説明

被膜の成膜方法

【課題】被成膜体の非成膜部位を除く部位に被膜を成膜するとともに、成膜部位における硬度の低下を抑制することが可能な被膜の成膜方法を提供する。
【解決手段】真空蒸着室30内に円柱状のプラズマ3aを発生させると共に真空蒸着室30内に材料ガスを供給し、被成膜体である第1シャフト10にパルス電圧を印加して第1シャフト10の表面にDLC膜121を形成する。第1シャフト10のDLC膜121を形成しない非成膜部位であるヨーク11には、DLC膜121を形成すべき成膜部位であるスプライン嵌合部12との間に、スプライン嵌合部12におけるDLC膜121の硬度の低下を抑制するための隔離間隔をおいて、ヨーク11を遮蔽する治具41を装着する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被膜の成膜方法に関する。
【背景技術】
【0002】
従来より、摺動部の耐摩耗性及び潤滑性の向上を目的として、他の部材と摺動する摺動部材にDLC(Diamond Like Carbon:ダイヤモンド・ライク・カーボン)膜を成膜することが行われている。また、摺動部材の各部位のうち、DLC膜を成膜しないことが望ましい部位が存在する場合には、まず摺動部材の全体にDLC膜を成膜し、その後、一部の部位についてDLC膜を除去することが行われていた(例えば、特許文献1参照)。
【0003】
特許文献1に記載のDLC被膜除去方法では、DLC膜を除去すべき部位に開口を有するマスキング部材で被加工物を覆い、エッチングガスを26MPa以上で吹き付けることにより、DLC膜をエッチングして除去している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−9110号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載のDLC被膜除去方法によれば、所望の部位のみにDLC膜が形成された部材を得ることができるが、DLC膜を一旦成膜した後に除去しなければならないので、工程数が増大し、コストアップの要因となる。
【0006】
また、被加工物にマスキング部材を装着し、このマスキング部材で被加工物の一部を遮蔽してDLC膜を成膜した場合には、マスキング部材を装着しない場合に比較して、DLC膜の硬度が低下することが本発明者らによって確認されている。
【0007】
そこで、本発明の課題は、被成膜体の非成膜部位を除く部位に被膜を成膜するとともに、成膜部位における被膜の硬度の低下を抑制することが可能な被膜の成膜方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、成膜部位における被膜の硬度は、非成膜部位を遮蔽する遮蔽部材と成膜部位との間隔に相関があることを知得し、本発明をなすに至った。そこで、本発明は、上記課題を解決するために、以下の被膜の成膜方法を提供する。
【0009】
[1]真空蒸着室内に円柱状のプラズマを発生させると共に前記真空蒸着室内に材料ガスを供給し、パルス電圧を被成膜体に印加して前記被成膜体に被膜を形成する被膜の成膜方法であって、前記被成膜体の前記被膜を形成しない非成膜部位には、前記被膜を形成すべき成膜部位との間に前記成膜部位における前記被膜の硬度の低下を抑制するための隔離間隔をおいて、前記非成膜部材を遮蔽する遮蔽部材を装着する被膜の成膜方法。
【0010】
[2]前記被成膜体は、前記成膜部位が前記プラズマと平行になるように前記真空蒸着室内に配置され、前記被成膜体をその軸方向周りに回転させながら前記成膜部位に前記被膜を形成する前記[1]に記載の被膜の成膜方法。
【0011】
[3]前記被成膜体は、軸方向の一端に前記非成膜部位を有する軸状部材であり、2つの前記被成膜体をその軸方向の他端部同士が向かい合うようにして真空蒸着室内に配列し、前記成膜部位に前記被膜を形成する前記[1]又は[2]に記載の被膜の成膜方法。
【0012】
[4]前記被成膜体は、軸方向に伸縮可能な車両用プロペラシャフトを構成する軸状の構成部材であり、前記成膜部位は、前記車両用プロペラシャフトの伸縮により前記車両用プロペラシャフトの他の構成部材と軸方向に摺動するスプライン嵌合部であり、前記非成膜部位は、前記車両用プロペラシャフトを他の駆動軸に連結するための連結部である前記[1]乃至[3]の何れか1項に記載の被膜の成膜方法。
【0013】
[5]前記被成膜体の軸方向における前記連結部の先端部は円弧状であり、前記遮蔽部材の前記連結部の先端部に対応する部位は、同先端部の円弧に適合した円弧状に形成されている前記[4]に記載の被膜の成膜方法。
【0014】
[6]前記プラズマから見た場合における前記被成膜体と前記遮蔽部材との寸法関係が下記の関係式を満たす前記[4]又は[5]に記載の被膜の成膜方法。
α1×α2/γ2≧3.48
ただし、α1は前記隔離間隔、α2は前記成膜部位を介在して装着された2つの遮蔽部材間の距離、γは前記成膜部位の表面から前記遮蔽部材の前記プラズマ側の表面までの平均距離。
【0015】
[7]前記連結部は、幅方向が厚み方向よりも長く形成され、前記プラズマから見た場合における前記被成膜体と前記遮蔽部材との寸法関係が下記の関係式を満たす前記[4]又は[5]に記載の被膜の成膜方法。
α1×α2/(β1×β2)≧5.9
ただし、α1は前記隔離間隔、α2は前記成膜部位を介在して装着された2つの遮蔽部材間の距離、β1は前記成膜部位の表面から前記連結部の幅方向における前記遮蔽部材の前記プラズマ側の表面までの距離、β2は前記成膜部位の表面から前記連結部の厚み方向における前記遮蔽部材の前記プラズマ側の表面までの距離。
【発明の効果】
【0016】
本発明によれば、被成膜体の非成膜部位を除く部位に被膜を成膜するとともに、成膜部位における被膜の硬度の低下を抑制することができる。
【図面の簡単な説明】
【0017】
【図1】図1は、本発明の実施の形態に係る車両用プロペラシャフトの構成例を示す部分断面図である。
【図2】図2は、本発明の実施の形態に係る第1シャフトと第2シャフトとの嵌合構造を示し、(a)は図1のA−A断面図、(b)は(a)の第1シャフトの一部拡大図である。
【図3】図3は、本発明の実施の形態に係る熱陰極PIGプラズマCVD装置の構成例を示す概略図である。
【図4】図4は、本発明の実施の形態に係る図3に示す熱陰極PIGプラズマCVD装置のB−B断面図である。
【図5】図5は、本発明の実施例1に係る治具及び第1シャフトを示し、(a)は正面図、(b)は側面図である。
【図6】図6は、本発明の実施例1に係る組立体の構成例を示し、(a)は90°の位相から見た状態を、(b)は0°の位相から見た状態を、それぞれ示す。
【図7】図7は、本発明の実施例1に係る治具及び第1シャフトを示し、(a)は正面図、(b)は側面図である。
【図8】図8は、本発明の実施例1に係る組立体の構成例を示し、(a)は90°の位相から見た状態を、(b)は0°の位相から見た状態を、それぞれ示す。
【図9】図9(a)は、実施例1及び2に係る組立体について、治具とスプライン嵌合部のDLC膜の硬度の測定部位との寸法関係及び表面硬度の測定結果を示す表である。図9(b)は、(α×α/(β90×β))の演算値と各測定部位の表面硬度との関係を示すグラフである。図9(c)は、(α×α)/γの演算値と各測定部位の表面硬度との関係を示すグラフである。
【発明を実施するための形態】
【0018】
以下に、本発明の実施の形態を、車両の駆動源の駆動力を車輪側に伝達する車両用のプロペラシャフトの一部材に適用した場合を例にとって説明する。
【0019】
図1は、車両用のプロペラシャフト100の構成例を示す部分断面図である。図1に示すように、このプロペラシャフト100は、第1シャフト10と第2シャフト20とを構成部材として含み、これら第1シャフト10及び第2シャフト20を摺動可能に連結して構成されている。この構成により、プロペラシャフト100は軸方向に伸縮可能である。
【0020】
第1シャフト10の表面のうち、プロペラシャフト100の伸縮に伴って第2シャフトと軸方向に摺動する部分には、耐摩耗性及び摺動性を向上させるための被膜(後述)が成膜されている。すなわち、第1シャフト10は被成膜体の一例である。
【0021】
(第1シャフトの構成)
第1シャフト10は、例えば焼入れ焼戻しないし、熱処理無しのS35C等の機械構造用炭素鋼からなる、中空の軸状部材である。第1シャフト10の中心部には、中心軸線Oに沿って軸方向に貫通する貫通孔10aが形成されている。
【0022】
第1シャフト10の一端部には、車両の他の駆動軸、例えばディファレンシャルギヤの入力シャフト(図示せず)と連結するための連結部としてのヨーク11が一体に設けられている。また、第1シャフト10の他端部には、その外周面に軸方向に延びる複数の外周スプライン歯120が等間隔で形成された円筒状のスプライン嵌合部12が設けられている。
【0023】
ヨーク11は、中心軸線Oに沿った方向の断面がU字状に形成され、中心軸線O方向の底部に形成された基端部110と、基端部110から中心軸線Oの方向に沿って突出して形成されて互いに対向する一対のアーム111,111とを有している。この一対のアーム111,111には、連結部材である十字軸継手(図示せず)の軸部を回転可能に支持するための軸受を保持する保持孔111a,111aが形成されている。
【0024】
ヨーク11とスプライン嵌合部12との間には、軸方向に延びる円筒状の軸部13が設けられている。軸部13は、スプライン嵌合部12の外径よりも小径に形成されている。
【0025】
(第2シャフトの構成)
第2シャフト20は、例えばS20C等の機械構造用炭素鋼からなる中空の軸状部材である。この第2シャフト20の一端部には、車両のトランスミッションの出力シャフト(図示せず)と連結するためのヨーク21が一体に設けられている。ヨーク21は、第2シャフト20をトランスミッションの出力シャフトに連結する十字軸継手24の一対の軸部を回転可能に保持している。
【0026】
また、第2シャフト20の他端部には、筒状のスプライン嵌合部22が設けられている。スプライン嵌合部22の内周面には、軸方向に延びる複数の内周スプライン歯220が形成されている。ヨーク21とスプライン嵌合部22との間には、例えば摩擦圧接によりヨーク21及びスプライン嵌合部22と結合された円筒部23が介在している。
【0027】
(第1シャフトと第2シャフトとの嵌合構造)
図2は、第1シャフト10と第2シャフト20との嵌合構造を示し、(a)は図1のA−A断面図、(b)は(a)の第1シャフト10の一部拡大図である。
【0028】
図2(a)に示すように、スプライン嵌合部12は、スプライン嵌合部22の内側に、互いの軸線が一致するように配置されている。そして、スプライン嵌合部12の複数の外周スプライン歯120とスプライン嵌合部22の複数の内周スプライン歯220とが互いに噛み合わされて嵌合されている。この構造により、第1シャフト10と第2シャフト20とは、相対回転不能かつ軸方向に摺動可能に連結されている。
【0029】
(DLC膜の構成)
図2(b)に示すように、第1シャフト10のスプライン嵌合部12の外周側の表面には、被膜の一例としてのDLC膜121が形成されている。DLC膜121は、炭素を主成分とした非晶質構造を有するダイヤモンド状炭素薄膜である。より具体的には、DLC膜121は、第1シャフト10への密着力を高めるためのクロム等の材料からなる中間層と、この中間層の上に形成され、Siの含有量が表面に近づくに従って低くなる傾斜組成を有するSi含有のDLC(DLC−Si)層からなる二層構造を有している。
【0030】
DLC膜121は、その膜厚が例えば0.4〜10μmであり、第1シャフト10のスプライン嵌合部12への密着力は10N以上である。なお、図2(b)では、説明のためにDLC膜121の厚みを誇張して表している。
【0031】
このようなDLC膜を形成する方法としては、CVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法、イオン蒸着法等が知られているが、本実施の形態では、熱陰極PIG(Penning Ionization Gauge)プラズマCVD法を用いてDLC膜121を成膜する場合について説明する。
【0032】
(熱陰極PIGプラズマCVD装置の構成)
図3は、熱陰極PIGプラズマCVD装置3の構成例を示す概略図である。
図4は、図3に示す熱陰極PIGプラズマCVD装置3のB−B断面図である。
【0033】
図3に示すように、この熱陰極PIGプラズマCVD装置3は、上面に開口部30aを有する真空蒸着室30と、その開口部30aを覆うように設けられたプラズマ室31とを有している。
【0034】
真空蒸着室30は、上壁301、側壁302、及び底壁303によって構成される壁部300によって外部から区画されている。上壁301にはプラズマ室31に連通する開口部30aが形成されている。また、側壁302には排気口302aが形成され、排気口302aは真空ポンプ(図示せず)に接続されている。
【0035】
プラズマ室31には、熱陰極311、陽極312、電子注入電極313、及びガスノズル314が配置されている。真空蒸着室30とプラズマ室31との間は、フッ素樹脂やアルミナ等からなる絶縁体32により絶縁されている。
【0036】
熱陰極311は、例えばタングステンフィラメントであり、直流電源315から供給される電力により熱電子が放出される温度(例えば2000℃)に加熱される。陽極312は、アノード電源316によって熱陰極311に対して正の電圧が印加される。電子注入電極313は、電子注入電源317を介して熱陰極311に接続されるとともに接地されている。熱陰極311、陽極312、及び電子注入電極313は、プラズマ室31の壁部310から浮遊しており、プラズマ室31は絶縁電位に維持されている。
【0037】
真空蒸着室30の上側には、プラズマ室31を囲むように、上壁301に対向して第1のコイル33が配置されている。真空蒸着室30の下側には、底壁303に対向して、第1のコイル33と同径の第2のコイル34が配置されている。また、真空蒸着室30内に材料ガスを導入するノズル35が側壁302を貫通して設けられている。
【0038】
真空蒸着室30内には、開口部30aを介してプラズマ室31に対向し、真空蒸着室30の壁部300から浮遊した状態で、反射電極304が配置されている。また、真空蒸着室30内における反射電極304の下側には、底壁303を挟んで真空蒸着室30の外部に配置されたモータ36によって回転駆動される円板状の第1の回転台305が配置されている。第1の回転台305の上側には、第1の回転台305よりも小径に形成され、図示しない歯車機構によって第1の回転台305の回転に伴って回転する円板状の複数の第2の回転台306が設けられている。
【0039】
それぞれの第2の回転台306には、3つの第1シャフト10が、それぞれの貫通孔10a(図1参照)を棒状の支持軸307に貫通させて支持されている。支持軸307は第2の回転台306の回転軸上に立設している。それぞれの第1シャフト10の一端部は、ヨーク11を覆うように装着された遮蔽部材としての治具41により遮蔽されている。最上部に位置する第1シャフト10と、中央部に位置する第1シャフト10に装着された治具41との間には、環状のスペーサ42が配置されている。治具41の詳細については後述する。
【0040】
このように、3つの第1シャフト10、3つの治具41、及びスペーサ42が組み合わされてなる組立体40は、図4に示すように、第2の回転台306の回転に伴って第1シャフト10の軸方向回りに回転するとともに、第1の回転台305の回転に伴って反射電極304の周りを回転する。
【0041】
組立体40を構成する3つの第1シャフト10には、モータ36の回転軸360等を介した図示しない配線により、非対称パルス電源37が接続されている。非対称パルス電源37は、所定の周波数(例えば、10〜250kHz)で負電圧の絶対値が正電圧の絶対値よりも大きいパルス電圧を各第1シャフト10に印加する。
【0042】
また、図4に示すように、真空蒸着室30内には、クロム等の金属からなるスパッタ源38、及び組立体40を所定の温度に加熱するためのヒータ39が配置されている。
【0043】
(DLC膜の成膜工程)
第1シャフト10のスプライン嵌合部12にDLC膜121を成膜する際は、まず真空蒸着室30内に3つの第1シャフト10等からなる組立体40を第2の回転台306の上に設置する。図4に示す例では、真空蒸着室30内に12組の組立体40が設置される。次に、真空ポンプによって排気口302aから真空蒸着室30内の空気を排出して真空蒸着室30内を略真空状態とする。
【0044】
次に、モータ36を駆動して第1の回転台305及び第2の回転台306を回転させるとともに、熱陰極311、陽極312、電子注入電極313に通電して真空蒸着室30内の中心部にプラズマ3aを発生させる。このプラズマ3aは、開口部30aと反射電極304との間に発生し、第1のコイル33及び第2のコイル34による磁力によって中央部が膨らんだ円柱状に維持される。また、非対称パルス電源37から各第1シャフト10にパルス電圧を印加する。
【0045】
次に、ガスノズル314からArガス及びHガスを導入して第1シャフト10の治具41により遮蔽されていない部分(非遮蔽部分)を放電洗浄する。
【0046】
次に、モータ36の駆動及びパルス電圧の印加を継続しながら、スパッタリングによってスパッタ源38から放出されたクロムを第1シャフト10の非遮蔽部分に付着させる。さらに、ノズル35からTMS(テトラメチルシラン:Si(CH)ガス、及び炭化水素系のC等の材料ガスを供給し、これらの材料ガスをプラズマ3aの径方向に放射状に加速して、プラズマ3aと平行になるように配置されている各第1シャフト10の非遮蔽部分に衝突及び付着させ、DLC膜121を各第1シャフト10に形成する。
【実施例】
【0047】
以下に、本発明の成膜方法を、実施例1及び2を用いてさらに具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。
【0048】
実施例1及び2は、ともに図3に例示した熱陰極PIGプラズマCVD装置3を用いて第1シャフト10にDLC膜121を成膜するが、第1シャフト10のヨーク11をカバーする治具の形状が異なっている。
【0049】
(実施例1)
図5は、実施例1に係る治具41の断面、及びこの治具41にヨーク11を含む一端部がカバーされた第1シャフト10を示し、(a)は正面図、(b)は側面図である。
【0050】
治具41は、例えば炭素鋼等の鋼材からなり、中空の三角形柱状を呈している。この治具41は、断面円弧状の底壁410と、平面視で三角形状であり、互いに対向する第1の側壁411及び第2の側壁412と、平面視で四角形状であり、第1の側壁411及び第2の側壁412の間に形成された第3の側壁413及び第4の側壁414と、底壁410に対向する天壁415とを有している。
【0051】
底壁410は、その断面形状がアーム111の半円状の先端部111bの円弧の曲率に適合する曲率で形成されている。より具体的には、底壁410は、その内面410aがアーム111の先端部111bの曲率と同じ曲率もしくはそれよりもやや小さい曲率(例えば先端部111bの曲率の0.7〜1.0倍)で形成された樋(とい)状である。底壁410には、支持軸307(図3参照)を挿通させるための貫通孔(図示せず)が形成されている。
【0052】
天壁415は、平面視で四角形状であり、その中心部に第1シャフト10の軸部13を挿通させる挿通孔415aが形成されている。第3の側壁413及び第4の側壁414が天壁415となす角は、ともに鋭角である。
【0053】
第1シャフト10は、アーム111の先端部111bが治具41の底壁410の内面410aに当接するようにして、ヨーク11のアーム111,111及び基端部110を含む一端部が治具41に覆われている。軸部13の一部と第1シャフト10のスプライン嵌合部12は、治具41でカバーされる範囲外にある。
【0054】
治具41に覆われたヨーク11は、DLC膜121が成膜されない非成膜部位である。ヨーク11に硬質のDLC膜121が成膜されないことにより、成膜処理後におけるヨーク11に対する機械加工が容易となる。
【0055】
ヨーク11は、図4(a)に示す方向から見た幅方向の長さwが、図4(b)に示す方向から見た厚み方向の長さtよりも長く形成されている。ここで、幅方向はアーム111の保持孔111aの中心軸方向であり、厚み方向はこの幅方向及び中心軸線Oに直交する方向である。また、ヨーク11の幅方向の長さw及び厚み方向の長さtは、スプライン嵌合部12の外周面の直径(49mm)よりも大きく形成されている。治具41が第1シャフト10に装着された状態において、ヨーク11の幅方向における治具41の長さlは、ヨーク11の厚み方向における治具41の長さlと同等である。
【0056】
また、第1シャフト10の治具41に覆われていない部位のうち、スプライン嵌合部12はDLC膜121を形成すべき成膜部位である。軸部13は、治具41に覆われていないために、少なくともその一部にDLC膜121が形成され得るが、軸部13は他の部材と摺動しないため、軸部13におけるDLC膜121は必ずしも必要ではない。また、軸部13におけるDLC膜121の硬度についても要求されない。つまり、軸部13は、成膜部位と非成膜部位との間に位置する中間部位である。
【0057】
治具41は、第1シャフト10の中心軸線Oを含む平面で2部材に分割可能であり、分割された状態で第1シャフト10の一端部を挟み込み、その後、2部材を連結することで第1シャフト10に装着される。なお、天壁415の挿通孔415aをヨーク11が挿通可能な大きさに形成し、2部材に分割することなく第1シャフト10に装着可能としてもよい。
【0058】
図6は、3つの第1シャフト10、3つの治具41、及びスペーサ42を組み合わせ、熱陰極PIGプラズマCVD装置3の真空蒸着室30内にセットされる組立体40に構成した状態を示す構成図であり、(a)は治具41の第3の側壁413の側から見た状態(位相:90°)を、(b)は治具41の第1の側壁411の側から見た状態(位相:0°)を、それぞれ示す。
【0059】
3つの第1シャフト10は、それぞれが同じ大きさ及び形状を有しているが、以下の説明ではこれらを区別するため、真空蒸着室30内にセットされたときに最も上側(プラズマ室31側)に位置する第1シャフト10を「上側第1シャフト(符号10A)」、最も下側に位置する第1シャフト10を「下側第1シャフト(符号10C)」、上側第1シャフト10Aと下側第1シャフト10Cとの間に位置する第1シャフト10を「中側第1シャフト(符号10B)」と称して説明する。
【0060】
上側第1シャフト10A、中側第1シャフト10B、及び下側第1シャフト10Cは、それぞれの中心軸線が一致するように、軸方向に沿って一列に配列される。上側第1シャフト10A及び中側第1シャフト10Bは、ヨーク11側の端部が上側を向くように配置され、下側第1シャフト10Cはヨーク11側の端部が下側を向くように配置される。上側第1シャフト10A、中側第1シャフト10B、及び下側第1シャフト10Cのヨーク11は、それぞれ治具41によりカバーされ、真空蒸着室30に発生するプラズマ3aから遮蔽される。
【0061】
上側第1シャフト10Aのスプライン嵌合部12側の端面12aと中側第1シャフト10Bに装着された治具41との間には、スペーサ42が配置されている。また、中側第1シャフト10Bと下側第1シャフト10Cとは、互いのスプライン嵌合部12側の端面12a同士が向かい合うように配置される。
【0062】
上側第1シャフト10A、中側第1シャフト10B、及び下側第1シャフト10Cの軸方向をX方向とし、X方向に直交して熱陰極PIGプラズマCVD装置3の真空蒸着室30内にセットされたときにプラズマ3aに向かう方向をY方向とすると、図6(a)に示すように、上側第1シャフト10Aに装着された治具41の下端と上側第1シャフト10Aのスプライン嵌合部12の上端との間のX方向の寸法aは35mm、上側第1シャフト10Aに装着された治具41の下端と中側第1シャフト10Bに装着された治具41の上端との間のX方向の寸法bは143mm、上側第1シャフト10Aのスプライン嵌合部12の下端と中側第1シャフト10Bに装着された治具41の上端との間のX方向の寸法cは9mmである。なお、寸法cはスペーサ42の厚みに相当する。
【0063】
また、中側第1シャフト10Bに装着された治具41の下端と中側第1シャフト10Bのスプライン嵌合部12の上端との間のX方向の寸法dは35mm、中側第1シャフト10Bに装着された治具41の下端と下側第1シャフト10Cに装着された治具41の上端との間のX方向の寸法eは272mmである。
【0064】
また、上側第1シャフト10A、中側第1シャフト10B、及び下側第1シャフト10Cのスプライン嵌合部12の外周面(外周スプライン歯120の先端部)と、90°位相における各治具41のY方向の端部との間のY方向の寸法fは23mmである。
【0065】
また、図6(b)に示すように、上側第1シャフト10Aのスプライン嵌合部12の外周面と、0°位相における中側第1シャフト10Bに装着された治具41の先端部41aとの間のY方向の寸法gは25mmである。ただし、上側第1シャフト10Aのスプライン嵌合部12の外周面は、0°位相における中側第1シャフト10Bに装着された治具41の先端部41aよりも+Y方向に突出しているので、上側第1シャフト10Aのスプライン嵌合部12の外周面の+Y方向への突出量は0mmである。
【0066】
また、中側第1シャフト10Bのスプライン嵌合部12の外周面と、0°位相における中側第1シャフト10Bに装着された治具41のY方向の端部との間のY方向の寸法hは23mmである。なお、上側第1シャフト10Aのスプライン嵌合部12の外周面と0°位相における上側第1シャフト10Aに装着された治具41のY方向の端部との間のY方向の寸法、及び下側第1シャフト10Cのスプライン嵌合部12の外周面と0°位相における下側第1シャフト10Cに装着された治具41のY方向の端部との間のY方向の寸法も、寸法hと同じ23mmである。
【0067】
寸法a,寸法c,及び寸法dは、治具41の近傍においてDLC膜121の硬度が低下するとの知見に基づいて、スプライン嵌合部12におけるDLC膜121の硬度の低下を抑制するために設けられた隔離間隔の一例である。本実施例では、この隔離間隔を9mm以上に設定している。
【0068】
(実施例2)
図7は、実施例2に係る治具51の断面、及びこの治具51にヨーク11を含む一端部がカバーされた第1シャフト10を示し、(a)は正面図、(b)は側面図である。
【0069】
治具51は、例えば炭素鋼等の鋼材からなり、中空の直方体状を呈している。この治具51は、底壁510と、底壁510に対向する天壁515と、底壁510及び天壁515の間に形成された第1の側壁511,第2の側壁512,第3の側壁513,及び第4の側壁514とを有している。天壁515は、その中心部に第1シャフト10の軸部13を挿通させる挿通孔515aが形成されている。
【0070】
第1の側壁511と第3の側壁513、及び第2の側壁512と第4の側壁514は、第1シャフト10のヨーク11を挟んで互いに対向している。これら底壁510,第1の側壁511,第2の側壁512,第3の側壁513,第4の側壁514,及び天壁515は、それぞれが平面視で四角形状である。
【0071】
第1シャフト10は、アーム111の先端部111bが治具51の底壁510の内面510aに当接するようにして、ヨーク11のアーム111,111及び基端部110を含む一端部が治具51に覆われている。
【0072】
治具51が第1シャフト10に装着された状態において、ヨーク11の幅方向における治具51の長さlは、ヨーク11の厚み方向における治具51の長さlよりも長く形成されている。
【0073】
治具51は、実施例1に係る治具41と同様に、第1シャフト10の中心軸線Oを含む平面で2部材に分割可能であり、分割された状態で第1シャフト10の一端部を挟み込み、その後、2部材を連結することで第1シャフト10に装着される。なお、天壁515の挿通孔515aをヨーク11が挿通可能な大きさに形成し、2部材に分割することなく第1シャフト10に装着可能としてもよい。
【0074】
図8は、3つの第1シャフト10、3つの治具51、及びスペーサ42を組み合わせ、熱陰極PIGプラズマCVD装置3の真空蒸着室30内にセットされる組立体50に構成した状態を示す構成図であり、(a)は治具51の第3の側壁413の側から見た状態(位相:90°)を、(b)は治具51の第1の側壁511の側から見た状態(位相:0°)を、それぞれ示す。組立体50の構成は、治具の形状が異なる以外は、図6に示す実施例1に係る組立体40と同様である。
【0075】
実施例1と同様にX方向及びY方向を定義すると、図8(a)に示すように、上側第1シャフト10Aに装着された治具51の下端と上側第1シャフト10Aのスプライン嵌合部12の上端との間のX方向の寸法aは17mm、上側第1シャフト10Aに装着された治具51の下端と中側第1シャフト10Bに装着された治具51の上端との間のX方向の寸法bは120mm、上側第1シャフト10Aのスプライン嵌合部12の下端と中側第1シャフト10Bに装着された治具51の上端との間のX方向の寸法cは9mmである。
【0076】
また、中側第1シャフト10Bに装着された治具51の下端と中側第1シャフト10Bのスプライン嵌合部12の上端との間のX方向の寸法dは17mm、中側第1シャフト10Bに装着された治具51の下端と下側第1シャフト10Cに装着された治具51の上端との間のX方向の寸法eは240mmである。
【0077】
また、上側第1シャフト10A、中側第1シャフト10B、及び下側第1シャフト10Cのスプライン嵌合部12の外周面(外周スプライン歯120の先端部)と、90°位相における各治具41のY方向の端部との間のY方向の寸法fは23mmである。
【0078】
また、図8(b)に示すように、中側第1シャフト10Bのスプライン嵌合部12の外周面と、0°位相における中側第1シャフト10Bに装着された治具51のY方向の端部との間のY方向の寸法gは16mmである。なお、上側第1シャフト10Aのスプライン嵌合部12の外周面と、0°位相における上側第1シャフト10Aに装着された治具41のY方向の端部との間のY方向の寸法、及び下側第1シャフト10Cのスプライン嵌合部12の外周面と、0°位相における下側第1シャフト10Cに装着された治具41のY方向の端部との間のY方向の寸法も、寸法gと同じ16mmである。
【0079】
寸法a,寸法c,及び寸法dは、治具51の近傍においてDLC膜121の硬度が低下するとの知見に基づいて、スプライン嵌合部12におけるDLC膜121の硬度の低下を抑制するために設けられた隔離間隔の一例である。本実施例では、この隔離間隔を9mm以上に設定している。
【0080】
図9は、上記実施例1及び2に係る組立体40,50を熱陰極PIGプラズマCVD装置3の真空蒸着室30内に設置してDLC膜121を形成した場合における表面硬さの実験結果を表形式及びグラフで示す。
【0081】
図9(a)は、実施例1及び2に係る組立体40,50における第1シャフト10のスプライン嵌合部12のそれぞれ3箇所について、治具41,51との寸法関係及び表面硬度の測定結果を示す表である。ここでは、表面硬度をヌープ硬度で表している。
【0082】
ヌープ硬度は、JIS B 7734(微小硬さ試験機)に適合するもの、又はこれに準ずる試験機を用いて測定する。すなわち、ヌープ圧子(対稜角が172°30′と130°のダイヤモンド四角錐圧子)を用いて、測定面に四角錐のくぼみをつけたときの荷重を、永久くぼみの長い方の対角線の長さから求めたくぼみの投射面積で除した商であり、このヌープ硬さHk(kgf/mm)は、次式(1)で表される。
〔数1〕
Hk=14.23・F/L ・・・(1)
ここで、Fは荷重(N)、Lは長い方の対角線の長さ(mm)である。
【0083】
実施例1に係る組立体40については、図6(a)に示すように、第1部位40a,第2部位40b,及び第3部位40cの3つの測定部位において表面硬度を測定した。第1部位40aは、上側第1シャフト10Aのスプライン嵌合部12の上端部である。第2部位40bは、上側第1シャフト10Aのスプライン嵌合部12の下端部である。第3部位40cは、中側第1シャフト10Bのスプライン嵌合部12の上端部である。これら各測定部位については、その周方向に沿った複数箇所で測定を行い、複数箇所における測定結果の平均値を表面硬度の測定値とした。
【0084】
また、実施例2に係る組立体50については、図8(a)に示すように、第4部位50a,第5部位50b,及び第6部位50cの3つの測定部位において表面硬度を測定した。第4部位50a,第5部位50b,及び第6部位50cの測定部位は、第1部位40a,第2部位40b,及び第3部位40cにそれぞれ対応する。これらの測定部位では、0°位相における第2部位40bを除き、X方向の最も近い距離に配置された治具41又は治具51が測定部位よりもY方向に突出している。
【0085】
図9(a)に示す表において、第1欄9aはαの寸法を示している。αは、各測定部位からX方向に最も近い治具41又は治具51までの寸法である。第1欄9aでは、αの寸法値を図6(a)又は図8(a)における寸法測定箇所の符号(a,c,d,…)とともに記載している。
【0086】
また、第2欄9bはαの寸法を示している。αは、各測定部位をX方向に挟む2つの治具41又は治具51の間の寸法である。このαについても、その寸法値を図6(a)又は図8(a)における寸法測定箇所の符号(b,e,d,…)とともに記載している。
【0087】
また、第3欄9cはβ90の寸法を示している。β90は、各測定部位と90°位相における治具41又は治具51のY方向の端部との間の寸法である。すなわち、β90はスプライン嵌合部12の外周面からヨーク11の幅方向における治具41又は治具51のプラズマ3a側の表面までの距離である。第3欄9cでは、β90の寸法値を図6(a)又は図8(a)における寸法測定箇所の符号(f,又はf)とともに記載している。
【0088】
また、第4欄9dはβの寸法を示している。βは、各測定部位と0°位相における治具41又は治具51のY方向の端部との間の寸法である。すなわち、βはスプライン嵌合部12の外周面からヨーク11の厚み方向における治具41又は治具51のプラズマ3a側の表面までの距離である。第4欄9dでは、βの寸法値を図6(a)又は図8(a)における寸法測定箇所の符号(h,又はg)とともに記載している。
【0089】
ここで、第2部位40bのβの寸法については、図6(b)に示す寸法gが対応するが、前述のようにこの測定部位における治具41のY方向への突出量は0mmであるので、βの寸法値を0としている。
【0090】
また、第5欄9eは((α×α)/(β90×β))の演算値を示している。なお、第2部位40bについては、βの寸法値を0としているので、この演算値を示していない。
【0091】
また、第6欄9fはγの寸法を示している。γは、第1シャフト10のスプライン嵌合部12の外周面からX方向に直交する方向への治具41又は治具51の端部までの距離の平均値(平均距離)である。γは、実施例1については、治具41の天壁415の面積(挿通孔415aは形成されていないものとする)と同じ面積を有する円の半径からスプライン嵌合部12の外周面の半径を減算した値として求めることができる。同様に、実施例2についても、治具51の底壁510又は天壁515の面積に基づいてγを演算することができる。
【0092】
また、第7欄9gは((α×α)/γ)の演算値を示している。なお、第2部位40bについては、第5欄9eと同様に、この演算値を示していない。
【0093】
また、第8欄9hは各測定部位におけるヌープ硬度の測定結果を示している。なお、本実験結果では、第1シャフト10のスプライン嵌合部12の周方向の位置による表面硬度の違いはほとんど見られなかった。
【0094】
図9(b)は、第5欄9eに示す((α×α)/(β90×β))の演算値と各測定部位(第2部位40bを除く)の表面硬度(ヌープ硬度)との関係を示すグラフである。図9(b)から明らかなように、((α×α)/(β90×β))の演算値と表面硬度との間には相関関係があり、この演算値が大きいほど表面硬度が高くなる関係にある。そして、次式(2)で表される関係式を満たすように第1シャフト10と治具41又は治具51との寸法関係を規定すれば、プロペラシャフト100の耐久性を確保するために必要なヌープ硬度1100(kgf/mm)を得られることが分かる。
〔数2〕
α×α/(β90×β)≧5.9 ・・・(2)
【0095】
図9(c)は、第7欄9gに示す((α×α)/γ)の演算値と各測定部位(第2部位40bを除く)の表面硬度(ヌープ硬度)との関係を示すグラフである。図9(c)から明らかなように、((α×α)/γ)の演算値と表面硬度との間には相関関係があり、この演算値が大きいほど表面硬度が高くなる関係にある。そして、次式(3)で表される関係式を満たすように第1シャフト10と治具41又は治具51との寸法関係を規定すれば、プロペラシャフト100の耐久性を確保するために必要なヌープ硬度1100(kgf/mm)を得られることが分かる。
〔数3〕
(α×α)/γ≧3.48 ・・・(3)
【0096】
[実施の形態の効果]
以上説明した実施の形態によれば、次に示す効果が得られる。
【0097】
(1)DLC膜121を形成しない部位(ヨーク11)を治具41又は治具51で遮蔽することにより、この部位を除く部位にDLC膜121を形成することができる。従って、第1シャフト10の全体にDLC膜121を形成した後にヨーク11のDLC膜121を除去する場合に比較して、工程数を減らすことができる。
【0098】
(2)第1シャフト10のスプライン嵌合部12からX方向に所定の隔離間隔(9mm以上)をおいて治具41又は治具51を装着したので、スプライン嵌合部12におけるDLC膜121のヌープ硬度を990(kgf/mm)以上とすることができる。
【0099】
(3)第1部位40a、第3部位40c、第4部位50a、及び第6部位50cについては、上記の式(1),(2)を満たすように治具41,51を装着したので、スプライン嵌合部12におけるDLC膜121のヌープ硬度を1110(kgf/mm)以上とすることができる。
【0100】
(4)複数(上記の実施の形態では3つ)の第1シャフト10を軸方向に沿って配列した組立体40,50を真空蒸着室30内に配置してDLC膜121を成膜するので、処理効率を高めることができる。
【0101】
(5)組立体40,50を構成する3つの第1シャフト10のうち、2つの第1シャフト10(中側第1シャフト10B及び下側第1シャフト10C)をスプライン嵌合部12側の端面12a同士が当接するように配置したので、それぞれの第1シャフト10に装着された治具41,51同士の間隔が広がり、これら2つの第1シャフト10のスプライン嵌合部12におけるDLC膜121の硬度を高めることができる。
【0102】
(6)治具41の底壁410を円弧状に形成したので、図6(b)に示すように、0°位相における上側第1シャフト10Aのスプライン嵌合部12の外周面が中側第1シャフト10Bに装着された治具41の底壁部よりもY方向に突出し、このスプライン嵌合部12におけるDLC膜121の硬度を高めることができる。
【0103】
(7)治具41,51は第1シャフト10のヨーク11に容易に着脱可能であり、かつ繰り返し使用できるので、例えばヨーク11をアルミ箔で覆うことにより遮蔽する場合に比べて作業効率が向上する。
【0104】
以上、本発明の被膜の成膜方法を上記の実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能であり、例えば次に示すような変形も可能である。
【0105】
(1)上記実施の形態では、治具41を三角柱状に、治具51を直方体状に形成したが、これに限らず、例えば円柱状等の様々な形状を適用することができる。
【0106】
(2)上記実施の形態では、1つの組立体40,50が3つの第1シャフト10を含むように構成したが、これに限らず、2つの第1シャフト10を組み合わせて1つの組立体としてもよい。また、4つ若しくはそれ以上の第1シャフト10を組み合わせて1つの組立体としてもよい。1つの組立体における第1シャフト10の配列方法も図6及び図8に例示したものに限らない。
【0107】
(3)上記実施の形態では、治具41,51を炭素鋼で形成したが、これに限らず、ステンレスやアルミニウム、あるいは樹脂によって形成してもよい。
【0108】
(4)上記実施の形態では、熱陰極PIGプラズマCVD装置3をプラズマ3aが鉛直方向に発生するように構成したが、これに限らず、プラズマ3aが水平方向、あるいは鉛直方向対して傾斜した方向に発生するように構成してもよい。この場合でも、第1シャフト10はプラズマ3aと平行になるように配置することが望ましい。
【0109】
(5)上記実施の形態では、被膜の一例であるDLC膜121がクロム等の材料からなる中間層とDLC−Si層とからなる二層構造を有する場合について説明したが、中間層はなくともよい。また、DLC膜121は、Siを含まないDLCからなる膜であってもよい。またさらに、被膜はDLCに限らず、TiN(窒化チタン)等であってもよい。この場合には、被膜の組成に応じた材料ガスを真空蒸着室に供給して成膜を行うことができる。
【0110】
(6)上記実施の形態では、第1シャフト10が車両のディファレンシャルギヤの入力シャフトに連結され、第2シャフト20が車両のトランスミッションの出力シャフトに連結されるようにプロペラシャフト100を構成したが、これとは逆に、第1シャフト10が車両のトランスミッションの出力シャフトに連結され、第2シャフト20が車両のディファレンシャルギヤの入力シャフトに連結されるように構成してもよい。なお、ディファレンシャルギヤの入力シャフト及びトランスミッションの出力シャフトは、何れも車両の駆動源の駆動力を伝達する駆動軸の一例である。
【0111】
(7)上記実施の形態では、被成膜体の一例としてプロペラシャフト100の構成部材である第1シャフト10を適用した場合について説明したが、被成膜体はこれに限定されるものではない。被成膜体としては、被膜の硬度が要求され、かつ一部に被膜を形成しないことが要求されるあらゆる部材を適用することが可能である。
【符号の説明】
【0112】
3…熱陰極PIGプラズマCVD装置、3a…プラズマ、10…第1シャフト、10a…貫通孔、10A…上側第1シャフト、10B…中側第1シャフト、10C…下側第1シャフト、12a…端面、11…ヨーク、12…スプライン嵌合部、13…軸部、20…第2シャフト、21…ヨーク、22…スプライン嵌合部、30…真空蒸着室、30a…開口部、31…プラズマ室、32…絶縁体、33…第1のコイル、34…第2のコイル、35…ノズル、36…モータ、37…非対称パルス電源、38…スパッタ源、39…ヒータ、40…組立体、40a…第1部位、40b…第2部位、40c…第3部位、41…治具、42…スペーサ、50…組立体、50a…第4部位、50b…第5部位、50c…第6部位、51…治具、100…プロペラシャフト、110…基端部、111…アーム、111a…保持孔、111b…先端部、120…外周スプライン歯、121…DLC膜、220…内周スプライン歯、300…壁部、301…上壁、302…側壁、302a…排気口、303…底壁、304…反射電極、305…第1の回転台、306…第2の回転台、311…熱陰極、312…陽極、313…電子注入電極、314…ガスノズル、315…直流電源、316…アノード電源、317…電子注入電源、360…回転軸、410…底壁、411…第1の側壁、412…第2の側壁、413…第3の側壁、414…第4の側壁、415…天壁、415a…挿通孔、511…第1の側壁、512…第2の側壁、513…第3の側壁、514…第4の側壁、515…天壁、515a…挿通孔

【特許請求の範囲】
【請求項1】
真空蒸着室内に円柱状のプラズマを発生させると共に前記真空蒸着室内に材料ガスを供給し、パルス電圧を被成膜体に印加して前記被成膜体に被膜を形成する被膜の成膜方法であって、
前記被成膜体の前記被膜を形成しない非成膜部位には、前記被膜を形成すべき成膜部位との間に前記成膜部位における前記被膜の硬度の低下を抑制するための隔離間隔をおいて、前記非成膜部材を遮蔽する遮蔽部材を装着する被膜の成膜方法。
【請求項2】
前記被成膜体は、前記成膜部位が前記プラズマと平行になるように前記真空蒸着室内に配置され、
前記被成膜体をその軸方向周りに回転させながら前記成膜部位に前記被膜を形成する請求項1に記載の被膜の成膜方法。
【請求項3】
前記被成膜体は、軸方向の一端に前記非成膜部位を有する軸状部材であり、
2つの前記被成膜体をその軸方向の他端部同士が向かい合うようにして真空蒸着室内に配列し、前記成膜部位に前記被膜を形成する請求項1又は2に記載の被膜の成膜方法。
【請求項4】
前記被成膜体は、軸方向に伸縮可能な車両用プロペラシャフトを構成する軸状の構成部材であり、
前記成膜部位は、前記車両用プロペラシャフトの伸縮により前記車両用プロペラシャフトの他の構成部材と軸方向に摺動するスプライン嵌合部であり、
前記非成膜部位は、前記車両用プロペラシャフトを他の駆動軸に連結するための連結部である請求項1乃至3の何れか1項に記載の被膜の成膜方法。
【請求項5】
前記被成膜体の軸方向における前記連結部の先端部は円弧状であり、
前記遮蔽部材の前記連結部の先端部に対応する部位は、同先端部の円弧に適合した円弧状に形成されている請求項4に記載の被膜の成膜方法。
【請求項6】
前記プラズマから見た場合における前記被成膜体と前記遮蔽部材との寸法関係が下記の関係式を満たす請求項4又は5に記載の被膜の成膜方法。
α×α/γ≧3.48
ただし、αは前記隔離間隔、αは前記成膜部位を介在して装着された2つの遮蔽部材間の距離、γは前記成膜部位の表面から前記遮蔽部材の前記プラズマ側の表面までの平均距離。
【請求項7】
前記連結部は、幅方向が厚み方向よりも長く形成され、
前記プラズマから見た場合における前記被成膜体と前記遮蔽部材との寸法関係が下記の関係式を満たす請求項4又は5に記載の被膜の成膜方法。
α×α/(β×β)≧5.9
ただし、αは前記隔離間隔、αは前記成膜部位を介在して装着された2つの遮蔽部材間の距離、βは前記成膜部位の表面から前記連結部の幅方向における前記遮蔽部材の前記プラズマ側の表面までの距離、βは前記成膜部位の表面から前記連結部の厚み方向における前記遮蔽部材の前記プラズマ側の表面までの距離。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−36438(P2012−36438A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−177138(P2010−177138)
【出願日】平成22年8月6日(2010.8.6)
【出願人】(000001247)株式会社ジェイテクト (7,053)
【出願人】(591139574)株式会社CNK (25)
【Fターム(参考)】