説明

MEMSセンサ

【課題】 従来に比べて、小型で且つ、高い感度を得ることが可能なMEMSセンサを提供することを目的としている。
【解決手段】 可動電極部は、X1−X2方向に間隔を空けて配置された複数本の可動支持部50と、各可動支持部50の側部から延出し、各可動支持部50にてY1−Y2方向に間隔を空けて配置された複数本の可動電極子60と、を有する。固定電極部は、X1−X2方向に間隔を空けて配置された複数本の可動支持部50と、各固定支持部51の側部から延出し、各固定支持部51にてY1−Y2方向に間隔を空けて配置された複数本の固定電極子62と、を有する。複数本の可動支持部と複数本の固定支持部とがX1−X2方向に交互に配列されており、隣り合う可動支持部と固定支持部とが組66にされて、各組の可動支持部と固定支持部の間にて可動電極子60と固定電極子62とが交互に配列されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン(Silicon)層を加工するなどして形成された静電容量型のMEMSセンサに係り、特に、電極構造に関する。
【背景技術】
【0002】
静電容量型のMEMSセンサは、錘部、可動電極部及び固定電極部を有して構成される。例えば加速度がMEMSセンサに作用すると、錘部及び可動電極部が移動し、可動電極部と固定電極部との間で静電容量変化が生じる。この静電容量変化に基づいて加速度を検出することが可能である。
【0003】
図31は従来のMEMSセンサの可動電極部及び固定電極部を模式的に示した説明図(平面図)である。このMEMSセンサは、面内方向での加速度を検出するものであり、例えばX1−X2方向に作用する加速度を検出可能とされている。
【0004】
図31(a)はMEMSセンサの静止状態を示している。図31(a)に示すようにMEMSセンサには、第1検出部1と第2検出部2とがあり、第1検出部1及び第2検出部2に夫々、複数本の櫛歯状の固定電極1a,2aと複数本の櫛歯状の可動電極1b,2bとがX1−X2方向に間隔を空けて交互に配置されている。
【0005】
図31(a)に示すように、第1検出部1では、可動電極1bと前記可動電極1bに対してX1側に位置する固定電極1aとの間に所定の距離からなる第1のギャップa0が設けられている。また第2検出部2では、可動電極2bと前記可動電極2bに対してX2側に位置する固定電極2aとの間に所定の距離からなる第2のギャップb0が設けられている。
【0006】
図31(b)に示すように、加速度の作用により、第1検出部1での可動電極1b及び第2検出部2での可動電極2bが夫々、X1方向に移動すると、図31(b)での第1のギャップa1は図31(a)の静止状態でのギャップa0よりも小さくなり、一方、第2のギャップb1は図31(a)の静止状態でのギャップb0よりも大きくなる。
【0007】
また図31(c)に示すように、加速度の作用により、第1検出部1での可動電極1b及び第2検出部2での可動電極2bが夫々、X2方向に移動すると、図31(c)での第1のギャップa2は図31(a)の静止状態でのギャップa0よりも大きくなり、一方、第2のギャップb2は図31(a)の静止状態でのギャップb0よりも小さくなる。
【0008】
図31(b)及び図31(c)に示したように加速度がX1−X2方向に作用することで、可動電極1b,2bと固定電極1a,2aとの間のギャップa,bが変化し、これにより静電容量が変化する。このとき、第1検出部1での静電容量変化と第2検出部2での静電容量変化は逆になる。
【0009】
特許文献1には、上記した図31と同様に可動電極と固定電極との間のギャップの変化により静電容量変化を生じさせる電極構造が記載されている。また、それ以外に特許文献1には、可動電極と固定電極との間の対向面積の変動による静電容量変化を検出可能な電極構造も記載されている。対向面積の変動により静電容量変化を生じさせる電極構造は特許文献2,3にも記載されている。
【0010】
また特許文献4には、櫛の歯状電極を有する加速度センサが開示されている。特許文献4には、可動電極部及び固定電極部の双方にて平行に延びる支持部が設けられ、各支持部の内面側から櫛歯状の電極子が互い違いに配置された電極構造が開示されている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2007−139505号公報
【特許文献2】特開2002−22446号公報
【特許文献3】特開平10−313123号公報
【特許文献4】特開2010−513888号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら従来の電極構造では、MEMSセンサの小型化とともに感度の向上を十分に図ることが困難になっていた。
【0013】
また、各特許文献には、感度のリニアリティ性を向上させるための電極構造が開示されていない。
【0014】
そこで本発明は上記従来の課題を解決するものであり、従来に比べて、小型で且つ、高い感度及び良好なリニアリティ性を得ることが可能なMEMSセンサを提供することを目的としている。
【課題を解決するための手段】
【0015】
本発明は、可動電極部および固定電極部を有するMEMSセンサにおいて、
水平面内にて直交する2方向を第1の方向と第2の方向としたとき、前記第1の方向が前記可動電極部の移動方向であり、
前記可動電極部は、前記第1の方向に間隔を空けて配置され前記第2の方向に延出して形成された複数本の可動支持部と、前記第1の方向に向けて各可動支持部の側部から延出し、各可動支持部にて前記第2の方向に間隔を空けて配置された複数本の可動電極子と、を有し、
前記固定電極部は、前記第1の方向に間隔を空けて配置され基端側から先端側への延出方向が前記可動支持部とは逆方向である複数本の固定支持部と、各固定支持部の側部から前記可動電極子の延出方向とは逆方向に延出し、各固定支持部にて前記第2の方向に間隔を空けて配置された複数本の固定電極子と、を有し、
複数本の前記可動支持部と複数本の前記固定支持部とが前記第1の方向に間隔を空けて交互に配列されており、隣り合う前記可動支持部と前記固定支持部とが組にされて、各組の前記可動支持部と前記固定支持部の間にて複数本の前記可動電極子と複数本の前記固定電極子とが前記第2の方向に間隔を空けて交互に配列されており、
前記可動電極部の前記第1の方向への移動により、各可動電極子と各固定電極子間の対向面積の変化に基づく静電容量変化を検出可能としており、
静止状態において、前記可動支持部の側部から前記固定電極子の先端までの前記第1の方向への間隔をL1とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL2としたとき、(L1−L2)2/T1が2.2(μm)以上であることを特徴とするものである。
【0016】
本発明では、静止状態において、隣り合う前記組の前記可動支持部と前記固定支持部との間における前記第1の方向への間隔をL3とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が隣り合う前記組の前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL4としたとき、(L3−L4)2×T1が4(μm3)以上であることが好ましい。
【0017】
あるいは本発明は、可動電極部および固定電極部を有するMEMSセンサにおいて、
水平面内にて直交する2方向を第1の方向と第2の方向としたとき、前記第1の方向が前記可動電極部の移動方向であり、
前記可動電極部は、前記第1の方向に間隔を空けて配置され前記第2の方向に延出して形成された複数本の可動支持部と、前記第1の方向に向けて各可動支持部の側部から延出し、各可動支持部にて前記第2の方向に間隔を空けて配置された複数本の可動電極子と、を有し、
前記固定電極部は、前記第1の方向に間隔を空けて配置され基端側から先端側への延出方向が前記可動支持部とは逆方向である複数本の固定支持部と、各固定支持部の側部から前記可動電極子の延出方向とは逆方向に延出し、各固定支持部にて前記第2の方向に間隔を空けて配置された複数本の固定電極子と、を有し、
複数本の前記可動支持部と複数本の前記固定支持部とが前記第1の方向に間隔を空けて交互に配列されており、隣り合う前記可動支持部と前記固定支持部とが組にされて、各組の前記可動支持部と前記固定支持部の間にて複数本の前記可動電極子と複数本の前記固定電極子とが前記第2の方向に間隔を空けて交互に配列されており、
前記可動電極部の前記第1の方向への移動により、各可動電極子と各固定電極子間の対向面積の変化に基づく静電容量変化を検出可能としており、
静止状態において、隣り合う前記組の前記可動支持部と前記固定支持部との間における前記第1の方向への間隔をL3とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が隣り合う前記組の前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL4としたとき、(L3−L4)2×T1が4(μm3)以上であることを特徴とするものである。
【0018】
本発明では、同じ検出部内に、可動電極部を構成する複数本の可動支持部と、固定電極部を構成する複数本の固定支持部とを第1の方向に交互に配列している。そして、隣り合う可動支持部と固定支持部とを同じ組にし、各組での可動支持部と固定支持部との間に、複数本の可動電極子と固定電極子とを第2の方向に交互に配列した。これにより検出部内に効率よく、多数の可動電極子と固定電極子を配置でき、従来の電極構造に比べて、小型で且つ、高い感度を得ることが出来る。
【0019】
また、図31で示したように可動電極と固定電極間のギャップ(距離)を変動させて静電容量変化を生じさせる電極構造では、静電容量はギャップ(距離)に反比例し、後述する比較例として示すように、感度を高めると、距離の変動に対して静電容量変化が急激なものとなり、MEMSセンサによる物理量の有効検出範囲(ダイナミックレンジ)が狭くなる。さらに前記有効検出範囲内での感度のリニアリティが悪化する問題も生じる。
【0020】
これに対して本発明のように可動電極子と固定電極子間の対向面積を変動させて静電容量を変化させる電極構造では、静電容量は対向面積に比例することになり、上記した電極間の距離の変動で静電容量を変化させる方式に比べて、物理量の有効検出範囲(ダイナミックレンジ)を広くできるとともに前記有効検出範囲内での感度のリニアリティを効果的に向上させることが可能になる。
【0021】
しかも、本発明では、(L1−L2)2/T1を2.2(μm)以上に設定し、また、(L3−L4)2×T1を4(μm3)以上に設定した。これにより、より効果的に感度のリニアリティを向上させることが可能となる。
【0022】
本発明では、第1検出部と第2検出部とを有し、各検出部の夫々に、前記可動電極部及び前記固定電極部を備え、
前記可動電極子と前記固定電極子との前記第1の方向への延出方向が、前記第1検出部と前記第2検出部とで逆にされており、前記第1検出部により得られた静電容量変化と、前記第2検出部により得られた静電容量変化により差動出力を得ることができることが好ましい。
【0023】
また上記の構成において、前記第1検出部及び前記第2検出部の夫々が、複数の検出領域に区分されており、各検出領域の夫々に、前記可動電極部及び前記固定電極部を備えることが好ましい。これにより、各電極部の強度を保ちながら可動電極部と固定電極部とを効率よく配置できMEMSセンサの小型化を実現できるとともに、感度をより効果的に高めることができる。
【0024】
また本発明では、前記可動電極部を備える可動体とバネ部を介して連結されたアンカ部を備え、前記可動体と前記アンカ部との間には、静止状態から前記可動体の前記第1の方向への移動可能な寸法を規制するギャップが形成されており、
前記バネ部は前記可動体の第2の方向への振動を抑制するように、前記アンカ部と前記可動体との間で前記第2の方向に延出するとともに折り返して形成されていることが好ましい。これにより、感度の安定性を向上させることができる。
【発明の効果】
【0025】
本発明のMEMSセンサによれば、従来の電極構造に比べて、小型で且つ、高い感度及び良好なリニアリティ性を得ることができる。
【図面の簡単な説明】
【0026】
【図1】図1は本発明の実施の形態のMEMSセンサの機能層を示す平面図である。
【図2】図2(a)は、図1に示す可動電極部及び固定電極部の一部を示す静止状態の部分拡大平面図、図2(b)は図2(a)の静止状態から加速度を受けて可動電極部がX2方向に移動した状態を示す部分拡大平面図である。
【図3】図3(a)は、図1に示す可動電極部及び固定電極部の一部を示す静止状態の部分拡大平面図、図3(b)は図1に示す静止状態から可動電極部がX1方向に移動した状態を示す部分拡大平面図、図3(c)は、図1に示す静止状態から可動電極部がX2方向に移動した状態を示す部分拡大平面図である。
【図4】図4は図1に示すMEMSセンサをA−A線に沿って切断し矢印方向から見たときの部分縦断面図である。
【図5】図5(a)は、比較例における加速度と静電容量との関係を示すシミュレーション結果、図5(b)は、MEMSセンサの検出部の大きさを変更することなく、図5(a)よりも感度を高めた場合の加速度と静電容量との関係を示すシミュレーション結果である。
【図6】図6は図5(a)における(1)のグラフにおける静電容量変化と、(2)のグラフにおける静電容量変化との差動出力カーブを示す。
【図7】図7は、加速度と感度との関係を示すシミュレーション結果である。
【図8】図8は、実施例における加速度と静電容量との関係を示すシミュレーション結果である。
【図9】図9は、図8における(3)のグラフに示す静電容量変化と、(4)のグラフに示す静電容量変化との差動出力カーブを示す。
【図10】図10は、実施例における加速度と感度との関係を示すシミュレーション結果である。
【図11】L1(ただしL2を2μm,L3を5μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図12】L1−L2(L2=2μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図13】(L1−L2)2/T1(L2=2μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図14】L1(ただしL2を3μm,L3を6μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図15】L1−L2(L2=3μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図16】(L1−L2)2/T1(L2=3μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図17】L1(ただしL2を4μm,L3を7μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図18】L1−L2(L2=4μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図19】(L1−L2)2/T1(L2=4μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図20】L3(ただしL1を5μm,L4を2μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図21】L3−L4(L4=2μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図22】(L3−L4)2(L4=2μm)×T1と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図23】L3(ただしL1を6μm,L4を3μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図24】L3−L4(L4=3μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図25】(L3−L4)2(L4=3μm)×T1と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図26】L3(ただしL1を7μm,L4を4μmとした)の大きさと感度の最大振れ幅との関係を示す実施例における加速度と感度との関係を示すシミュレーション結果である。
【図27】L3−L4(L4=4μm)と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図28】(L3−L4)2(L4=4μm)×T1と感度の最大振れ幅との関係を示すシミュレーション結果である。
【図29】(L1−L2)2/T1の技術的意味に関する説明図である。
【図30】(L3−L4)2×T1の技術的意味に関する説明図である。
【図31】従来の電極構造を模式的に示すとともに、可動電極のX1−X2方向への移動による静電容量変化を説明するための説明図(平面図)である。
【発明を実施するための形態】
【0027】
図1は本発明の実施の形態のMEMSセンサの機能層を示す平面図、図2(a)は、図1に示す可動電極部及び固定電極部の一部を示す静止状態の部分拡大平面図、図2(b)は図2(a)の静止状態から加速度を受けて可動電極部がX2方向に移動した状態を示す部分拡大平面図、図3(a)は、図1に示す可動電極部及び固定電極部の一部を示す静止状態の部分拡大平面図、図3(b)は図1に示す静止状態から可動電極部がX2方向に移動した状態を示す部分拡大平面図、図3(c)は、図1に示す静止状態から可動電極部がX1方向に移動した状態を示す部分拡大平面図、図4は本実施形態におけるMEMSセンサの部分縦断面図である。
【0028】
図1に示すように、MEMSセンサSは、例えばX1−X2方向(第1の方向)が長辺でY1−Y2方向(第2の方向)が短辺の長方形状である。図1に示すMEMSセンサSは、X1−X2方向に作用する加速度を検出するための一軸検出の加速度センサを構成している。
【0029】
図4に示すようにMEMSセンサSは、支持基板10と機能層11とが絶縁層12を介して積層されたSOI基板13と、SOI基板13と高さ方向に対向し金属接続部14を介して接合された配線基板15とを有して構成される。ここで図1ではMEMSセンサSのうち機能層11のみを取り上げ、さらに機能層11のうち枠体16(図4参照)の内側に位置する錘部22及び電極部を図示している。
【0030】
例えば、支持基板10及び機能層11はシリコンからなり、絶縁層12は、SiO2からなる。
【0031】
図1,図4に示すように、機能層11は、シリコン基板から固定電極部20a〜20d、可動電極部21a〜21d、錘部22および枠体16が分離されて形成されている。このうち、可動電極部21a〜21d及び錘部22は一体として形成され、加速度の印加により第1の方向であるX1−X2方向に移動可能に支持された可動体25を構成している。
【0032】
図1に示すように、機能層11の平面形状は、X1−X2方向及びY1−Y2方向の中心(図心)Oに対して180度の回転対称であり、且つ中心Oを通りX方向に延びる線に対して上下方向(Y1−Y2方向)に対称である。
【0033】
図1に示すように、中心OよりもX1側に第1検出部23が設けられ、X2側に第2検出部24が設けられる。さらに第1検出部23は、Y1側の第1検出領域23aとY2側の第1検出領域23bとに区分されている。また第2検出部24は、Y1側の第2検出領域24aとY2側の第2検出領域24bとに区分されている。
【0034】
図1に示すようにY1側の第1検出領域23aは固定電極部20aと可動電極部21aとで構成されている。またY2側の第1検出領域23bは固定電極部20bと可動電極部21bとで構成されている。またY1側の第2検出領域24aは固定電極部20cと可動電極部21cとで構成されている。またY2側の第2検出領域24bは固定電極部20dと可動電極部21dとで構成されている。各可動電極部21a〜21dと支持基板10との間に絶縁層12は形成されていない(図4参照)。一方、各固定電極部20a〜20dは支持基板10に絶縁層12を介して固定されている。
【0035】
可動領域において第1検出部23及び第2検出部24を除いた部分が錘部22である。図1では前記錘部22は第1検出部23及び第2検出部24の周囲に位置している。
【0036】
図1に示すように錘部22は、X1側領域22a、Y1側領域22b、X2側領域22c及びY2側領域22dを有して構成される。
【0037】
図1に示すように錘部22のY1側領域22bよりもY1側には、錘部22と分離して形成された第1アンカ部26が設けられている。第1アンカ部26はX1−X2方向に長い細長状で形成されている。第1アンカ部26は、図4に示す支持基板10と絶縁層12を介して固定されている。
【0038】
また図1に示すように、錘部22のY2側領域22dよりもY2側には、錘部22と分離して形成された第2アンカ部27が設けられている。第2アンカ部27はX1−X2方向に長い細長状で形成されている。第2アンカ部27は、図4に示す支持基板10と絶縁層12を介して固定されている。
【0039】
図1に示すように、錘部22のX1側領域22aは、第1アンカ部26及び第2アンカ部27よりも更にX1側に延びている。そしてX1側領域22aのY1側端部22a1と、第1アンカ部26との間には所定幅からなるギャップ(間隔)28が形成されている。また、X1側領域22aのY2側端部22a2と、第2アンカ部27との間には所定幅からなるギャップ29が形成されている。前記ギャップ28,29のX1−X2方向への幅寸法は同じ寸法であり、前記ギャップ28,29は、錘部22が図1の静止状態からX1方向へ移動可能な寸法を規制する。
【0040】
また、図1に示すように、錘部22のX2側領域22cは、第1アンカ部26及び第2アンカ部27よりも更にX2側に延びている。そしてX2側領域22cのY1側端部22c1と、第1アンカ部26との間には所定幅からなるギャップ30が形成されている。また、X2側領域22cのY2側端部22c2と、第2アンカ部27との間には所定幅からなるギャップ31が形成されている。前記ギャップ30,31のX1−X2方向への幅寸法は同じ寸法であり、前記ギャップ30,31は、錘部22が図1の静止状態からX2方向へ移動可能な寸法を規制する。
【0041】
また図1に示すように、錘部22のX1側領域22aには、各ギャップ28,29からY1−Y2方向への内側に延び、各ギャップ28,29よりも幅寸法のやや広い空間部35,36が形成されている。また、錘部22のX2側領域22cには、各ギャップ30,31からY1−Y2方向への内側に延び、各ギャップ30,31よりも幅寸法のやや広い空間部37,38が形成されている。
【0042】
そして各空間部35〜38では、各アンカ部26,27と錘部22とを繋げるバネ部40〜43が形成されている。各バネ部40〜43は、シリコン基板を各アンカ部26,27及び錘部22と一体に切り出してX1−X2方向への弾性を持たせた箇所である。バネ部40〜43及び錘部22と支持基板10との間に絶縁層12は形成されていない(図4参照)。よって、加速度を受けると、錘部22はバネ部40〜43の弾性変形によりX1−X2方向へ移動できるようになっている。
【0043】
図1に示すように各バネ部40〜43はY1−Y2方向に長く形成されており、また各アンカ部26,27と錘部22との間で折り返して形成されている。これにより各バネ部40〜43はY1−Y2方向へ剛性を持ち、錘部22のY1−Y2方向への振動を抑制している。
【0044】
図1に示すように、錘部22と一体となって各可動電極部21a〜21dが形成されている。各可動電極部21a〜21dには、X1−X2方向に間隔を空けてY1−Y2方向に延出する複数本の可動支持部50が設けられている。各可動支持部50は錘部22のY1側領域22b及びY2側領域22dから内方向に向けて延出している。なお図1では、各可動電極部21a〜21dに対して夫々、一本の可動支持部50にのみ符号を付した。また、図1に示すように、各固定電極部20a〜20dは、固定基部52と、X1−X2方向に間隔を空けて配置され、前記固定基部52からY1−Y2方向に延出して形成された複数本の固定支持部51が設けられている。なお図1では、各固定電極部20a〜20dに対して夫々、一本の固定支持部51にのみ符号を付した。各検出領域23a,23b,24a,24bにおいて、可動支持部50と固定支持部51との延出方向は逆方向である。そして、各検出領域23a,23b,24a,24bにおいて、複数本の可動支持部50と複数本の固定支持部51とがX1−X2方向に間隔を空けて交互に配列されている。
【0045】
図4に示すように各固定基部52は支持基板10と絶縁層12を介して固定されている。なお各固定支持部51と支持基板10との間に絶縁層12が介在していてもよいが、固定支持部51は細いためエッチングにより固定支持部51と支持基板10間の絶縁層12が除去されてしまい、前記固定支持部51は図4に示すように可動支持部50と同様、支持基板10から浮いた状態となっている。ただし、各固定支持部51は固定基部52に接続されているため、加速度を受けてもX1−X2方向へ移動しない。
【0046】
図1に示すように、各可動支持部50のX1−X2方向の側部及び各固定支持部51のX1−X2方向の側部にはY1−Y2方向に間隔を空けて櫛歯状の可動電極子及び固定電極子が形成されている。可動電極子及び固定電極子を図2及び図3により説明する。
【0047】
図2(a)は図1に示す円で囲ったII辺りの第1検出領域23a及び第2検出領域24aを示している。図2(a)に示すように、第1検出領域23aでは、錘部22のY1側領域22bの内側部22b1からY2方向に向けて細長い可動支持部50が直線状で形成されている。そして第1検出領域23aでは、複数本の可動支持部50がX1−X2方向に間隔を空けて形成されている。同様に、第2検出領域24aでは、錘部22のY1側領域22bの内側部22b1からY2方向に向けて細長い可動支持部50が直線状で形成されている。そして第2検出領域24aでは、複数本の可動支持部50がX1−X2方向に間隔を空けて形成されている。
【0048】
図2(a)に示すように、第1検出領域23aに設けられた可動支持部50のX2側端部50aからX2方向に延出する可動電極子60がY1−Y2方向に間隔を空けて複数本、形成されている。なお図2(a)では、前記可動支持部50に対して一本の可動電極子60にのみ符号を付した。
【0049】
また図2(a)に示すように、第2検出領域24aに設けられた可動支持部50のX1側端部50bからX1方向に延出する可動電極子61がY1−Y2方向に間隔を空けて複数本、形成されている。なお図2(a)では、前記可動支持部50に対して一本の可動電極子61にのみ符号を付した。図2(a)に示すように、可動電極子60,61のX1−X2方向への長さ寸法は、可動支持部50のY1−Y2方向への長さ寸法に比べて十分に短くなっている。
【0050】
また図2(a)に示すように、各検出領域23a,24aでは、夫々、固定基部52からY1方向に向けて細長い固定支持部51が直線状で形成されている。図1,図3に示すように固定支持部51は、各検出領域23a,24aにて複数本、X1−X2方向に間隔を空けて形成されており、各固定支持部51は可動支持部50と交互に配列されている。
【0051】
図2(a)に示すように、第1検出領域23aに設けられた固定支持部51のX1側端部51bからX1方向に延出する固定電極子62がY1−Y2方向に間隔を空けて複数本、形成されている。図2(a)に示すようにこれら固定電極子62は可動電極子60と間隔を空けてY1−Y2方向にて交互に配列されている。なお図2(a)では、前記固定支持部51に対して一本の固定電極子62にのみ符号を付した。
【0052】
また図2(a)に示すように、第2検出領域24aに設けられた固定支持部51のX2側端部51aからX2方向に延出する固定電極子63がY1−Y2方向に間隔を空けて複数本、形成されている。図2(a)に示すようにこれら固定電極子63は可動電極子61と間隔を空けてY1−Y2方向にて交互に配列されている。なお図2(a)では、前記固定支持部51に対して一本の固定電極子63にのみ符号を付した。図2(a)に示すように、固定電極子62,63のX1−X2方向への長さ寸法は、固定支持部51のY1−Y2方向への長さ寸法に比べて十分に短くなっている。
【0053】
図2(a)では、図1に示すY1側の第1検出領域23a及びY1側の第2検出領域24aの電極構造を説明したが、Y2側の第1検出領域23b及びY2側の第2検出領域24bでの各電極構造は、中心Oを通りX1−X2方向に延びる線に対して図2(a)の電極構造と線対称の関係である。
【0054】
図3(a)は図1に示す丸で囲ったIII辺りの電極構造を図示したものである。
図3(a)に示すように、同じ検出領域23a内では、X1−X2方向に交互に配列された各可動支持部50と各固定支持部51とが夫々一つずつ、組66にされて、各組66の可動支持部50と固定支持部51との間にて複数本の可動電極子60と複数本の固定電極子62とがY1−Y2方向に間隔を空けて交互に配列されている。
【0055】
図3(a)に示す静止状態(物理量の作用していない状態)において、可動支持部50のX2側端部50aから固定電極子62の先端62aまでのX1−X2方向への間隔はL1である。また可動電極子60及び固定電極子62のY1−Y2方向への幅寸法はT1である。図3(a)では代表的に可動電極子60の幅寸法をT1で示した。
【0056】
また図3(a)に示す静止状態において、隣り合う組66の可動支持部50と固定支持部51との間におけるX1−X2方向への間隔をL3で示した。また図3(a)に示す静止状態において、可動電極子60と固定電極子62との重なり長さをL5とした。
【0057】
また各可動電極子60は、Y1−Y2方向の両側に位置する固定電極子62,62の間の略中心に位置している。
【0058】
図3(b)に示すように、MEMSセンサSが加速度を受けて錘部がX2方向に移動すると、各可動支持部50もX2方向に移動し、各組66における、各可動電極子60と各固定電極子62との間の対向面積(Y1−Y2方向にて対面する面積)は図3(a)の静止状態よりも増す。このとき可動支持部50がX2方向へ移動した際の最大の移動可動距離をL2とし、図3(b)にて可動支持部50がL2、移動したとすれば、図3(a)の静止状態のときL1であった間隔は、L1−L2となる。また図3(a)の静止状態のときL3であった間隔はL3+L2となる。
【0059】
また、図3(c)に示すように、MEMSセンサSが加速度を受けて錘部22がX1方向に移動すると、各可動支持部50もX1方向に移動し、各組66における、各可動電極子60と各固定電極子62との間の対向面積は図3(a)の静止状態よりも減少する。このとき可動支持部50がX1方向へ移動した際の最大の移動可動距離をL4とし、図3(b)にて可動支持部50がL4、移動したとすれば、図3(a)の静止状態のときL3であった間隔は、L3−L4となる。また図3(a)の静止状態のときL1であった間隔はL1+L4となる。
【0060】
図3(a)、図3(b)、図3(c)に示した距離の変動関係は、図1に示すY2側の第1検出領域23bにおいても同じである。
【0061】
一方、図3(b)に示すように、MEMSセンサSが加速度を受けて錘部がX2方向に移動すると、第1検出領域23a,23bでは図3(b)で説明したように、可動電極子60と固定電極子62間の対向面積が増加するが、第2検出領域24a,24bでは、可動電極子61と固定電極子63間の対向面積は減少する。これは図1,図2に示すように、第1検出領域23a,23bと、第2検出領域24a,24bとでは、可動電極子60,61と固定電極子62,63とのX1−X2方向への延出方向が逆にされているためである。
【0062】
これにより、第1検出領域23a,23bで、可動電極子60と固定電極子62間の対向面積が増加して静電容量が大きくなると、第2検出領域24a,24bでは、可動電極子61と固定電極子63間の対向面積が減少して静電容量が小さくなる。一方、第1検出領域23a,23bで、可動電極子60と固定電極子62間の対向面積が減少して静電容量が小さくなると、第2検出領域24a,24bでは、可動電極子61と固定電極子63間の対向面積が増加して静電容量が大きくなる。
【0063】
なお、上記した錘部22及び可動電極部21a〜21dの最大の移動可能距離L2,L4は、図1に示した各ギャップ28〜31のX1−X2方向への大きさで規制される。
【0064】
図1に図示しない枠体16は、図1に示した錘部22とは分離して前記錘部22の周囲を取り囲んでおり、図4に示すように枠体16は支持基板10に絶縁層12を介して固定されている。
【0065】
図4に示すように、機能層11を構成する枠体16及び各固定基部52と配線基板15との間が金属接続部14により接続されている。図4では、配線基板15を単層構造で図示したが、実際にはシリコン基板の表面(機能層11との対向面側)に絶縁層が形成され、前記絶縁層の内部に配線層70が形成された構造である。配線層70は固定基部52と金属接続部14を介して電気的に接続されており、配線層70は枠体16よりも外側にてパッド部71に接続されている。
また図4では図示しないが、枠体16の外側にはグランドパッド等も形成されている。
【0066】
本実施形態では、第1検出部23より得られた静電容量変化と、第2検出部24より得られた静電容量変化とにより差動出力を得ることが可能である。そして差動出力に基づいて加速度の大きさや差動出力の符号(プラス値かマイナス値)から加速度の作用方向を知ることができる。
【0067】
(実験1;比較例における加速度と静電容量との関係、及び加速度と感度との関係について)
図1〜図3に示す可動電極子60,61及び固定電極子62,63が形成されておらず、複数本の可動支持部50及び複数本の固定支持部51を櫛歯状の電極とする電極構造を比較例として実験を行った。比較例では、加速度を受けて錘部22がX1−X2方向に移動したときに、櫛歯状電極間のギャップ(距離)が変化することで静電容量変化を得ることが可能である(図31参照)。
【0068】
なお以下の実験で示す比較例においても電極構造以外の構成は実施例と同じである。また、実施例及び比較例においても図1に示す検出部を同じ大きさとし、ただし比較例では実施例のように可動電極子60,61及び固定電極子62,63が無い分、櫛歯状の可動電極(実施例の可動支持部50に相当する部分)と固定電極(実施例の固定支持部51に相当する部分)との間の間隔を詰めて、電極の本数を増やした。比較例での静電容量変化の原理は、図31で説明した通りである。
【0069】
図5(a)は、比較例における加速度と静電容量との関係を示すシミュレーション結果である。図5(a)の実験では、図31に示すギャップa,bの大きさを1.7μmに設定した。ここで図5(a)に示す(1)のグラフは、プラス値の加速度が作用すると、可動電極と固定電極間のギャップが大きくなって静電容量が減少し、マイナス値の加速度が作用すると、可動電極と固定電極間のギャップが小さくなって静電容量が増大する検出部での静電容量変化を示している。一方、図5(a)に示す(2)のグラフは、マイナス値の加速度が作用すると、可動電極と固定電極間のギャップが大きくなって静電容量が減少し、プラス値の加速度が作用すると、可動電極と固定電極間のギャップが小さくなって静電容量が増大する検出部での静電容量変化を示している。ここで「プラス値」及び「マイナス値」とは、例えばプラス値の加速度をX1方向とすれば、マイナス値はその逆のX2方向である関係を指す。
【0070】
図5(b)は、MEMSセンサの検出部の大きさを変更することなく、図5(a)よりもバネ部40〜43のバネ定数を小さくし、感度を高めた場合の加速度と静電容量との関係を示すシミュレーション結果である。図5(b)の実験では、図31に示すギャップa,bの大きさを1.7μmに設定した。図5(b)に示すように、静電容量変化は図5(a)に比べて急激になり、図5(b)における加速度の有効検出範囲(ダイナミックレンジ)r2は、図5(a)でのダイナミックレンジr1よりも狭くなることがわかった。
【0071】
図6は、図5(a)における(1)のグラフにおける静電容量変化と、(2)のグラフにおける静電容量変化とに基づく差動出力カーブを示す。図6に示すように加速度(絶対値)が大きくなるほど、静電容量(差動出力)の変化が大きくなることがわかった。
【0072】
図7は、加速度と感度との関係を示すシミュレーション結果である。感度は図6に示す差動出力カーブの傾きで示される。図7に示すように感度曲線は加速度(絶対値)に対してフラットな直線状にならず、加速度(絶対値)が大きくなるほど大きく変化することがわかった。
【0073】
(実験2;実施例における加速度と静電容量との関係、及び加速度と感度との関係について)
図8は、実施例における加速度と静電容量との関係を示すシミュレーション結果である。図8の実験では、図3(a)に示すL1,L3を4〜6μmの範囲内とし、また電極子の幅寸法T1を1.2μmに設定した。ここで図8に示す(3)のグラフは、プラス値の加速度が作用すると、可動電極子と固定電極子間の対向面積が小さくなって静電容量が減少し(図3(c)の状態)、マイナス値の加速度が作用すると、可動電極子と固定電極子間の対向面積が大きくなって静電容量が増大する(図3(b)の状態)検出部での静電容量変化を示している。一方、図8に示す(4)のグラフは、マイナス値の加速度が作用すると、可動電極子と固定電極子間の対向面積が小さくなって静電容量が減少し、プラス値の加速度が作用すると、可動電極子と固定電極子間の対向面積が大きくなって静電容量が増大する検出部での静電容量変化を示している。ここで「プラス値」及び「マイナス値」とは、例えばプラス値の加速度をX1方向とすれば、マイナス値はその逆のX2方向である関係を指す。
【0074】
図9は、図8における(3)のグラフに示す静電容量変化と、(4)のグラフに示す静電容量変化とに基づく差動出力カーブを示す。また図10は、実施例における加速度と感度との関係を示すシミュレーション結果である。感度は図9に示す差動出力カーブの傾きで示される。
【0075】
実施例では図9に示すように、差動出力カーブは加速度(絶対値)に対して直線状に傾き(一次曲線)、また図10に示すように感度が加速度(絶対値)に対して略フラットになることがわかった。
【0076】
図7の比較例での感度と図10の実施例での感度を比較すると、図10の感度は、図7に示す感度曲線の底部での感度に比べて大きくなることがわかった。
【0077】
従って、比較例では実施例と同等の感度を加速度の小さい領域の部分で得ようとすると、例えば、櫛歯状の電極の数を増加させて電極どうしの対向面積を大きくしなくてはならず、大型化してしまうことがわかる。実施例では、比較例に比べてMEMSセンサの高い感度を維持したうえで、加速度の有効検出範囲(ダイナミックレンジ)を広げることができるとともに、有効検出範囲内での感度のリニアリティを向上させることができるとわかった。
【0078】
(実験3;図3(a)に示すL1の適正化の実験について)
次に、図3(a)に示す電極子の幅寸法T1を1.2μm、0.8μmあるいは1.6μmとし、図3(a)でのL3を5μmに固定した。
【0079】
また図3(b)のように、各可動電極子60が組となる固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L2を2μmとした。2μmは、100Gの加速度(絶対値)が作用した場合に該当する。
【0080】
図11に示すように、L1を約3μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに、可動支持部50が2μm、固定支持部51の方向へ移動したときの感度(100G(絶対値))を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図11の縦軸の最大振れ幅とした。なお100Gが作用したときに、2μm移動するようにばね定数を調整した。
【0081】
図11に示すように、L1が小さくなるほど、感度の最大振れ幅が大きくなることがわかった。感度の最大振れ幅は小さいほどよい。実用化には最大振れ幅(絶対値)を10%以下に設定することが好適である。感度の最大振れ幅を10%以下に設定するにはL1を約3.6μm以上とすることが好ましいとわかった。このようにL1が小さくなることで感度の最大振れ幅が大きくなるのは、可動電極子と固定電極子との間の対向面積の変動のみならず、前記対向面積以外の部分の変動も加わって静電容量が変化しやすくなるためである。
【0082】
図12は、図3(b)に示すL1−L2(L2は2μm)と感度の最大振れ幅との関係を示したものである。図12に示すように、L1−L2を約1.6μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0083】
続いて(L1−L2)2/T1を計算し、(L1−L2)2/T1と感度の最大振れ幅との関係を示したのが図13である。
【0084】
図13に示すように、(L1−L2)2/T1(ただしL2は2μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図13に示すように、(L1−L2)2/T1を約2(μm)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0085】
続いて、図3(a)に示す電極子の幅寸法T1を1.2μm、0.8μmあるいは1.6μmとし、図3(a)でのL3を6μmに固定した。
【0086】
また100Gが作用したときに、各可動電極子60が組となる固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L2(図3(b)参照)が3μmとなるようにばね定数を調整した。
【0087】
図14に示すように、L1を約4μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに、可動支持部50が3μm、固定支持部51の方向へ移動したときの感度(100G(絶対値))を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図14の縦軸の最大振れ幅とした。
【0088】
図14に示すように、感度の最大振れ幅を10%以下に設定するにはL1を約4.6μm以上とすることが好ましいとわかった。
【0089】
図15は、図3(b)に示すL1−L2(L2は3μm)と感度の最大振れ幅との関係を示したものである。図15に示すように、L1−L2を約1.6μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0090】
続いて(L1−L2)2/T1を計算し、(L1−L2)2/T1と感度の最大振れ幅との関係を示したのが図16である。
【0091】
図16に示すように、(L1−L2)2/T1(ただしL2は、3μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図16に示すように、(L1−L2)2/T1を約2.2(μm)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0092】
続いて、図3(a)に示す電極子の幅寸法T1を1.2μm、0.8μmあるいは1.6μmとし、図3(a)でのL3を7μmに固定した。
【0093】
また、100Gの加速度が作用したときに、各可動電極子60が組となる固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L2(図3(b)参照)が4μmとなるようにばね定数を調整した。
【0094】
図17に示すように、L1を約5μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに、可動支持部50が4μm、固定支持部51の方向へ移動したときの感度(100G(絶対値))を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図14の縦軸の最大振れ幅とした。
【0095】
図17に示すように、感度の最大振れ幅を10%以下に設定するにはL1を約5.6μm以上とすることが好ましいとわかった。
【0096】
図18は、図3(b)に示すL1−L2(L2は4μm)と感度の最大振れ幅との関係を示したものである。図18に示すように、L1−L2を約1.6μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0097】
続いて(L1−L2)2/T1を計算し、(L1−L2)2/T1と感度の最大振れ幅との関係を示したのが図19である。
【0098】
図19に示すように、(L1−L2)2/T1(ただしL2は、4μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図16に示すように、(L1−L2)2/T1を約2.2(μm)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0099】
上記の図11〜図19の実験により、(L1−L2)2/T1を2.2以上とすることで、感度の最大振れ幅(絶対値)を10%以下に設定することができ、効果的に、感度のリニアリティを向上させることが可能であるとわかった。
【0100】
(L1−L2)2/T1の技術的意味について図29を用いて説明する。
図29(a)に示す可動電極子60と固定電極子62とが幅を持たない櫛歯電極であり、図29(a)の左図と右図間のようにオーバーラップ面積(点線の範囲)の変化のみを捉えることが可能であれば、リニアリティの良好な感度特性を得ることができる。
【0101】
しかしながら図29(b)で示すように、実際には、各電極子60,62を支持するための支持部50,51を必要とし、また、各電極子60,62は幅(幅寸法T1)を有している(図3も参照)。
【0102】
このように各電極子60,61は幅寸法T1を有しているため、図29(b)の左図の各電極子60,62と支持部50、51との間(矢印で示した部分)に静電容量が生じ、すなわち図29(a)で示した単純なオーバーラップ面積の変化で静電容量変化を捉えることはできない。図29(b)の右図は、図29(b)の左図の矢印部分の静電容量成分を抜き出したものであり、図29(b)の右図に示したような平行平板タイプの容量成分も加わることになる。
【0103】
平行平板タイプの容量成分は、距離に反比例して増大し、面積(電極子の幅寸法T1)に比例して増大する。
【0104】
よってリニアリティは、各電極子の幅寸法T1が大きくなるほど、及び、各電極子と支持部との間の間隔(ギャップ)L1に反比例して、ばらつく。
【0105】
したがって、図12、図15、図18のL1−L2に対して、各電極子の幅寸法T1で規格化し、及び、1/(L1−L2)で規格化(L1については、L2の移動が生じてL1−L2となっているため、1/(L1−L2)で規格化)するために、以下の数式1に示すように、L1−L2を、T1及び、1/(L1−L2)で割った。
【0106】
(L1−L2)/[T1・[1/(L1−L2)]] (数式1)
【0107】
上記数式1より、以下の数式2を得ることができる。
【0108】
(L1−L2)2/T1 (数式2)
【0109】
以上により、(L1−L2)2/T1は、感度の最大振れ幅(絶対値)を10%以下に設定することができる技術的意味を有する数式である。
【0110】
(実験4;図3(a)に示すL3の適正化の実験について)
次に、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1を5μmに固定した。そして図3(c)のように、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4を2μmとした。2μmは、100G(絶対値)の加速度が作用した場合に該当する。図20に示すように、L3を約3μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに上記したように、可動支持部50が2μm、隣の組の固定支持部51の方向へ移動したときの感度(100G)を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図20の縦軸の最大振れ幅とした。その実験結果が図20に示す(5)のグラフである。
【0111】
さらに、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1をL3と連動させた実験も行った。すなわち、L3を4μmとすればL1も4μmに設定した。そして上記の(5)のグラフでの実験と同様に、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4を2μm(100G(絶対値)の加速度作用時)として、[感度(100G(絶対値))/感度(静止時)]×100(%)を測定した。その実験結果が図20に示す(6)のグラフである。
【0112】
図20に示すように、感度の最大振れ幅(絶対値)を10%以下に設定するにはL3を約3.8μm以上とすることが好ましいとわかった。
【0113】
図21は、図3(c)に示すL3−L4(L4は2μm)と感度の最大振れ幅との関係を示したものである。なお図21に示す(5)のグラフは、図20の(5)のグラフに基づくものであり、図21に示す(6)のグラフは、図20の(6)のグラフに基づくものである。また図21では、L1とL3とを連動させるとともに、電極子の幅寸法T1を0.8μmとした実験((7)のグラフ)、及び、L1とL3とを連動させるとともに、電極子の幅寸法T1を1.6μmとした実験((8)のグラフ)も行った。
【0114】
図21に示すように、L3−L4(L4=2μm)を約1.8μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0115】
続いて(L1−L2)2×T1を計算し、(L3−L4)2×T1と感度の最大振れ幅との関係を示したのが図22である。なお図22に示す3つの曲線は、図21に示す(6)(7)(8)のグラフに基づくものである。
【0116】
図22に示すように、(L3−L4)2×T1(ただし、L4は2μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図22に示すように、(L3−L4)2×T1を4(μm3)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0117】
続いて、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1を6μmに固定した。そして100Gの加速度が作用したときに、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4が3μm(図3(c)参照)となるようにばね定数を調整した。
【0118】
図23に示すように、L3を約5μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに上記したように、可動支持部50が3μm、隣の組の固定支持部51の方向へ移動したときの感度(100G)を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図23の縦軸の最大振れ幅とした。その実験結果が図23に示す(9)のグラフである。
【0119】
さらに、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1をL3と連動させた実験も行った。すなわち、L3を6μmとすればL1も6μmに設定した。そして上記の(9)のグラフでの実験と同様に、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4を3μm(100G(絶対値)の加速度作用時)として、[感度(100G(絶対値))/感度(静止時)]×100(%)を測定した。その実験結果が図23に示す(10)のグラフである。
【0120】
図23に示すように、感度の最大振れ幅(絶対値)を10%以下に設定するにはL3を約5μm以上とすることが好ましいとわかった。
【0121】
図24は、図3(c)に示すL3−L4(L4は3μm)と感度の最大振れ幅との関係を示したものである。なお図24に示す(9)のグラフは、図23の(9)のグラフに基づくものであり、図24に示す(10)のグラフは、図24の(10)のグラフに基づくものである。また図24では、L1とL3とを連動させるとともに、電極子の幅寸法T1を0.8μmとした実験((11)のグラフ)、及び、L1とL3とを連動させるとともに、電極子の幅寸法T1を1.6μmとした実験((12)のグラフ)も行った。
【0122】
図24に示すように、L3−L4(L4=3μm)を約1.8μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0123】
続いて(L3−L4)2×T1を計算し、(L3−L4)2×T1と感度の最大振れ幅との関係を示したのが図25である。なお図25に示す3つの曲線は、図21に示す(10)(11)(12)のグラフに基づくものである。
【0124】
図25に示すように、(L3−L4)2×T1(ただしL4は3μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図25に示すように、(L3−L4)2×T1を4(μm3)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0125】
続いて、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1を7μmに固定した。そして、100Gの加速度が作用したときに、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4が4μm(図3(c)参照)となるようにばね定数を調整した。
【0126】
図26に示すように、L3を約6μm以上として、図3(a)での静止状態での感度(静止時)を測定し、さらに上記したように、可動支持部50が4μm、隣の組の固定支持部51の方向へ移動したときの感度(100G)を測定した。そして、[感度(100G(絶対値))/感度(静止時)]×100(%)を図26の縦軸の最大振れ幅とした。その実験結果が図23に示す(13)のグラフである。
【0127】
さらに、図3(a)に示す電極子の幅寸法T1を1.2μmとし、図3(a)(静止時)でのL1をL3と連動させた実験も行った。すなわち、L3を7μmとすればL1も7μmに設定した。そして上記の(13)のグラフでの実験と同様に、各可動電極子60が隣の組の固定支持部51に近づいたときの可動支持部50の最大の移動可能距離L4を4μm(100G(絶対値)の加速度作用時)として、[感度(100G(絶対値))/感度(静止時)]×100(%)を測定した。その実験結果が図26に示す(14)のグラフである。
【0128】
図26に示すように、感度の最大振れ幅(絶対値)を10%以下に設定するにはL3を約6μm以上とすることが好ましいとわかった。
【0129】
図27は、図3(c)に示すL3−L4(L4は4μm)と感度の最大振れ幅との関係を示したものである。なお図27に示す(13)のグラフは、図26の(13)のグラフに基づくものであり、図27に示す(14)のグラフは、図24の(14)のグラフに基づくものである。また図27では、L1とL3とを連動させるとともに、電極子の幅寸法T1を0.8μmとした実験((15)のグラフ)、及び、L1とL3とを連動させるとともに、電極子の幅寸法T1を1.6μmとした実験((16)のグラフ)も行った。
【0130】
図27に示すように、L3−L4(L4=4μm)を約1.8μm以上とすることで感度の最大振れ幅(絶対値)を10%以下に抑えることができるとわかった。
【0131】
続いて(L3−L4)2×T1を計算し、(L3−L4)2×T1と感度の最大振れ幅との関係を示したのが図28である。なお図28に示す3つの曲線は、図21に示す(14)(15)(16)のグラフに基づくものである。
【0132】
図28に示すように、(L3−L4)2×T1(ただしL4は4μm)は、電極子の幅寸法T1の大きさに係らず、ほぼ同じ曲線となることがわかった(規格化)。そして図28に示すように、(L3−L4)2×T1を4(μm3)以上とすることで感度の最大振れ幅(絶対値)を10%以内に抑えることができるとわかった。
【0133】
(L3−L4)2×T1の技術的意味について図30を用いて説明する。
図30(a)では、各電極子と支持部との間の間隔(ギャップ)L1で生じる容量成分は、可動電極子60の幅(符号60bとして太く示した)と、可動電極子60の幅と対向する固定支持部51の幅(符号51bとして太く示した)との間、及び固定電極子62の幅(符号62bとして太く示した)と、固定電極子62の幅と対向する可動支持部50の幅(符号50bとして太く示した)との間で生じる合計である。
【0134】
また、図30(a)に示すように、隣り合う組の可動支持部と固定支持部との間における間隔(ギャップ)L3で生じる容量成分は、可動支持部50の幅50c(太く示した)と、固定支持部51の幅51c(太く示した)との間で生じる。
【0135】
図30(a)では、可動電極子60と固定電極子62とが接触する程度の幅を有する構成としている。このため、L1とL3とが等しければ、各電極子と支持部との間の間隔(ギャップ)L1で生じる容量成分と、隣り合う組の可動支持部と固定支持部との間における間隔(ギャップ)L3で生じる容量成分とは等しくなり、したがって差動回路とすることで、各電極子と支持部との間の間隔(ギャップ)L1で生じる容量成分と、隣り合う組の可動支持部と固定支持部との間における間隔(ギャップ)L3で生じる容量成分とをキャンセルすることができる。
【0136】
しかしながら図30(b)で示すように、実際には、各電極子60,62は幅(幅寸法T1)を有して互いに離れた状態にある。図30(b)の右図は、図30(b)の左図の矢印部分の静電容量成分(平行平板型の容量成分)を抜き出したものである。このように図30(b)では、図30(a)に比べて各電極子60,62の幅寸法は減少し、その結果、L1とL3とが等しくても、各電極子と支持部との間の間隔(ギャップ)L1で生じる容量成分と、隣り合う組の可動支持部と固定支持部との間における間隔(ギャップ)L3で生じる容量成分とは等しくならない。このように理想状態からのずれが生じる。
【0137】
すなわち、リニアリティは、各電極子60,61の幅T1に反比例して、ばらつく。このように各電極子60,61の幅T1が狭いほど、リニアリティのばらつきは大きくなり、同様に、(L3−L4)に反比例して、リニアリティのばらつきは大きくなる。
【0138】
したがって、図21、図14、図17のL3−L4に対して、1/T1で規格化し、及び、1/(L3−L4)で規格化するために、以下の数式3に示すように、L3−L4を、1/T1及び、1/(L3−L4)で割った。
【0139】
(L3−L4)/[(1/T1)×[1/(L3−L4)]] (数式3)
【0140】
上記数式3より、以下の数式4を得ることができる。
【0141】
(L3−L4)2×T1 (数式4)
【0142】
以上により、(L3−L4)2×T1は、感度の最大振れ幅(絶対値)を10%以下に設定することができる技術的意味を有する数式である。
【0143】
なお、L1とL3とを連動させない場合には、図3(a)の静止時においてL3>L1とすることが好適である。図11に示す実験では感度の最大振れ幅が10(%)となるときのL1は約3.6μmである。このときL3は5μmである。一方、例えば図20の(5)のグラフに示すように、感度の最大振れ幅が10(%)となるときのL3は約4.4μmである。このときL1は5μmである。このように静止時のL1とL3との寸法関係をみると、L3>L1とした図11での実験のほうが、小さいほうの寸法(L1)をより小さく設定できる。したがって高い感度及び良好なリニアリティを維持しつつMEMSセンサの小型化を促進することができる。
【0144】
また図3においてL5はL2及びL4以上である。これにより、図3(b)(c)のように可動電極子が最大限、X1−X2方向に移動しても、可動電極子が固定電極子の外側に外れず、感度のリニアリティの低下を抑制できる。
【0145】
本実施形態におけるMEMSセンサSは、同じ検出部内に、可動電極部21a〜21dを構成する複数本の可動支持部50と、固定電極部20a〜20dを構成する複数本の固定支持部51とをX1−X2方向(第1の方向)に交互に配列している。そして、隣り合う可動支持部50と固定支持部51とを同じ組66にし、各組66での可動支持部50と固定支持部51との間に、複数本の可動電極子60,61と固定電極子62,63とをY1−Y2方向(第2の方向)に交互に配列した。これにより検出部内に効率よく、多数の可動電極子60,61と固定電極子62,63を配置でき、従来の電極構造に比べて、小型で且つ、高い感度を得ることが出来る。
【0146】
本実施形態の電極構造とすることで、同じ大きさの検出領域内に、可動電極子60,61と固定電極子62,63間の対向面積の変動領域を効果的に増やすことができ、感度を高めることが可能になる。
【0147】
また、可動電極と固定電極間のギャップ(距離)を変動させて静電容量変化を生じさせる方式では、静電容量はギャップ(距離)に反比例し、図5ないし図7に示したように、感度を高めると、距離の変動に対して静電容量変化が急激なものとなり(図5(b)参照)、MEMSセンサによる物理量の有効検出範囲(ダイナミックレンジ)が狭くなる。さらに有効検出範囲内での感度のリニアリティを向上させることができないといった問題も生じる(図7参照)。
【0148】
これに対して本実施形態のように可動電極子60,61と固定電極子62,63間の対向面積を変動させて静電容量を変化させる方式では、静電容量を対向面積に比例させることができ、上記した距離の変動で静電容量を変化させる比較例の方式に比べて、物理量の有効検出範囲(ダイナミックレンジ)を広くできるとともに前記有効検出範囲内での感度のリニアリティを向上させることが可能になる。
【0149】
上記構成に加えて本実施形態では、上記の実験で示したように、(L1−L2)2/T1を2.2(μm)以上とし、また(L3−L4)2×T1を4(μm3)以上に設定することで、効果的に、感度のリニアリティを向上させることが可能である。
【0150】
また図1に示すように第1検出部23を複数の検出領域23a,23bに分け、第2検出部24を複数の検出領域24a,24bに分け、各検出領域23a,23b,24a,24bに夫々、可動電極部21a〜21d及び固定電極部20a〜20dを設けることで、本実施形態の可動支持部50及び固定支持部51を極端に長く形成しなくてもよくなり、各電極部の強度を十分に保ったうえで、感度の向上を図ることができる。
【0151】
図1はX1−X2方向に作用する加速度を検出するためのMEMSセンサであったが、図1の状態から90度回転させればY1−Y2方向に作用する加速度を検出するためのMEMSセンサにできる。また、図1に示すX軸方向の加速度を検出するMEMSセンサと、図1のMEMSセンサを90度回転させたY軸方向の加速度を検出するMEMSセンサとを組み合わせて2軸の加速度検出センサにすることも可能である。
【0152】
本実施形態は加速度センサのみならず角速度センサ、衝撃センサ等、物理量センサ全般に適用可能である。
【符号の説明】
【0153】
S MEMSセンサ
10 支持基板
11 機能層
12 絶縁層
13 SOI基板
14 金属接続部
15 配線基板
16 枠体
20a〜20d 固定電極部
21a〜21d 可動電極部
22 錘部
23 第1検出部
23a、23b 第1検出領域
24 第2検出部
24a、24b 第2検出領域
26、27 アンカ部
28〜31 ギャップ
40〜43 バネ部
50 可動支持部
51 固定支持部
52 固定基部
60、61 可動電極子
62、63 固定電極子
66 組
70 配線層

【特許請求の範囲】
【請求項1】
可動電極部および固定電極部を有するMEMSセンサにおいて、
水平面内にて直交する2方向を第1の方向と第2の方向としたとき、前記第1の方向が前記可動電極部の移動方向であり、
前記可動電極部は、前記第1の方向に間隔を空けて配置され前記第2の方向に延出して形成された複数本の可動支持部と、前記第1の方向に向けて各可動支持部の側部から延出し、各可動支持部にて前記第2の方向に間隔を空けて配置された複数本の可動電極子と、を有し、
前記固定電極部は、前記第1の方向に間隔を空けて配置され基端側から先端側への延出方向が前記可動支持部とは逆方向である複数本の固定支持部と、各固定支持部の側部から前記可動電極子の延出方向とは逆方向に延出し、各固定支持部にて前記第2の方向に間隔を空けて配置された複数本の固定電極子と、を有し、
複数本の前記可動支持部と複数本の前記固定支持部とが前記第1の方向に間隔を空けて交互に配列されており、隣り合う前記可動支持部と前記固定支持部とが組にされて、各組の前記可動支持部と前記固定支持部の間にて複数本の前記可動電極子と複数本の前記固定電極子とが前記第2の方向に間隔を空けて交互に配列されており、
前記可動電極部の前記第1の方向への移動により、各可動電極子と各固定電極子間の対向面積の変化に基づく静電容量変化を検出可能としており、
静止状態において、前記可動支持部の側部から前記固定電極子の先端までの前記第1の方向への間隔をL1とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL2としたとき、(L1−L2)2/T1が2.2(μm)以上であることを特徴とするMEMSセンサ。
【請求項2】
静止状態において、隣り合う前記組の前記可動支持部と前記固定支持部との間における前記第1の方向への間隔をL3とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が隣り合う前記組の前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL4としたとき、(L3−L4)2×T1が4(μm3)以上である請求項1記載のMEMSセンサ。
【請求項3】
可動電極部および固定電極部を有するMEMSセンサにおいて、
水平面内にて直交する2方向を第1の方向と第2の方向としたとき、前記第1の方向が前記可動電極部の移動方向であり、
前記可動電極部は、前記第1の方向に間隔を空けて配置され前記第2の方向に延出して形成された複数本の可動支持部と、前記第1の方向に向けて各可動支持部の側部から延出し、各可動支持部にて前記第2の方向に間隔を空けて配置された複数本の可動電極子と、を有し、
前記固定電極部は、前記第1の方向に間隔を空けて配置され基端側から先端側への延出方向が前記可動支持部とは逆方向である複数本の固定支持部と、各固定支持部の側部から前記可動電極子の延出方向とは逆方向に延出し、各固定支持部にて前記第2の方向に間隔を空けて配置された複数本の固定電極子と、を有し、
複数本の前記可動支持部と複数本の前記固定支持部とが前記第1の方向に間隔を空けて交互に配列されており、隣り合う前記可動支持部と前記固定支持部とが組にされて、各組の前記可動支持部と前記固定支持部の間にて複数本の前記可動電極子と複数本の前記固定電極子とが前記第2の方向に間隔を空けて交互に配列されており、
前記可動電極部の前記第1の方向への移動により、各可動電極子と各固定電極子間の対向面積の変化に基づく静電容量変化を検出可能としており、
静止状態において、隣り合う前記組の前記可動支持部と前記固定支持部との間における前記第1の方向への間隔をL3とし、前記可動電極子及び前記固定電極子の前記第2の方向への幅寸法をT1とし、前記可動電極子が隣り合う前記組の前記固定支持部へ近づく方向に移動したときの最大の移動可能距離をL4としたとき、(L3−L4)2×T1が4(μm3)以上であることを特徴とするMEMSセンサ。
【請求項4】
第1検出部と第2検出部とを有し、各検出部の夫々に、前記可動電極部及び前記固定電極部を備え、
前記可動電極子と前記固定電極子との前記第1の方向への延出方向が、前記第1検出部と前記第2検出部とで逆にされており、前記第1検出部により得られた静電容量変化と、前記第2検出部により得られた静電容量変化により差動出力を得ることができる請求項1ないし3のいずれか1項に記載のMEMSセンサ。
【請求項5】
前記第1検出部及び前記第2検出部の夫々が、複数の検出領域に区分されており、各検出領域の夫々に、前記可動電極部及び前記固定電極部を備える請求項4記載のMEMSセンサ。
【請求項6】
前記可動電極部を備える可動体とバネ部を介して連結されたアンカ部を備え、前記可動体と前記アンカ部との間には、静止状態から前記可動体の前記第1の方向への移動可能な寸法を規制するギャップが形成されており、
前記バネ部は前記可動体の第2の方向への振動を抑制するように、前記アンカ部と前記可動体との間で前記第2の方向に延出するとともに折り返して形成されている請求項1ないし5のいずれか1項に記載のMEMSセンサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate


【公開番号】特開2013−7743(P2013−7743A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2012−115792(P2012−115792)
【出願日】平成24年5月21日(2012.5.21)
【出願人】(000010098)アルプス電気株式会社 (4,263)
【Fターム(参考)】