説明

貫通電極配線の製造方法

【課題】複雑な工程を用いることなく、コストの増加や破損の発生などを抑制した状態で、より均一な深さの孔部を形成することで貫通電極配線が形成できるようにする。
【解決手段】酸化シリコン層104をマスクとしたRIEにより、シリコン基板101を選択的にエッチングすることで、シリコン基板101の一方の面(埋め込み酸化層102との界面)に到達する貫通孔106を形成する。貫通孔106の形成のためのエッチング処理(REI)においては、シリコン基板101の深さ方向に、シリコン基板101と埋め込み酸化層102との界面までしかエッチングが進行しない。この結果、シリコン基板101の板厚が均一であれば、貫通孔106の深さも均一に形成されるようになる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板に貫通電極配線を形成する貫通電極配線の製造方法に関するものである。
【背景技術】
【0002】
LSIの高密度化、高機能化のために、様々な技術が開発されている。また、チップ内の高密度化および高機能化のために、プレーナ技術の微細化が進み、現在、この限界に近づきつつあるともいわれている。これまで、LSIの微細化は、いわゆるムーアの法則に則って進んできたが、素子自身の物理的微細化限界が見えつつある。このため、ムーアの法則とは異なる高機能化のアプローチが、従来のLSIの製造技術のみならず実装技術までを包含し、いわゆる「More than Moore」のアプローチとして期待されている。
【0003】
これらのアプローチの1つとして、チップを三次元的に積層し、かつ、積層された各々のチップを、基板を貫通するビア(貫通電極配線)で接続する方法が提案されている(非特許文献1参照)。この技術では、チップを構成するシリコン基板に貫通孔を形成し、この貫通孔を導電材料で充填することが基本的な技術となっている。
【0004】
上述したようなシリコン基板に貫通孔を形成して貫通電極配線を形成する方法としては、よく知られた反応性イオンエッチング(Reactive Ion Etching:RIE)が用いられている。例えば、図2Aに示すように、シリコン基板201の一方の面に、絶縁層202を形成し、この絶縁層202に開口部203を形成した後、絶縁層202をマスクとし、RIEによりシリコン基板201をエッチングする。このエッチングで、シリコン基板201の途中までの深さの孔部204を形成する。
【0005】
次に、図2Bに示すように、孔部204の内面を覆うように絶縁層205を形成する。次に、例えば、スパッタ法により形成した薄い金属膜をシード層とした電解めっき法により、図2Cに示すように、孔部204を充填するように金属膜206を形成する。金属膜206は、公知の化学的気相成長(CVD)法により形成してもよい。
【0006】
次に、化学機械研磨(Chemical Mechanical Policing:CMP)によってシリコン基板201の他方の面を切削研磨することで、図2Dに示すように、金属膜206の絶縁層205に充填された部分よりなる貫通電極配線207の一方の端部を露出させる。この後、貫通電極配線207の露出した部分に、他の基板(チップ)と接続するための、いわゆるバンプが形成される。
【0007】
【非特許文献1】K.Takahashi, et al., "Process Integration of 3D Chip Stack with Vertical Interconnection", Proceeding, 2004 Electronic Components and Technology Conference (ECTC), pp.601-609, 2004.
【非特許文献2】T.Sakata. et al., "Selective Electrodeposition Technology for Organic Insulator Films on Microelectromechanical-System Structures", 電気学会論文誌E、センサ・マイクロマシン準部門誌、Vol.126, No.1, pp.14-18, 2006.
【非特許文献3】N. Sato, et al., "Advanced transfer system for spin coating film transfer and hot-pressing in planarization technology", J. Vac. Sci. Technol. B, Vol.20, No.3, pp.797-801,2002.
【発明の開示】
【発明が解決しようとする課題】
【0008】
ところで、上述したように貫通孔をシリコン基板に形成する場合、RIEなどの垂直異方性を備えるドライエッチングが一般的に用いられる。しかしながら、ドライエッチングでは、ウエハの面内やチップ内でエッチング速度が異なるため、各々の孔部の深さを一定にすることが容易ではない。このため、上述した深さのバラツキを考慮し、導電材料を充填した後の切削研磨を多めに行うようにしており、無駄の多い状態となっている。
【0009】
例えば、より深く形成された孔部においては、ここに充填された金属材料からなる貫通電極配線が露出していても、より浅く形成された孔部においては、貫通電極配線が露出していない状態となる。これを防ぐために、最も浅く形成された孔部においても貫通電極配線が露出するように、多めに基板を切削研磨している。これでは、より比較形成された孔部においては、基板のみならず、形成している貫通電極配線(充填金属)を無駄に切削研磨していることになる。
【0010】
これらのことは、基板が厚くなるほど顕著となる。言い換えると、基板を薄くすることで、孔部を浅く形成することができ、上述した孔部の深さバラツキを低減させることができるようになる。しかしながら、基板を薄くすることで、今度は、基板が破損しやすくなるという問題が発生する。特に、CMPでは、基板に大きな応力が加わるため、基板を薄くすることで、破損の危険性が増大してしまう。また、薄層化した基板の破損を抑制するための、より複雑な支持機構が必要になるなど、工程をより複雑にしてコストの上昇を招くという問題も発生する。
【0011】
本発明は、以上のような問題点を解消するためになされたものであり、複雑な工程を用いることなく、コストの増加や破損の発生などを抑制した状態で、より均一な深さの孔部を形成することで貫通電極配線が形成できるようにすることを目的とする。
【課題を解決するための手段】
【0012】
本発明に係る貫通電極配線の製造方法は、一方の面に第1絶縁層を備えたシリコン基板の他方の面に、開口部を備えた第2絶縁層を形成する第1工程と、第2絶縁層をマスクとし、第1絶縁層をエッチングストップ層としてシリコン基板を選択的にエッチングし、開口部を介してシリコン基板の他方の面より一方の面に到達する貫通孔を形成する第2工程と、貫通孔の壁面を覆う第3絶縁層を形成する第3工程と、第3絶縁層を形成した後に、貫通孔内を導電材料で充填して、導電材料からなる貫通電極配線を形成する第4工程と、第1絶縁層の一部を除去して一方の面側の貫通電極配線を露出させる第5工程とを少なくとも備えるようにした方法である。
【0013】
上記貫通電極配線の製造方法において、シリコン基板は、一方の面に、埋め込み酸化層とこの埋め込み酸化層の上に配置されたシリコン層とを備えるSOI基板であり、第1絶縁層は、埋め込み酸化層であり、第5工程では、一方の面側の貫通電極配線が露出するように、埋め込み酸化層に加えてシリコン層の一部も除去するようにすればよい。
【0014】
上記貫通電極配線の製造方法において、第3工程では、電着により第3絶縁層を形成するとよい。また、第4工程では、めっき法により貫通孔内を金属で充填することで、金属からなる貫通電極配線を形成するようにしてもよい。この場合、第4工程では、無電解めっき法によりシード層を形成した後、電解めっき法で金属を充填すればよい。
【0015】
また、上記貫通電極配線の製造方法において、第4工程では、金属粒子が分散した金属分散ペーストを塗布することで、貫通孔内を金属で充填して金属からなる貫通電極配線を形成するようにしてもよい。
【発明の効果】
【0016】
以上説明したように、本発明によれば、一方の面に第1絶縁層を備えたシリコン基板の他方の面に、第1絶縁層をエッチングストップ層とした選択的なエッチングにより、シリコン基板の他方の面より一方の面に到達する貫通孔を形成するようにしたので、複雑な工程を用いることなく、コストの増加や破損の発生などを抑制した状態で、より均一な深さの孔部を形成することで貫通電極配線が形成できるようになるという優れた効果が得られる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の形態について図を参照して説明する。図1A〜図1Jは、本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。まず、図1Aに示すように、シリコン基板101の上に、埋め込み酸化層102を介して表面シリコン層103を備える、いわゆるSOI基板を用意する。例えば、表面シリコン層103は層厚10μm、埋め込み酸化層102は層厚1μmとされた板厚625μmのSOI基板を用意する。このSOI基板は、一方の面に埋め込み酸化層(第1絶縁層)を備えたシリコン基板101である。
【0018】
次に、図1Bに示すように、シリコン基板101の他方の面に、開口部105を備えた酸化シリコン層(第2絶縁層)104を形成する。例えば、シリコン基板101の他方の面を、公知の熱酸化法により酸化することで酸化シリコン層104を形成する。また、CVD法により酸化シリコン層104を形成してもよい。この後、公知のフォトリソグラフィー技術およびエッチング技術により酸化シリコン層104をパターニングすることで、開口部105を形成する。
【0019】
次に、上述したようにすることで形成した酸化シリコン層104をマスクとしたRIEにより、シリコン基板101を選択的にエッチングすることで、図1Cに示すように、シリコン基板101の一方の面(埋め込み酸化層102との界面)に到達する貫通孔106を形成する。このとき、比較すると、酸化シリコンがエッチングされず、選択的にシリコンがエッチングされる条件とすることで、酸化シリコン層104がマスクとして機能すると共に、埋め込み酸化層102がエッチングストッパとして機能することになる。
【0020】
言い換えると、貫通孔106の形成のためのエッチング処理(RIE)においては、シリコン基板101の深さ方向に、シリコン基板101と埋め込み酸化層102との界面までしかエッチングが進行しない。この結果、シリコン基板101の板厚が均一であれば、貫通孔106の深さも均一に形成されるようになる。本実施の形態では、厚さ614μm程度の基板101に貫通孔106を形成するため、貫通孔106は、深さ614μmにもなる高アスペクト比の状態となっている。
【0021】
次に、図1Dに示すように、貫通孔106の壁面を覆うように絶縁層(第3絶縁層)107を形成する。例えば、よく知られた電着法により、シリコン基板101を一方の電極とし、貫通孔106の内部でシリコンが露出している壁面のみに有機樹脂の膜を堆積する。この電着において、表面シリコン層103は電着液に浸漬せず、シリコン基板101の側が電着液に浸漬するようにすれば、表面シリコン層103の上に電着による有機樹脂膜の形成が抑制できる。このようにして有機樹脂膜を形成した後、これを熱硬化することで、絶縁層107を形成する(非特許文献2参照)。
【0022】
なお、電着は、電着液の温度が50℃の条件で行われ、熱硬化は、高々300℃程度の温度である。このように、電着による絶縁層107の形成は、CVD法による絶縁層の形成で一般に用いられる400℃以上の温度から比較すると低温で行える。上述したように300℃以下の温度条件であれば、例えば、SOI基板の表面シリコン層103の、図示しない領域に形成されているLSIに対し、高温処理による影響を与えることが抑制できるようになる。また、上述したような高アスペクト比の貫通孔の内壁に、CVD法で膜を堆積する場合、均一な被膜を形成することが容易ではない。これに対し、液相で行う電着の場合、電着液が進入できる領域であれば、容易に均一な被膜(絶縁層107)が形成できる。
【0023】
次に、貫通孔106の内部を充填するように金属(導電材料)を堆積することで、図1Eに示すように、シリコン基板101の酸化シリコン層104形成面に金属膜108を形成し、貫通孔106内を充填する金属により貫通電極配線109を形成する。例えば、塩化パラジウム溶液にシリコン基板101を浸漬した後、引き続いて硫酸ニッケル溶液に浸漬し、無電解めっきによりニッケルの薄膜を形成する。このニッケル層をシード層とし、銅の電解めっきをすることで、金属膜108が形成できる。このようなめっき法によれば、前述した電着法と同様に液相による処理であるため、一様な膜の形成および貫通孔106内への充填が行える。
【0024】
なお、ニッケルの無電解めっきだけで金属膜108を形成してもよく、ニッケルの無電解めっきで形成したシード層を用い、金や銀の電解めっきをすることで金属膜108を形成してもよい。金属膜108は、上述した金属に限らず、他のめっきが可能な金属であれば、いずれの金属から構成されていてもよく、また、形成可能な金属を組み合わせて構成してもよい。
【0025】
また、金属膜108の形成は、めっき法に限らず、例えば、よく知られた銀ペーストなど、金属粒子が分散した金属分散ペーストを、貫通孔106を充填するように塗布することで形成してもよい。金属分散ペーストの塗布においては、例えば、スキージによって掃くようにして塗布することで、貫通孔106を充填する塗布膜を形成すればよい。また、液晶表示装置の製造で用いられているスリットコーターを用いて塗布してもよい。また、スクリーン印刷法によりマスク(スクリーン)を用いて塗布充填してもよい。さらに、STP(Spin-coating film Transfer and hot Pressing)法により、ベースフィルムに塗布された金属分散ペースト膜を加圧・加熱転写することで、充填した状態の金属膜108を形成することもできる(特許文献3参照)。
【0026】
ここで、金属分散ペーストは、上述した各技術において、溶媒や分散媒体との比率により粘性を調整し、さらに、充填塗布した後に、溶媒や分散媒体を適当な温度の加熱処理により揮発除去するなどのプロセスが必要となる。また、上述では、銀ペーストを例にしたが、これに限るものではなく、ニッケル,コバルト,金,および銅の微粒子、超微粒子、あるいはこれらの混合物を、分散媒体に分散した金属分散ペーストであってもよい。また、微粒子として分散媒体に分散可能であれば、どの様な金属であってもよいことは、いうまでもない。
【0027】
次に、公知のリソグラフィー技術とエッチング技術とにより金属膜108をパターニングすることで、図1Fに示すように、貫通電極配線109に接続する裏面パッド電極110を形成する。
【0028】
次に、埋め込み酸化層102をエッチングストップ層とし、表面シリコン層103を除去し、図1Gに示すように、埋め込み酸化層102が露出した状態とする。例えば、選択的にシリコンがエッチングされるRIEにより表面シリコン層103を選択的にエッチング除去すればよい。また、水酸化カリウム水溶液やTMAH(Tetramethyl ammonium hydroxide)などのエッチング液を用いたウエットエッチングによれば、シリコン酸化物や他の金属はエッチングされないので、表面シリコン層103のみをエッチングすることができる。
【0029】
なお、表面シリコン層103の除去は、貫通電極配線109が形成されている領域に形成すればよい。例えば、図示していない素子が形成されている他の領域においては、表面シリコン層103が除去されないように、マスクパターンやパシベーション膜などを形成して保護しておけばよい。
【0030】
次に、公知のフォトリソグラフィー技術およびエッチング技術により、貫通電極配線109が形成されている部分の埋め込み酸化層102を除去し、図1Hに示すように、貫通孔111を形成する。例えば、フッ酸を用いたウエットエッチングにより、貫通孔111が形成できる。このように、埋め込み酸化層102の一部を除去して貫通孔111を形成することで、シリコン基板101の一方の面側に、貫通電極配線109の一端を露出させる。
【0031】
次に、図1Iに示すように、公知のフォトリソグラフィー技術により形成したレジストパターン112を鋳型とし、電解めっき法により金を堆積し、貫通孔111を介して貫通電極配線109に接続する表面パッド電極113を形成する。例えば、前述したように、Niの無電解めっきにより形成したシード層を用いることで、金の電解めっきを行えばよい。以上のことにより、シリコン基板101の裏面側と表面側との導通を確保するビアが形成される。
【0032】
この後、図1Jに示すように、裏面パッド電極110および表面パッド電極113に、バンプ114およびバンプ115を形成する。バンプ114およびバンプ115は、よく知られているように、めっき法により形成してもよく、また、スタッドバンプを用いるようにしてもよい。
【0033】
上述した本実施の形態によれば、厚さ614μm程度の基板101であっても、均一な状態に複数の貫通孔106を形成することができる。なお、本発明は、上述した厚さの基板に限るものではなく、これより厚い基板であってもよく、また、これより薄い、例えば、300μmより薄い基板に対しても適用可能であることはいうまでもない。
【0034】
ここで、孔部や貫通孔の壁面に形成する絶縁膜としては、一般に、プラズマCVD法により形成される酸化シリコン膜が用いられる。破損の抑制などを目的として厚い基板を用いる場合、また、貫通電極配線を形成するための貫通孔は、アスペクト比の高いものとなる。このようなアスペクト比の高い貫通孔の内壁に、CVD法で均一な膜を形成するためには、いわゆる表面反応律速の温度条件を用いることになり、より低温で行うことが好ましい条件となる。また、基板に形成されているトランジスタなどの素子へのダメージ抑制の観点からも、処理の温度は400℃以下の低温が要求されることになる。
【0035】
これに対し、CVD法で膜を堆積するためには、ソースガスが分解する以上の温度とする必要があり、上述したような低温の条件を満足することができない場合も発生する。これは、貫通孔内に、CVD法で金属材料を充填する場合も同様である。また、めっき法においても、シード層をスパッタ法などの気相成長法で行う場合、高アスペクト比の貫通孔内壁には、均一な膜の成長が容易ではないことも知られている。
【0036】
一方、前述したように、基板を薄くすることでアスペクト比を低下させれば、これらの問題もある程度解消できるようになる。例えば、厚さを数10〜200μm程度にまで薄層化したシリコン基板を用いることで、上述した高アスペクト比による問題を解消する技術が開発されている。しかしながら、このような薄い基板は、前述したように、非常に破損しやすく、工程が複雑になりコストが非常に高くなる。これらのことにより、厚さが300μmを越えるような厚い基板に貫通電極配線を形成することは、一般には容易ではない技術とされている。
【0037】
以上のことに対し、上述した実施の形態によれば、CVD法などの気相成長ではなく、電着法により貫通孔106の壁面を覆うように絶縁層107を形成しているので、基板が厚く高いアスペクト比の状態であっても、容易に均一な被膜が形成できるようになる。また、貫通電極配線109の形成を、CVD法などの気相成長ではなく、めっき法のみで形成し、また、金属分散ペーストを塗布することで形成している。このため、基板が厚く高いアスペクト比の状態であっても、貫通孔106内に均一に貫通電極配線109が形成できるようになる。
【0038】
なお、上述ではSOI基板を用いるようにしたが、これに限るものではない。例えば、シリコン基板の表面に、熱酸化法やCVD法で酸化シリコン膜を形成し、この酸化シリコン膜をエッチングストップ層として、シリコン基板を貫通する貫通孔を形成し、この貫通孔に貫通電極配線を形成するようにしてもよい。この場合、シリコン基板の表面に形成した酸化シリコン膜が、前述した、埋め込み酸化層102に相当するものであり、表面シリコン層103の除去以外は、前述した実施の形態と同様にすることで、貫通電極配線が形成できる。また、酸化シリコン膜に限らず、窒化シリコン膜などシリコン基板の表面に形成可能な絶縁膜であればよい。ただしこの場合、表面シリコン層103がない状態であるため、支持となる層が減少し、破損しやすい状態となることには留意が必要である。
【0039】
また、電着法による絶縁層の形成および、めっき法や金属分散ペーストを用いた貫通電極配線の形成によれば、シリコン基板の一方の面に形成した開口部の側壁に絶縁層を形成し、この後開口部内を充填する貫通電極配線を形成し、この後、他方の面よりCMPにより研磨して貫通電極配線を露出させることができる。このようにすることで、厚いシリコン基板を用いた場合であっても,高いアスペクト比の開口部(貫通孔)を形成して、貫通電極配線を形成することができる。
【0040】
また、基板は、シリコンに限らず、セラミック,石英,およびガラスなどの、誘電正接が10-2より小さい絶縁材料からなる基板を用いるようにしてもよい。このような絶縁材料によれば、高周波特性の優れたものとなる。このような絶縁基板を用いる場合、開口部を形成した後に、側壁に絶縁層を形成する必要が無く、開口部に直接金属を充填すればよい。この金属の充填では、前述したように、金属分散ペーストを用いて塗布することで形成すればよい。また、無電解めっきなどのめっき法を用いてもよい。
【0041】
また、上述したような絶縁基板の場合、前述したように、RIE法により開口部を形成してもよく、また、マイクロドリルによる機械加工で形成してもよい。また、セラミックを用いる場合、焼成により基板を成形するときに、予め貫通孔が形成されている状態としてもよい。
【図面の簡単な説明】
【0042】
【図1A】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1B】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1C】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1D】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1E】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1F】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1G】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1H】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1I】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図1J】本発明の実施の形態における貫通電極配線の製造方法の一例を説明するための工程図である。
【図2A】シリコン基板に貫通孔を形成して貫通電極配線を形成する方法を説明するための工程図である。
【図2B】シリコン基板に貫通孔を形成して貫通電極配線を形成する方法を説明するための工程図である。
【図2C】シリコン基板に貫通孔を形成して貫通電極配線を形成する方法を説明するための工程図である。
【図2D】シリコン基板に貫通孔を形成して貫通電極配線を形成する方法を説明するための工程図である。
【符号の説明】
【0043】
101…シリコン基板、102…埋め込み酸化層、103…表面シリコン層、104…酸化シリコン層(第2絶縁層)、105…開口部、106…貫通孔、107…絶縁層(第3絶縁層)、108…金属膜、109…貫通電極配線、110…裏面パッド電極、111…貫通孔、112…レジストパターン、113…表面パッド電極、114,115…バンプ。

【特許請求の範囲】
【請求項1】
一方の面に第1絶縁層を備えたシリコン基板の他方の面に、開口部を備えた第2絶縁層を形成する第1工程と、
前記第2絶縁層をマスクとし、前記第1絶縁層をエッチングストップ層として前記シリコン基板を選択的にエッチングし、前記開口部を介して前記シリコン基板の他方の面より前記一方の面に到達する貫通孔を形成する第2工程と、
前記貫通孔の壁面を覆う第3絶縁層を形成する第3工程と、
前記第3絶縁層を形成した後に、前記貫通孔内を導電材料で充填して、前記導電材料からなる貫通電極配線を形成する第4工程と、
前記第1絶縁層の一部を除去して一方の面側の前記貫通電極配線を露出させる第5工程と
を少なくとも備えることを特徴とする貫通電極配線の製造方法。
【請求項2】
請求項1記載の貫通電極配線の製造方法において、
前記シリコン基板は、一方の面に、埋め込み酸化層とこの埋め込み酸化層の上に配置されたシリコン層とを備えるSOI基板であり、
前記第1絶縁層は、前記埋め込み酸化層であり、
前記第5工程では、一方の面側の前記貫通電極配線が露出するように、前記前記埋め込み酸化層に加えて前記シリコン層の一部も除去する
ことを特徴とする貫通電極配線の製造方法。
【請求項3】
請求項1または2記載の貫通電極配線の製造方法において、
前記第3工程では、電着により前記第3絶縁層を形成する
ことを特徴とする貫通電極配線の製造方法。
【請求項4】
請求項1〜3のいずれか1項に記載の貫通電極配線の製造方法において、
前記第4工程では、めっき法により前記貫通孔内を金属で充填することで、前記金属からなる貫通電極配線を形成する
ことを特徴とする貫通電極配線の製造方法。
【請求項5】
請求項4記載の貫通電極配線の製造方法において、
前記第4工程では、無電界めっき法によりシード層を形成した後、電解めっき法で前記金属を充填する
ことを特徴とする貫通電極配線の製造方法。
【請求項6】
請求項1〜3のいずれか1項に記載の貫通電極配線の製造方法において、
前記第4工程では、金属粒子が分散した金属分散ペーストを塗布することで、前記貫通孔内を金属で充填して前記金属からなる貫通電極配線を形成する
ことを特徴とする貫通電極配線の製造方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図1F】
image rotate

【図1G】
image rotate

【図1H】
image rotate

【図1I】
image rotate

【図1J】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate


【公開番号】特開2010−129952(P2010−129952A)
【公開日】平成22年6月10日(2010.6.10)
【国際特許分類】
【出願番号】特願2008−306180(P2008−306180)
【出願日】平成20年12月1日(2008.12.1)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【出願人】(000102739)エヌ・ティ・ティ・アドバンステクノロジ株式会社 (265)
【Fターム(参考)】