(2)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖との結合部位を示す。
【0033】
前記高分子(A)は、上記式(1’)で表される籠状シルセスキオキサン基を有する化合物(M)を反応させて得られることが好ましい。
すなわち、前記高分子(A)は、所定の高分子に、上記式(1’)で表される籠状シルセスキオキサン基を有する化合物(M)を反応させて、当該高分子の主鎖又は側鎖に、化合物(M)が有する官能基を反応させて、得られるものであってもよい。
前記化合物(M)は、上記式(2’)で表されることが好ましい。
【0034】
好ましいRである炭素数1〜10の有機基としては、芳香族基であることが好ましい。芳香族基としては、アリール基、アラルキル基が挙げられる。
好ましいRであるアリール基の具体例としては、フェニル基、ナフチル基等の芳香族基が挙げられる。
好ましいRであるアラルキル基の具体例としては、エチルフェニル基が挙げられる。
上記においては、アルキル基、アリール基、又はアラルキル基の一部の水素に対して、ハロゲン基、アミノ基、エーテル基、ヒドロキシル基、アルコキシ基等が置換されていてもよい。
【0035】
好ましいRである炭素数1〜10の有機基は、アルキル基であってもよい。一方、Rが水素、アルコキシ基、ヒドロキシ基、ハロゲンの場合には、製造時及び使用時の物性変化を勘案して用いる必要がある。
好ましいRであるアルキル基の具体例としては、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、n−オクチル基、i−オクチル基等の直鎖及び分岐アルキル基、シクロペンチル基、シクロヘキシル基等の脂環式アルキル基が挙げられる。
これらは、対応するビニル化合物と、籠状シルセスキオキサンのケイ素上に水素原子を有するものとのヒドロシリル化反応により、容易に合成することができる。例えば、C.Bollonら、Chemistry of materials、第9巻、1475−1479ページ、1997年に記載の方法により合成することができる。
【0036】
化合物の合成が容易であるという観点からは、Rはメチル基、エチル基、i−ブチル基、i−オクチル基、シクロペンチル基、シクロヘキシル基、又はフェニル基であることが好ましい。
さらに、これらの置換基Rのうち、シクロペンチル基、シクロヘキシル基、フェニル基は、熱的に安定であり、籠状シルセスキオキサン同士の相互作用が強く結晶化構造を形成しやすいため一層好ましい。
【0037】
本発明において、上記置換基Rの選択は、樹脂との相溶性、樹脂溶融温度と籠状シルセスキオキサンの結晶化温度の関係などを勘案して決定する。この際、籠状シルセスキオキサン上の置換基Rが複数の種類の置換基の混合であってもよいが、合成上は同一の置換基であることが簡易で好ましい。また、置換基Rが同一のものであると、籠状シルセスキオキサンをより均一に結晶化させることができる。
【0038】
(高分子(A)と籠状シルセスキオキサンとの共有結合)
本発明においては、高分子(A)は2以上の籠状シルセスキオキサン基が共有結合してなるものである。
籠状シルセスキオキサンと高分子(A)との結合は、共有結合であれば特に制限はなく、また、籠状シルセスキオキサンと高分子(A)との結合は少なくとも1つあれば良く、複数の結合を有していてもよい。
【0039】
図1〜4は、高分子(A)と籠状シルセスキオキサンとの結合形態の各例を示す模式図である。図1〜4中、籠状シルセスキオキサン基を立方体で模式的に示し、化学結合及び高分子鎖を線で示す。
高分子(A)における籠状シルセスキオキサン基の共有結合の形態は、図1に示した側鎖型、図2に示した末端型、図3に示した主鎖型、第4図に示した該星型のいずれであってもよく、更に、図1の高分子主鎖が輪となって該星形になったようなものや、これらの複合形であってもよい。
十分な籠状シルセスキオキサンの重量%を得るという観点からは、図1の側鎖型又は図3の主鎖型であることが好ましい。
【0040】
図1に示すように、第1の例では、高分子鎖を主鎖とし、籠状シルセスキオキサンを共有結合により側鎖として導入している。これは、式(1)中、n=7、m=1の場合に相当する。
【0041】
図1に示す構造は、籠状シルセスキオキサンの結合部位Xを与える置換基Yとして、例えばビニル基、スチリル基、(メタ)アクリロイル基、アルコキシシリル基、クロロシリル基等の重合及び/又は縮合可能な置換基を少なくとも一つ有し、単独重合あるいは他のモノマーとの共重合を行うことにより、図1に示す構造を得ることができる。
これらの置換基Yは、熱硬化性樹脂(B)と相溶性のあるものであればさらに好ましい。
また、籠状シルセスキオキサンに、置換基として、ヒドロキシ基、アミノ基、フェノール、アルコキシシラン、クロロシラン、ヒドロシラン、エポキシ、ハロゲン、イソシアナート、ノルボルネニル、オレフィン、チオール等を導入しておき、これに対して反応可能な基を有する高分子と反応させることによっても同様に図1の構造を得ることができる。さらに、高分子中にトリクロロシランを導入しておき、一部開環した上記式(6)に示したシルセスキオキサン前駆体を反応させることによっても図1の構造を得ることができる。これらの置換基は、熱硬化性樹脂(B)と相溶性のあるものであればさらに好ましい。
【0042】
以下に、重合及び/又は縮合可能な置換基を有する籠状シルセスキオキサンの具体例を挙げるが、本発明はこれに限定されるものではない。また、具体例中、POSS(登録商標;ハイブリッドプラスチックス社)とは、上記式(5)に示したn=8の籠状シルセスキオキサン構造を表し、重合可能基=その他の置換基=骨格という表記を用いる。
【0043】
すなわち、アクリロイル基を有するものとしては、3−プロピルアクリロイル=ヘプタイソブチル=POSS(登録商標)、メタクリロイル基を有するものとして、3−プロピルメタクリロイル=ヘプタイソブチル=POSS(登録商標)、3−プロピルメタクリロイル=ヘプタイソオクチル=POSS(登録商標)、3−プロピルメタクリロイル=ヘプタフェニル=POSS(登録商標)、3−プロピルメタクリロイル=ヘプタシクロペンチル=POSS(登録商標)、3−メタクリロイルプロピルジメチルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、スチリル基を有するものとして、4−ビニルフェニル=ヘプタシクロペンチル=POSS(登録商標)、ノルボルネニル基を有するものとして、ノルボルネニルエチル=ヘプタイソブチル=POSS(登録商標)、ノルボルネニルエチル=ヘプタシクロペンチル=POSS(登録商標)、ノルボルネニルエチルジメチルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、ビニル基等のオレフィンを含むものとして、アリル=ヘプタイソブチル=POSS(登録商標)、ビニル=ヘプタイソブチル=POSS(登録商標)、アリルジメチルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、ビニルジフェニルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、メチルフェニルビニルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、アリル=ヘプタシクロペンチル=POSS(登録商標)、ビニルジメチルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)、ビニル=ヘプタシクロペンチル=POSS(登録商標)、トリビニルシリロキシ=ヘプタシクロペンチル=POSS(登録商標)等が好ましい。
これらの原料はハイブリッドプラスチックス社、アルドリッチ社から入手することができ、また、対応する籠状シルセスキオキサン前駆体から合成することも可能である。
【0044】
図2に示す第2の例では、高分子鎖の片末端又は両末端に籠状シルセスキオキサンを導入している。この場合も、式(1)中、n=7、m=1の場合に相当する化合物を用いる。
なお、図2において高分子鎖は線状高分子をなしているが、高分子鎖は線状である必要はなく、分岐状であってもよい。高分子鎖が分岐状をなす場合の一態様が図4に示す該星型である。図4に示すように、籠状シルセスキオキサンが全ての末端に導入されていてもよく、あるいは一部の末端に導入されていてもよい。
【0045】
高分子鎖末端に籠状シルセスキオキサンを導入するためには、例えばリビング重合を行い、停止段階で籠状シルセスキオキサンを含む停止剤を添加する方法、高分子末端に存在する置換基と籠状シルセスキオキサンの置換基を反応させる方法、籠状シルセスキオキサンが有する置換基を重合の基点とする方法、等を用いることができる。
【0046】
図2、図4に示す構造を得るために用いることのできる籠状シルセスキオキサンの置換基としては、ビニル基、スチリル基、(メタ)アクリロイル基、アルコキシシリル基、クロロシリル基等の重合及び/又は縮合可能な置換基、ヒドロキシ基、アミノ基、フェノール、アルコキシシラン、クロロシラン、ヒドロシラン、エポキシ、ハロゲン、イソシアナート、ノルボルネニル、オレフィン、チオール等の反応性置換基を挙げることができる。
【0047】
図3に示す第3の例では、高分子鎖の骨格中に籠状シルセスキオキサンが導入された構造を有する。
高分子骨格中に籠状シルセスキオキサンを組み込むためには、籠状シルセスキオキサンとして2以上の官能基を有するもの、すなわち、式(1)中、n=4〜6、m=4〜2(但し、n+m=8)の場合に相当する。を用いる。ここで用いる官能基とは、前述の重合及び/又は縮合可能な置換基、反応性置換等である。
【0048】
ここで、図1、図2、図4で示された構造は式(1)中、n=7、m=1の化合物をのみを使用した場合を図示し、図3で表される構造は式(1)中、n=6、m=2の化合物のみを使用した場合を図示しているが、必ずしもこれらだけではなく、n=4〜7、m=4〜1(ただし、n+m=8)の化合物を併用して用いても良い。ただし、特にm=2を超えるものを用いた場合、高分子(A)は3次元架橋構造となりやすくなり、籠状シルセスキオキサンが結晶化構造をとりにくくなる。
【0049】
また、図1で示される高分子鎖の側鎖に籠状シルセスキオキサンを含む高分子(A)、図2で示される高分子鎖の末端に籠状シルセスキオキサンを含む高分子(A)、図3で示される高分子鎖の骨格内に籠状シルセスキオキサンを含む高分子(A)、ならびに図4で示される分岐状をなす高分子鎖の全て末端に籠状シルセスキオキサンを含む高分子(A)においては、籠状シルセスキオキサンを有する単量体と、籠状シルセスキオキサンを含まない単量体の共重合体であってもよく、籠状シルセスキオキサンを含まない単量体等は複数用いても良い。
共重合体とする場合、ランダム共重合体であっても、ブロック共重合体であっても良く、これらは本発明の組成物が用いられる用途・プロセスに応じて適宜選択される。
【0050】
(2以上の籠状シルセスキオキサン基の結晶構造)
本発明において、高分子(A)は、2以上の籠状シルセスキオキサン基が結晶構造を有している。結晶構造とは、籠状シルセスキオキサン基同士が自己組織化することにより形成される構造であり、籠状シルセスキオキサンの結晶構造の有無は、広角X線散乱(WAXS)により、1.1〜1.2nmにおける散乱ピークによって確認することができる。
【0051】
本発明において、2以上の籠状シルセスキオキサン基が共有結合した高分子(A)の分子量、分子量分布等は特に限定されず、本発明の組成物が用いられる用途・プロセスに応じて適宜選択される。例えば、ポリスチレン換算重量平均分子量数千から百万程度までの樹脂を用いることができる。
下限は、好ましくは1000、より好ましくは5000、更に好ましくは2万、上限は、好ましくは50万、より好ましくは10万、更に好ましくは6万である。重量平均分子量が小さいと高分子(A)の効果が得られ難く、大きいと高分子(A)の結晶が大きくなり、通常の無機充填剤と同じような効果しか得られなくなる。
さらに、本発明において、2以上の籠状シルセスキオキサン基が共有結合した高分子(A)は熱硬化性樹脂(B)あるいは後述する硬化剤と共有結合しうる官能基を、それぞれ1以上有していてもよい。
【0052】
本発明の熱硬化性樹脂組成物においては、本発明の目的を一層達成する観点からは、高分子(A)の全量に対して、籠状シルセスキオキサン基が好ましくは20〜100重量%であり、より好ましくは50〜100重量%である。
高分子(A)中の籠状シルセスキオキサン基の重量%は、ラジカル重合等では重合時の仕込み比がほぼ反映されるため、仕込み比で決定してもよいし、また、樹脂を核磁気共鳴装置を用いて測定し、水素核比率により直接算出することもできる。
【0053】
〔熱硬化性樹脂(B)〕
本発明で用いる上記熱硬化性樹脂(B)としては、特に限定はなく、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂等を用いることが出来る。前述したように、籠状シルセスキオキサンはケイ素原子上の置換基(式(1)におけるR)を種々変更することにより、各熱硬化樹脂との相溶性を調整できるため、幅広い熱硬化性樹脂に対応することが出来る。
【0054】
上記熱硬化性樹脂(B)は、エポキシ樹脂であることが好ましい。エポキシ樹脂は汎用性に富み、また、籠状シルセスキオキサンとの相溶性が良く、上記高分子(A)との組み合わせることにより、耐熱性、信頼性に一層優れた熱硬化性樹脂組成物を得ることができる。
【0055】
本発明で使用されるエポキシ樹脂としては、二官能以上のエポキシ化合物、例えば、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、及び脂環型のエポキシ化合物等の公知のエポキシ樹脂を好ましく用いることができる。
【0056】
これらエポキシ樹脂の中でも、特にグリシジルエーテル型のエポキシ樹脂は、(グリシジルエステル型のエポキシ樹脂よりも)相溶性が良く、(グリシジルアミン型のエポキシ樹脂よりも)電気特性が良く、(脂環型のエポキシ樹脂よりも)耐熱性に優れ、安価かつ大量に入手可能であり、より好適に用いることが出来る。
グリシジルエーテル型のエポキシ樹脂を具体的にいくつか例示すると、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、ビフェニル型エポキシ化合物、ナフタレン型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、多官能フェノールのジグリジルエーテル化物、トリスヒドロキシメタン型エポキシ化合物、テトラフェノールエタン型エポキシ化合物、ブタジエン型エポキシ化合物等が挙げられる。
【0057】
上記エポキシ樹脂は、これらの水素添加物、臭素化物等であってもよく、また、単独で使用されてもよいし、2種以上が組み合わせて使用されてもよい。
【0058】
本発明の熱硬化性樹脂組成物には、エポキシ化合物をより効率よく硬化させるためにエポキシ化合物用硬化剤が添加されてもよい。
上記エポキシ化合物用硬化剤としては、従来からエポキシ化合物の硬化剤として一般に使用されているエポキシ化合物用硬化剤であればよく、例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物等の化合物、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、光潜在性カチオン重合開始剤、ジシアンジアミド、及びその誘導体等が挙げられる。これらの硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。
【0059】
上記アミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、メチレンジアニリン、ベンジルメチルアミン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン等の鎖状脂肪族アミン及びその誘導体;メンセンジアミン、イソフォロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ジアミノジシクロへキシルメタン、ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、アミノエチルピペラジン等の環状脂肪族アミン及びその誘導体;m−キシレンジアミン、ジアミノジフェニルスルフォン、α−(m/pアミノフェニル)エチルアミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、α,α−ビス(4−アミノフェニル−p−ジイソプロピルベンゼン等の芳香族アミン及びその誘導体等が挙げられる。
【0060】
上記アミン化合物から合成される化合物としては、例えば、上記アミン化合物と、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカ二酸、イソフタル酸、テレフタル酸、ジヒドロイソフタル酸、テトラヒドロイソフタル酸、ヘキサヒドロイソフタル酸等のカルボン酸化合物とから合成されるポリアミノアミド化合物及びその誘導体;上記アミン化合物と、ジアミノジフェニルメタンビスマレイミド等のマレイミド化合物とから合成されるポリアミノイミド化合物及びその誘導体;上記アミン化合物とケトン化合物とから合成されるケチミン化合物及びその誘導体;上記アミン化合物と、エポキシ化合物、尿素、チオ尿素、アルデヒド化合物、フェノール化合物、アクリル化合物等の化合物とから合成されるポリアミノ化合物及びその誘導体等が挙げられる。
【0061】
上記3級アミン化合物としては、例えば、N,N−ジメチルピペラジン、ピリジン、ピコリン、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビスシクロ[5,4,0]ウンデ−7−セン−1及びその誘導体等が挙げられる。
【0062】
上記イミダゾール化合物としては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール及びその誘導体等が挙げられる。
【0063】
上記ヒドラジド化合物としては特に限定されず、例えば、1,3−ビス(ヒドラジノカルボエチル)−5−イソプロピルヒダントイン、7,11−オクタデカジエン−1,18−ジカルボヒドラジド、エイコサン二酸ジヒドラジド、アジピン酸ジヒドラジド及びその誘導体等が挙げられる。
【0064】
上記メラミン化合物としては、例えば、2,4−ジアミノ−6−ビニル−1,3,5−トリアジン及びその誘導体等が挙げられる。
【0065】
上記酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリスアンヒドロトリメリテート、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、へキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、5−(2,5−ジオキソテトラヒドロフリル−3−メチル−3−シクロへキセン−1,2一ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸−無水マレイン酸付加物、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリドデカン二酸無水物、クロレンド酸無水物及びその誘導体等が挙げられる。
【0066】
上記フェノール化合物としてば特に限定されず、例えば、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエン構造を有するクレゾールノボラック及びその誘導体等が挙げられる。
【0067】
〔高分子(A)と熱硬化性樹脂(B)との混合、硬化〕
本発明の2以上の籠状シルセスキオキサン基が共有結合した高分子(A)と熱硬化性樹脂(B)との混合比は特に限定はない。本発明においては少量の籠状シルセスキオキサン基の導入により硬化をすることが特徴であるので、高分子(A)は少量添加であることが好ましい。具体的な例としては重量比で高分子(A):熱硬化性樹脂(B)=0.01:100〜20:100であり、好ましくは0.05:100〜10:100、さらに好ましくは0.1〜5:100である。ここで、熱硬化性樹脂(B)の量は、主剤、硬化剤、硬化触媒を含んだものを指す。
【0068】
本発明は、このように高分子(A)の比率が比較的低くても、結晶化による熱硬化樹脂(B)の分子運動を大きく抑制するため、機械的特性、熱的特性等を向上することが出来る。高分子(A)の添加量が少ないことにより、コストを抑え、熱硬化樹脂(B)のプロセス適性の変動を押さえることが出来る。
【0069】
高分子(A)と熱硬化性樹脂(B)の混合は公知の任意の方法で混合することが出来、両者が十分に混合可能であれば特に限定されない。十分な混合とは、両者を混合した混合物において、可視光領域において目立った散乱を生じない状況を言う。例えば、両者を混合し、熱を加えて混練する方法、両者あるいは一方を溶媒に溶解した後に混合攪拌する方法等が用いられ、混練の場合には公知のニーダーやロール、プレス等を用いることが出来、また、溶媒に溶解する場合にはスターラー、攪拌羽、ディスペンサー等を用いる事が出来る。
【0070】
また、本発明の熱硬化性樹脂組成物には、熱硬化性樹脂組成物の粘度調節、得られる熱硬化性樹脂成形体の各種物性の調整のために充填剤が添加されてもよい。
上記充填剤としては特に限定されず、従来から熱硬化性樹脂の成形の際に使用されている無機充填剤であればよく、例えば、炭酸カルシウム、炭酸マグネシウム、酸化ケイ素、酸化アルミニウム、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、硫酸バリウム、硫酸マグネシウム、マイカ、タルク、クレー、ゼオライト、カーボンブラック等が挙げられる。また更に、本発明の熱硬化性樹脂組成物に、添加剤として、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、耐候剤、滑剤、相溶化剤、着色剤等を添加しても良い。これらの添加剤は、単独で用いられても良いし、2種類以上が併用されても良い。
【0071】
このようにして得られた混合物は、キャスト、プレス、注型等により所望の形状を付与される。形状は特に限定はなく、用途に応じて形状を付与する。
形状を付与された熱硬化性樹脂組成物は、加熱等により硬化を行う。加熱の方法は特に限定されず、オーブン等による加熱、赤外線加熱、誘導加熱等、任意の方法を用いることが出来る。加熱温度は特に限定はなく、得られた熱硬化性樹脂組成物の組成に応じた温度を選ぶことが出来る。加熱硬化温度は、一例を挙げると40℃以上300℃以下であるが、これに限定されない。
また、加熱硬化において、一度に温度を上げることなく段階的に温度を上げたり、傾斜的に温度を上げたりしても良い。また、完全に硬化させず、半硬化させた、いわゆるBステージでラミネートやプレス等を行い、その後完全硬化させても良い。
【0072】
〔応用例〕
本発明の電子機器は、上記熱硬化性樹脂組成物を含むものである。すなわち、上記熱硬化性樹脂組成物によって作製された成型体を一部又は全部に含む電子機器は、耐熱性、機械的強度、難燃性、密着性、及び電気特性に優れる。
本発明の電子機器は、上記熱硬化性樹脂組成物を含む絶縁基板、フィルムや基板等の成型体、等を構成要素として含むものであってもよい。
【実施例】
【0073】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は、以下に示す実施例のみならず様々な変更を加えて実施することが可能であり、かかる変更も本特許請求の範囲に包含される。
本実施例、比較例で使用される材料は、特に記述のない限り精製等を行わず、入手した材料をそのまま用いた。特に製造会社を記載していない試薬は全て和光純薬より入手した。
【0074】
〔合成例1〕籠状シルセスキオキサン基を有する高分子(A−1)の合成
10mlナスフラスコに3−メタクリロイルプロピル=ヘプタフェニル=POSS(登録商標;ハイブリッドプラスチックス社製、商品番号MA0734)1.0g、アゾイソブチロニトリル14.3mg、トルエン1.7mlを加え、フラスコ内を窒素置換した後、60℃オイルバスで24時間加熱した。
得られた反応混合物をテトラヒドロフラン20mlに溶解し、300mlのメタノール中に滴々加えて再沈殿操作を行った。この後、更に、同様にしてテトラヒドロフラン−シクロヘキサン、更にテトラヒドロフラン−メタノールで再沈殿を行い、未反応のモノマーを除去した。得られた沈殿物を真空下60℃で乾燥し、籠状シルセスキオキサン基を有する高分子(A−1)を得た。
この高分子(A−1)をテトラヒドロフランに溶解し、ゲルパーミエーションクロマトグラフ(GPC、東ソー製、型番8020)にて分子量測定したところ、ポリスチレン換算重量平均分子量(Mw)で48,000であった。
得られた高分子(A−1)を、広角X線散乱(WAXS)で測定したところ、1.1〜1.2nmに散乱ピークを有していた。
【0075】
〔合成例2〕籠状シルセスキオキサン基を有する高分子(A−2)の合成
10mlナスフラスコに3−メタクリロイルプロピル=ヘプタフェニル=POSS(登録商標;ハイブリッドプラスチックス社製、商品番号MA0734)0.91g、アゾイソブチロニトリル15.0mg、メチルメタクリレート0.1g、トルエン1.5mlを加え、フラスコ内を窒素置換した後、80℃オイルバスで3時間加熱した。
得られた反応混合物を合成例1と同様にして後処理し、籠状シルセスキオキサン基を有する高分子(A−2)を得た。この高分子(A−2)を分子量測定したところ、ポリスチレン換算重量平均分子量(Mw)で36,000であった。
得られた高分子(A−2)を、広角X線散乱(WAXS)で測定したところ、1.1〜1.2nmに散乱ピークを有していた。
【0076】
〔実施例1〕
高分子(A−1)20mgに、エピコート807(エポキシ主剤、ジャパンエポキシレジン製)50重量%トルエン溶液200mg、及びエピコートEMI24(エポキシ硬化剤、ジャパンエポキシレジン製)6重量%トルエン溶液100mgを混合し、30分間60℃で攪拌し、完全に透明な熱硬化性樹脂組成物溶液とした。この溶液をPTFEシート上にキャストし、80℃で1時間、120℃で2.5時間、180℃で1.5時間加熱硬化した。厚さ60μmの淡黄色で透明なフィルム状硬化物を得た。
【0077】
〔実施例2〕
高分子(A−2)20mgに、エピコート807(エポキシ主剤、ジャパンエポキシレジン製)50重量%トルエン溶液200mg、及びエピコートEMI24(エポキシ硬化剤、ジャパンエポキシレジン製)6重量%トルエン溶液100mgを混合し、30分間60℃で攪拌し、完全に透明な熱硬化性樹脂組成物溶液とした。この溶液をPTFEシート上にキャストし、80℃で1時間、120℃で2.5時間、180℃で1.5時間加熱硬化した。厚さ60μmの淡黄色で透明なフィルム状硬化物を得た。
【0078】
〔比較例1〕
3−メタクリロイルプロピル=ヘプタフェニル=POSS(登録商標;ハイブリッドプラスチックス社製、商品番号MA0734)モノマー20mgに、エピコート807(エポキシ主剤、ジャパンエポキシレジン製)50重量%トルエン溶液200mg、及びエピコートEMI24(エポキシ硬化剤、ジャパンエポキシレジン製)6重量%トルエン溶液100mgを混合し、30分間60℃で攪拌し、完全に透明な熱硬化性樹脂組成物溶液とした。この溶液をPTFEシート上にキャストし、80℃で1時間、120℃で2.5時間、180℃で1.5時間加熱硬化した。厚さ60μmの淡黄色で半透明なフィルム状硬化物を得た。
【0079】
〔比較例2〕
エピコート807(エポキシ主剤、ジャパンエポキシレジン製)50重量%トルエン溶液200mg、及びエピコートEMI24(エポキシ硬化剤、ジャパンエポキシレジン製)6重量%トルエン溶液100mgを混合し、完全に透明な熱硬化性樹脂組成物溶液とした。この溶液をPTFEシート上にキャストし、80℃で1時間、120℃で2.5時間、180℃で1.5時間加熱硬化した。厚さ60μmの淡黄色で透明なフィルム状硬化物を得た。
【0080】
〔熱物性評価〕
実施例、比較例にて得られた各フィルムを、熱重量分析装置(島津製作所製DTG−60)に設置し、空気下、20℃/分の速度で昇温し、5%重量減少温度(Td5)(℃)を測定した。得られたフィルム状硬化物を広角X線散乱(WAXS)で測定し、1.1〜1.2nmの散乱ピークの有無を測定した。その結果を表1に示す。
【0081】
【表1】

【0082】
表1に示す結果から明らかなように、シルセスキオキサン基含有化合物を含まないエポキシ樹脂(比較例2)に対し、シルセスキオキサン基を含有する高分子(A)を有するエポキシ樹脂(実施例1、実施例2)では5%重量減少温度が10℃以上向上した。また、シルセスキオキサン基を含むが、高分子化していないものを添加したもの(比較例1)は、シルセスキオキサン基を有さないもの(比較例2)よりも若干耐熱性は向上するが、大きな変化とは言えなかった。
【0083】
これはすなわち、シルセスキオキサン基が高分子側鎖に密集したもの(実施例1,実施例2)においては、透明であったことから高分子(A)に共有結合したシルセスキオキサン基に由来するシルセスキオキサンが巨大な凝集を形成していないことが推定される。さらに、耐熱性の向上が顕著に起こっていることから、樹脂全体(硬化後の熱硬化性樹脂(B)由来成分に対しても)に強い熱分子運動拘束効果を発揮するような結晶構造であり、微細な凝集構造をとり、樹脂組成物中に分散しているものと推定される。一方、シルセスキオキサン基を有していても、特に結晶構造をとりやすい構造となっておらず、ほぼ均一に分散されるモノマー状態のシルセスキオキサン基を有するもの(比較例1)では若干の耐熱性向上しか見られなかった。また、半透明であったことからシルセスキオキサン基が巨大な凝集を形成していると推定される。
【0084】
このことから、本発明の、2以上のシルセスキオキサン基が共有結合した高分子(A)と熱硬化性樹脂(B)とを少なくとも含有することを特徴とする熱硬化性樹脂組成物は、籠状シルセスキオキサンの結晶構造を利用することにより、トータル量としては少量の籠状シルセスキオキサン添加であっても十分な耐熱性向上を発現することが判った。
また更に、機械的強度向上、及び電気特性の向上等も期待でき、この熱硬化性組成物を用いることにより、優れた電子機器を提供することができることが判った。
【図面の簡単な説明】
【0085】
【図1】樹脂中の高分子鎖と籠状シルセスキオキサンとの結合形態の第1の例を示す模式図である。
【図2】樹脂中の高分子鎖と籠状シルセスキオキサンとの結合形態の第2の例を示す模式図である。
【図3】樹脂中の高分子鎖と籠状シルセスキオキサンとの結合形態の第3の例を示す模式図である。
【図4】樹脂中の高分子鎖と籠状シルセスキオキサンとの結合形態の第4の例を示す模式図である。

【特許請求の範囲】
【請求項1】
2以上の籠状シルセスキオキサン基が共有結合した高分子(A)と、
熱硬化性樹脂(B)と、を少なくとも含有することを特徴とする熱硬化性樹脂組成物。
【請求項2】
前記高分子(A)は、2以上の籠状シルセスキオキサン基が結晶構造を有していることを特徴とする請求項1に記載の熱硬化性樹脂組成物。
【請求項3】
前記高分子(A)中の籠状シルセスキオキサン基が、下記式(1)で表されることを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。
〔RSiO3/2n〔XSiO3/2m (1)
(式(1)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖又は側鎖との結合部位を示す。nは4〜7の整数を示し、mは1〜4の整数を示し、n+m=8である。)
【請求項4】
前記高分子(A)中の籠状シルセスキオキサン基が、下記式(2)で表されることを特徴とする請求項1〜3の何れか一項に記載の熱硬化樹脂組成物。
【化1】

(式(2)中、Rは炭素数1〜10の有機基であり、Xは高分子(A)の主鎖との結合部位を示す。)
【請求項5】
前記高分子(A)中の籠状シルセスキオキサン基に含まれる置換基Rが芳香族基であることを特徴とする請求項3又は4に記載の熱硬化性樹脂組成物。
【請求項6】
前記高分子(A)が、下記式(1’)で表される籠状シルセスキオキサン基を有する化合物(M)を反応させて得られることを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。
〔RSiO3/2n〔YSiO3/2m (1’)
(式(1’)中、Rは炭素数1〜10の有機基であり、Yは高分子(A)の主鎖又は側鎖との結合部位となりうる官能基を示す。nは4〜7の整数を示し、mは1〜4の整数を示し、n+m=8である。)
【請求項7】
前記化合物(M)が、下記式(2’)で表されることを特徴とする請求項6に記載の熱硬化樹脂組成物。
【化2】

(式(2’)中、Rは炭素数1〜10の有機基であり、Yは高分子(A)の主鎖との結合部位となりうる官能基を示す。)
【請求項8】
前記高分子(A)中の籠状シルセスキオキサン基に含まれる置換基Rが芳香族基であることを特徴とする請求項6又は7に記載の熱硬化性樹脂組成物。
【請求項9】
前記熱硬化性樹脂(B)がエポキシ樹脂であることを特徴とする請求項1〜8の何れか一項に記載の熱硬化性樹脂組成物。
【請求項10】
前記熱硬化性樹脂(B)がグリシジルエーテル型のエポキシ樹脂である請求項1〜9の何れか一項に記載の熱硬化性樹脂組成物。
【請求項11】
請求項1〜10の何れか一項に記載の熱硬化性樹脂組成物を含む電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−24894(P2008−24894A)
【公開日】平成20年2月7日(2008.2.7)
【国際特許分類】
【出願番号】特願2006−201925(P2006−201925)
【出願日】平成18年7月25日(2006.7.25)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】