説明

遮熱コーティング層、タービン部材及び遮熱コーティング層の形成方法

【課題】高温環境下においても充分な遮熱性と耐久性とを備え、被覆対象とされる耐熱合金基材からの剥離が発生しにくい遮熱コーティング層、タービン部材及遮熱コーティング層の形成方法を提供すること。
【解決手段】耐熱合金基材11に形成された遮熱コーティング層10であって、耐熱合金基材11にアンダーコートとして形成された金属結合層13と、該金属結合層13上にトップコートとして形成されたセラミックス層15とを備え、前記セラミックス層15は、前記耐熱合金基材11側が前記セラミックス層の厚さ方向に延在する縦割16Aが面方向に分散された縦割領域16とされ、表面に近づくに従って前記縦割領域16から微細気孔18Aが分散されたポーラス領域18に漸次移行することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、耐熱合金基材に形成される遮熱コーティング層、その遮熱コーティング層が形成されたタービン部材及び遮熱コーティング層の形成方法に関する。
【背景技術】
【0002】
周知のように、例えば、蒸気タービン、ガスタービン等において、作動流体を膨張させて回転力に変換する際にタービン部材(タービン動翼、タービン静翼)が用いられている。
近年、これらタービンの効率を向上のために、作動流体の温度を高めることが検討されており、高温でタービンを運転するために、タービン部材の遮熱性の向上および燃焼器の耐熱性を向上することが要望されている。
【0003】
そこで、タービン部材については材料を耐熱金属基材により形成することで耐熱性を向上し、この耐熱金属基材に溶射等の成膜方法により、金属結合層を形成し、この金属結合層状に酸化物セラミックスからなるセラミックス層を形成することで遮熱コーティング層(TBC:thermal barrier coating)を形成する技術が広く用いられている。
【0004】
具体的には、耐熱金属基材の表面に金属結合層を形成し、この金属結合層にセラミックス層を密着させて遮熱皮膜とし、遮熱コーティング層の結合層側に厚さ方向に延びる亀裂(縦割)が生じた構成が開示されている。
また、その遮熱皮膜は、結合層側が緻密な組織からなるとともに前記亀裂が生じた亀裂組織層とされ、亀裂組織層の表面側に所定割合の気孔を有する気孔層が形成されていることが好ましいことが開示されている。(例えば、特許文献1参照)。
【0005】
【特許文献1】特開2001−329358号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に記載された気孔層は遮熱性に優れているものの亀裂組織層よりも耐久性が劣り、亀裂組織層は耐久性に優れているものの気孔層よりも遮熱性が劣るという特性を有している。
また、遮熱コーティング層をタービン動翼等のタービン部材に形成する場合、翼部の形状によって高い耐久性を有するセラミックス層を形成しにくく剥離が生じやすい場合がある。
【0007】
一方、第1段タービン動翼のように高温環境下で用いられるタービン部材では、高温において大きな応力が発生するとともに遮熱性が不充分であるとタービン動翼に大きな温度分布が生じてセラミックス層の耐久性が低下するため、高い遮熱性と耐久性の双方を備えることが必要とされ、高温環境下でも充分な遮熱性と耐久性とが維持可能な遮熱コーティング層に対する技術的要請が高まっている。
【0008】
本発明は、このような事情を考慮してなされたものであり、高温環境下においても充分な遮熱性と耐久性とを備え、被覆対象とされる耐熱合金基材からの剥離が発生しにくい遮熱コーティング層、タービン部材及遮熱コーティング層の形成方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に記載の発明は、耐熱合金基材に形成された遮熱コーティング層であって、耐熱合金基材にアンダーコートとして形成された金属結合層と、該金属結合層上にトップコートとして形成されたセラミックス層とを備え、前記セラミックス層は、前記耐熱合金基材側が前記セラミックス層の厚さ方向に延在する縦割が面方向に分散された縦割領域とされ、表面に近づくに従って前記縦割領域から微細気孔が分散されたポーラス領域に漸次移行することを特徴とする。
【0010】
この発明に係る遮熱コーティングによれば、耐熱合金基材側が縦割領域とされているので耐熱合金基材と比較すると熱膨張率が小さく延性に乏しいセラミックス層に作用する応力を緩和してセラミックス層の剥離を抑制するので、耐熱合金基材に大きな温度変化が生じる場合においてもセラミックス層に高い耐久性が確保される。
また、セラミックス層の表面側がポーラス領域とされているので熱伝導が抑制されて高い遮熱性を確保することができる。
また、縦割領域とポーラス領域とが組織形態が漸次移行するように構成されていて界面を有しない一体組織とされているので、高い機械的強度を得ることができる。
その結果、高い遮熱性と耐久性とを確保することができる。
【0011】
この明細書において、縦割とは、セラミックス層の膜厚方向に延在しその間隔がセラミックス層の厚さの約1/10以下とされている亀裂をいう。
また、微細気孔とは、セラミックス層に分散して形成された気孔であり、気孔の直径(気孔の形状が楕円体等球形でないは気孔の最大長さ)が概ね0.1μm以上のものをいう。
縦割領域とは、縦割が分散して形成されている領域であって、例えば、微細気孔による気孔率が3%未満である領域をいう。
また、ポーラス領域とは、微細気孔による気孔率が3%以上30%以下である領域をいう。
【0012】
請求項2に記載の発明は、請求項1に記載の遮熱コーティング層であって、金属結合層はCoNiCrAlYからなり、前記セラミックス層はSmYbZr又はYbSZからなることを特徴とする。
【0013】
この発明に係る遮熱コーティング層によれば、耐熱合金基材にアンダーコートとして形成されたCoNiCrAlYからなる金属結合層によって、耐熱合金基材とセラミックス層とが強固に接合され、セラミックス層がSmYbZr又はYbSZから構成されたセラミックス層が組織形態を縦割領域からポーラス領域に漸次移行するように構成されているんで高い遮熱性と耐久性とを確保することができ、その結果、耐熱合金基材がなす対象物の高温環境下での信頼性を向上するとともに寿命を長くすることができる。
【0014】
請求項3に記載の発明は、タービン部材であって、請求項1又は請求項2に記載の遮熱コーティング層が、前縁部に形成されていることを特徴とする。
【0015】
この発明に係るタービン部材によれば、高い遮熱性と耐久性を備えているので、例えば、ガスタービンの第1段タービン動翼の前縁部ように高温に曝される環境下において大きな応力が生じる場合であっても、遮熱コーティング層を構成するセラミックス層が剥離することが抑制されることで信頼性が向上し、その結果、タービン部材の寿命を延長することができる。
【0016】
請求項4に記載の発明は、耐熱合金基材への遮熱コーティング層の形成方法であって、耐熱合金基材にアンダーコートとして金属結合層を溶射により形成し、前記金属結合層上にセラミックス材料を1パス毎に溶射距離を遠ざけながら複数回溶射して前記セラミックス層を形成することを特徴とする。
【0017】
この発明に係る遮熱コーティングの形成方法によれば、遮熱コーティング層のトップコーティングとしてセラミックス層を形成する場合に、耐熱合金基材に対して溶射距離を1パス毎に遠ざけながらセラミックス材料を複数回溶射して形成するので組織形態が縦割領域からポーラス領域に漸次移行するセラミックス層を容易かつ効率的に形成することができる。
【発明の効果】
【0018】
本発明に係る遮熱コーティング層によれば、高温環境下で使用される耐熱合金基材に高い耐熱性と耐久性とを確保することができる。
また、本発明に係るタービン部材によれば、高温環境化において大きな応力が発生する場合であっても前縁部のセラミックス層の剥離が発生するのを抑制することができる。
また、本発明に係る遮熱コーティング層の形成方法によれば、耐熱性遮熱性及び耐剥離性が高い遮熱コーティングを容易に形成することができる。
【発明を実施するための最良の形態】
【0019】
以下、図1から図3を参照し、この発明の第1の実施形態について説明する。
図1は、本発明に係る第1の実施形態に係る遮熱コーティングを適用した、例えばガスタービンに用いられるタービン動翼(タービン部材)1を示す図であり、図1(a)は斜視図、図1(b)は平面図を示している。
【0020】
タービン動翼1は、タービンディスク(図示せず)に固定するために樹木状に形成されたタブテイル2と、隣接するタービン動翼1との位置関係を確保するとともにタービンディスクを覆うプラットフォーム3と、作動流体の流れをタービンディスクの回転に変換する翼部4とを備えている。
【0021】
翼部4は、例えば、インコネル738等の周知の耐熱合金基材11により形成され、プラットフォーム3からタービンディスクの径方向外方に伸びるとともにタービンディスクの径方向外方から見た場合に、一方側が膨出する凸形状面、他方側がこの凸形状面側に近づくように形成された凹形状面とされている。
【0022】
また、翼部4は、凸形状面から凹形状面に移行する境界部のタービン動翼1をタービンとして用いる場合に高温、高圧のガス(作動流体)に曝されるとともに大きな応力が生じる前縁部5とされている。
また、翼部4は全面に遮熱コーティング層が形成されて遮熱性及び耐久性が向上されている。
【0023】
前縁部5は、翼部4の風上側に位置する部位とされ、作動流体とほぼ正対することで大きな空力加熱が生じる部位であり、例えば、図1(b)に示すようなシャワーヘッド6に対して翼部4の腹側の範囲10A及び背側の範囲10Bが、例えば、それぞれ15mmとされている。
なお、この前縁部5の範囲については、作動流体より大きな空力加熱が生じる範囲とされ、作動流体の温度や翼形により設定することができる。
第1の実施形態において、前縁部5は、表面に遮熱コーティング層10が形成されており、翼部4の他の部位には、例えば、この遮熱コーティング層10とは異なる遮熱コーティング層を被覆してもよい。
【0024】
遮熱コーティング層10は、図2に示すように、タービン動翼1を構成する耐熱合金基材11にアンダーコートとして形成された金属結合層13と、この金属結合層13の上にトップコートとして形成されたセラミックス層15とを備えている。
【0025】
第1の実施形態において、金属結合層13はCoNiCrAlYからなり、セラミックス層15は、例えば、SmYbZrにより構成されている。
SmYbZr(部分安定化ジルコニア)は、安定化剤としてSm酸化物とYb酸化物を添加して部分安定化したZrOである。
また、前縁部5において、縦割領域16の厚さはセラミックス層15の約5%から100%の範囲であることが好適であり、ポーラス領域18が縦割領域16であることを妨げない。
【0026】
セラミックス層15は、タービン動翼1を構成する耐熱合金基材11側がセラミックス層15の厚さ方向に延在する縦割16Aがセラミックス層15の面方向に分散された縦割領域16とされるとともに表面側がポーラス領域18とされている。
また、セラミックス層15は、組織形態が縦割領域16からポーラス領域18漸次移行するように構成されている。
【0027】
なお、縦割16Aとは、セラミックス層15の膜厚方向に延在して形成される亀裂であり、セラミックス層15の面方向の間隔がセラミックス層15の厚さの約1/10以下とされる亀裂をいう。
また、微細気孔18Aは、セラミックス層15に分散して形成された気孔をいう。
縦割領域16は、縦割16Aが分散して形成されている領域であって、例えば、微細気孔18Aによる気孔率が3%未満である領域をいう。
また、ポーラス領域18とは、微細気孔18Aによる気孔率が3%以上30%以下である領域をいう。
【0028】
遮熱コーティング層10によれば、SmYbZrにより形成されたセラミックス層15が縦割領域16からポーラス領域18に漸次移行する組織形態とされているので高い遮熱性と耐久性とを確保することができる。
【0029】
また、タービン動翼1によれば、前縁部5に遮熱コーティング層10が形成されているので、例えば、ガスタービンの第1段タービン動翼の前縁部ように高温に曝される部位に関しても高い遮熱性と耐久性を確保して信頼性が向上することができる。
【0030】
次に、図3を参照して、第1の実施形態に係る遮熱コーティング層10の形成方法について説明する。
1)まず、タービン動翼1を構成する耐熱合金基材11にアンダーコートとして金属結合層13を溶射により形成する。
2)次に、溶射ガン8の先端(噴射口)を耐熱合金基材11に対して所定の溶射距離(例えば、約70mm)あけた8Aの位置に配置し、セラミックス層15の材料であるSmYbZrの粉末を溶射ガン8から噴射してセラミックス層15を形成する。このとき、溶射ガン8は、例えば、軌跡9のように移動させる。この溶射における施工条件の一例を表1に示す。
【0031】
【表1】

【0032】
3)次いで、溶射ガン8による1回目の溶射によるセラミックス層15の溶射が完了したら、溶射ガン8の先端を、先に溶射した際の溶射距離から所定の距離(例えば、約20mm)だけ矢印T方向に、例えば8B、8C・・と位置を遠ざけて、前回の軌跡9と同様に移動させる。
この3)の溶射作業を、所定の回数だけ繰り返して行なうことにより、タービン動翼1を構成する耐熱合金基材11の表面に第1の実施形態に記載した組織形態を有する遮熱コーティング層10が形成される。
【0033】
上記熱コーティング層10の形成方法によれば、耐熱合金基材11の表面に縦割領域16とポーラス領域18とを有し表面側がポーラス領域18とされるとともに組織形態が縦割領域16からポーラス領域18に漸次移行する遮熱コーティング層10を効率的かつ容易に形成することができる。
また、セラミックス層を構成する材料を交換することなく、溶射条件を変更することにより遮熱コーティング層10を施工することができる。
【0034】
次に、この発明の第2の実施形態について、図5を参照して説明する。
図5は、第2の実施形態に係る遮熱コーティング層の概略を示す図であり、符号20は遮熱コーティング層を示している。遮熱コーティング層20は、第1の実施形態と同様の用途に適用可能であり、遮熱コーティング層20以外の構成は同様であるため説明を省略する。
【0035】
遮熱コーティング層20は、耐熱合金基材21にアンダーコートとして形成されたCoNiCrAlYからなる金属結合層23と、この金属結合層23の上にトップコートとして形成されたセラミックス層25とを備えている。
【0036】
セラミックス層25は、耐熱合金基材21側がセラミックス層25の厚さ方向に延在する縦割が面方向に分散された縦割層26とされ、表面側は微細気孔が分散されたポーラス層28とされ、縦割層26はSmYbZrにより形成され、ポーラス層28がYSZにより形成されている。
ここで、YSZ(部分安定化ジルコニア)は、安定化剤としてYを添加して部分安定化させたZrOである。
また、前縁部5においては、縦割層26の厚さがセラミックス層25の約20%から80%とされ、ポーラス層28の厚さが残余の厚さ(セラミックス層25の約80%から20%)とされることが好適である。
【0037】
また、遮熱コーティング層20を形成する場合、例えば、表1に示した第1の実施形態の場合と同様に施工条件により、例えば、溶射距離70mmから100mmで1回又は複数回の溶射を行なって縦割層26を形成し、その後、例えば、溶射距離150mmから200mmで1回又は複数回の溶射を行なってポーラス層28を形成して施工する。
【0038】
遮熱コーティング層20によれば、耐熱合金基材21側が、YSZよりも遮熱性が高いSmYbZrからなる縦割層26により形成されているので縦割層26における遮熱性の低下が抑制されるとともにSmYbZrの耐久性が向上する。その結果、ポーラス層28が剥離する事態が生じても縦割層26が残留してSmYbZrから縦割層26による遮熱を維持することができる。
【0039】
また、表面側がYSZからなるポーラス層により構成されているので縦割層26がSmYbZrにより形成されていても充分な耐衝撃性を確保することができる。
したがって、遮熱コーティング層20は、高い遮熱性と耐久性を備えることができる。
また、表面側をYSZにより形成することにより、SmYbZrの使用量を削減して製造コストを抑制することができる。
【0040】
上記第1、第2の実施の形態においては、遮熱コーティング層10、20が、ガスタービンを構成するタービン動翼1の前縁部5に形成される場合について説明したが、例えば、タービン動翼1に代えてタービン静翼に適用してもよい。
また、蒸気タービン等、ガスタービン以外のタービンに適用し、又は自動車用エンジンやジェットエンジン等における高温部品への遮熱に適用してもよい。
【0041】
また、遮熱コーティング層10、20をタービン部材に形成する場合に、前縁部5とともに、又は前縁部5に代えて他の部位に適用してもよい。この場合、遮熱コーティング層10を形成する部位と他の部位とでタービン動翼1の形状又は使用される環境(温度、応力等)、その結果生じる温度分布に基づいて、遮熱コーティング層の構成を変えるとより好適ある。
【0042】
また、上記第1の実施の形態においては、金属結合層13がCoNiCrAlYからなり、セラミックス層15がSmYbZrにより構成される場合について説明したが、金属結合層13をCoNiCrAlY以外の材質により構成してもよいし、又セラミックス層15をSmYbZrに代えてYbSZにより構成してもよく、又SmYbZr、YbSZ以外の材質により形成してもよい。なお、YbSZ(部分安定化ジルコニア)とは、安定化剤としてYb(添加割合が0.1wt%から17.0wt%)を添加して部分安定化したZrOであり、従来のYSZ(イットリア安定化ジルコニア)からなるセラミックス層に比して高温での優れた結晶安定性が確保されて優れた熱サイクル耐久性を得ることができる。
【図面の簡単な説明】
【0043】
【図1】本発明に係る遮熱コーティングを適用したタービン動翼の第1の実施形態を示す斜視図であり、(A)はタービン動翼の斜視図を、(B)はタービン動翼の平面図を示す図である。
【図2】本発明の第1の実施形態に係る遮熱コーティング層の概略構成を示す縦断面図である。
【図3】本発明に係る遮熱コーティング層の形成方法の一例を説明する図である。
【図4】本発明の第2の実施形態に係る遮熱コーティング層の概略構成を示す縦断面図である。
【符号の説明】
【0044】
1 タービン動翼(タービン部材)
2 タブテイル
3 プラットフォーム
4 翼部
10、20 遮熱コーティング層
11、21 耐熱合金基材
13、23 金属結合層
15、25 セラミックス層
16 縦割領域
26 縦割層
16A、26A 縦割
18 ポーラス領域
28 ポーラス層
18A、28A 微細気孔

【特許請求の範囲】
【請求項1】
耐熱合金基材に形成された遮熱コーティング層であって、
耐熱合金基材にアンダーコートとして形成された金属結合層と、該金属結合層上にトップコートとして形成されたセラミックス層とを備え、
前記セラミックス層は、前記耐熱合金基材側が前記セラミックス層の厚さ方向に延在する縦割が面方向に分散された縦割領域とされ、表面に近づくに従って前記縦割領域から微細気孔が分散されたポーラス領域に漸次移行することを特徴とする遮熱コーティング層。
【請求項2】
請求項1に記載の遮熱コーティング層であって、
金属結合層はCoNiCrAlYからなり、
前記セラミックス層はSmYbZr又はYbSZからなることを特徴とする遮熱コーティング層。
【請求項3】
請求項1又は請求項2に記載の遮熱コーティング層が、前縁部に形成されていることを特徴とするタービン部材。
【請求項4】
耐熱合金基材への遮熱コーティング層の形成方法であって、
耐熱合金基材にアンダーコートとして金属結合層を溶射により形成し、
前記金属結合層上にセラミックス材料を1パス毎に溶射距離を遠ざけながら複数回溶射して前記セラミックス層を形成することを特徴とする遮熱コーティング層の形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−144211(P2010−144211A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−322261(P2008−322261)
【出願日】平成20年12月18日(2008.12.18)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】