説明

Fターム[2F068DD12]の内容

音響的手段による測長装置 (5,715) | 目的 (546) | 精度向上 (194)

Fターム[2F068DD12]に分類される特許

81 - 100 / 194


【課題】ガス配管等、地中や建築躯体内等に埋設された配管の位置探査に好適な埋設配管探査装置及びその方法を提供する。
【解決手段】音波発信装置2から発信される音波は、周波数帯400〜600Hz、周期0.5秒を以って連続的に変化するものである。音響合成部2bにおいて合成される上記音波信号は、増幅部2cにおいて増幅され、スピーカ2aから管内に発信される。受信装置3側では、予め埋設位置と予測される場所の地表面にピックアップ3aを置き、管内から地表面に伝わる音波振動を探査する。具体的には、推定埋設位置周囲をピックアップ3aでスキャンして、表示部3eのレベル表示が最高値を示す位置を埋設位置と特定する。当該位置を道路にマークするとともに、マップに落とし込む。この工程を順次、道路上の所定の間隔で行うことにより、全長にわたり埋設位置を把握することができる。
(もっと読む)


【課題】
雑音に強く遠方まで音波を届かせることが可能であり、波形の減衰を防いで正確に管長を測定する。
【解決手段】
測定部11と測定管12を有する測定機構1を配管3に接続した状態で、測定管内にハウリングが発生するように配置した、マイクロホン103から発せられた受音信号をスピーカ102より受信する。スピーカ102とマイクロホン103による大きな振幅の音波が配管3内に発生し、定在波のペクトルが検出されるまで信号発生部104で発生する信号の周波数を変更制御する。この時の、管内の温度データと定在波のピーク周波数を用いて、測定装置2の制御部21で所定の式に基いて管長を計算する。 (もっと読む)


【課題】 正確な推進距離を計測することができる空気伝播音式距離計測方法及び空気伝播音式距離計を提供する。
【解決手段】 配管1の発音端から発した音波が受音端に届くまでの時間を測定し、この測定された時間に音速をかけて距離を計測する空気伝播音式距離計において、前記発音端から受音端までの途中に温度センサ6を配置して、前記音速の補正を行う。 (もっと読む)


【課題】屋外で使用でき正確に測定可能な携帯型の身長測定装置を実現する。
【解決手段】携帯型の身長測定装置であって、装置から床面までの距離を測る第1の超音波センサと、被測定者の胴体までの距離を測る第2の超音波センサと、被測定者の頭部のほぼ先端までの距離を測る第3の超音波センサと、3つの測距情報を用いて被測定者の身長情報を出力する演算処理手段と、超音波センサからの信号を取り込むタイミングを規定するタイミング手段を具える。被測定者は、装置を手に持ち、測定中に鉛直方向に移動させ、第3の超音波センサが被測定者の頭部のほぼ先端を検出した時点において各超音波センサからの出力信号を取り込み、演算処理手段は取り込まれた3つの測距情報に基づいて被測定者の身長情報を得る。頭部のほぼ先端から頭頂までの距離の平均値が性別等に応じて装置に入力されており、この平均値が加算されてより正確な身長を測定できる。 (もっと読む)


【課題】被検査管の肉厚を超音波を出射して計測する場合に、被検査管内壁と超音波探蝕子間の付着物の巻き込みをなくして検査精度の低下を防止すると共に、被検査管のテーパ部でも精度良い計測を可能にする。
【解決手段】超音波を出射する検査ヘッドを被検査管内に挿入し、超音波を被検査管の内壁に向けて出射して被検査管の肉厚を測定する方法において、被検査管1内で超音波探蝕子23を内臓した複数の接触体15を被検査管1の周方向(矢印e方向)に分散配置して被検査管1の内壁1dに当接させ、その状態で該接触体15を被検査管1の周方向に部分角だけ往復動させながら被検査管1の内壁1aに超音波を出射して被検査管1の肉厚tを測定する。 (もっと読む)


【課題】超音波照射方向で複数の界面が交差する測定対象物に対しても、高精度な超音波測定方法、電子部品製造方法、及び、半導体パッケージを提供する。
【解決手段】測定対象物内の複数の界面でそれぞれ反射した超音波の波形信号を受信し、受信した波形信号の振幅に基づいて測定対象物の内部の基準界面での反射波の波形信号を検出し、基準界面での反射波の波形信号を基に測定対象界面の接合状態を評価する。 (もっと読む)


【課題】長距離を移動する移動体の位置を精度良く検出できる位置検出システムを提供する。
【解決手段】両面に反射面が形成された反射板6が、クレーン本体2の移動経路に沿って、間隔が全て異なるようにして複数配置される。反射板支持フレーム5に内蔵される姿勢状態検出装置は、各反射板6の姿勢状態を検出する。測距装置3は、クレーン本体2と共に移動し、移動経路における前後方向に測定波を出射し、各方向について、反射板6によって反射された測定波の反射波を検出することで、当該反射板6までの距離を計測する。制御装置7は、測距装置3の計測結果と、姿勢状態検出装置の検出結果と、に基づいて、クレーン本体2の現在位置を求める。反射板6は、クレーン本体2が接近した際、測定波を反射可能な姿勢からクレーン本体2の通過を妨げない姿勢に切り替わる。 (もっと読む)


【課題】超音波センサ計測を高精度化させたい。
【解決手段】第1取得部52は、送信用センサ14から送信すべきパルス状のチャープ信号を参照信号206として取得する。第2取得部54は、送信用センサ14から送信された後、送信用センサ14と受信用センサ18との間に設置された測定物16を経由して、受信用センサ18において受信されたパルス状のチャープ信号を受信信号204として取得する。測定部56は、第1取得部52において取得したパルス状のチャープ信号のピーク位置と、第2取得部54において取得したパルス状のチャープ信号のピーク位置との差異をもとに、送信用センサ14から受信用センサ18へ至る測定物16の距離を測定する。 (もっと読む)


【課題】機械構成要素を測定するのに使用する測定装置を組立てる方法を提供する。
【解決手段】本方法は、三次元座標測定機(CMM)を準備するステップを含む。本方法はまた、超音波検査(UT)機能及びCMM機能を組合せて検査プローブを形成するステップを含む。検査プローブは、該検査プローブがCMM機能を使用して機械構成要素の外部境界を測定しかつほぼ同時にUT機能を使用して該機械構成要素の内部境界を測定するようにCMM上に取付けられる。 (もっと読む)


【課題】メタル層を除去することなく、簡単に且つ正確に炉底耐火物の侵食量を測定することができ、適性な運転計画を立てることができる溶融炉の炉底耐火物浸食検知方法を提供する。
【解決手段】炉内に投入された被処理物を溶融処理することにより、炉底にスラグ層22と、その下方にメタル層23とが堆積された溶融炉10にて、炉底耐火物18の侵食量を測定する溶融炉の炉底耐火物浸食検知方法において、予めスラグ温度−炉底耐火物温度の相関関係と、前記炉底耐火物の侵食速度式を求めておき、溶融炉の運転中に、前記スラグ層のスラグ温度を計測し、該計測されたスラグ温度から前記スラグ温度−炉底耐火物温度の相関関係に基づいて耐火物温度を推定し、該推定した耐火物温度から前記侵食速度式を用いて炉底耐火物の侵食量を算出し、この侵食量に基づいて溶融炉の運転計画を修正する。 (もっと読む)


【課題】簡単な構造で小型であり、可搬性に優れ、短時間で正確な表面粗さの測定が可能な超音波表面粗さ測定方法と装置を提供する。
【解決手段】固体部材12の表面に接触され超音波を送信する送信機14と、固体部材12の表面を伝播した超音波を受信する受信機16と、送信機14と受信機16とを一定間隔離して一体的に保持した本体部20とを備える。超音波が固体部材12の表面を伝播する伝播時間を測定し、既知の表面粗さと伝搬時間との関係から、伝搬時間を基に固体部材12の表面粗さを算出する。 (もっと読む)


本発明は、多層構造の材料の厚みを測定するための方法に関する。この方法は、1つ又は複数の超音波変換器5を用いて、異なる周波数を含む1つ又は複数の超音波信号を2つ以上の材料1、2から成る多層構造内に送信すること、使用中の周波数においてその音響特性が異なる材料を測定すること、1つ又は複数の超音波変換器を用いて、多層構造の前面及び背面から反射される超音波信号を測定すること、並びに反射された超音波信号から多層構造内の材料の厚みを求めることを含む。 (もっと読む)


【課題】本発明の距離測定装置の目的は、一般的なスピーカとマイクを用いた場合や雑音環境下でも高精度な距離推定を実現することである。
【解決手段】本発明の距離測定装置は、信号発生部、生成信号可聴音除去フィルタ部、マイク信号可聴音除去フィルタ部、インパルス応答計算部、ピーク検出部を備え、スピーカとマイクを用いて距離を測定する。生成信号可聴音除去フィルタ部は、信号発生部が生成した信号から可聴音成分を除去し、出力する。マイク信号可聴音除去フィルタ部は、マイクからの信号から可聴音成分を除去する。インパルス応答計算部は、生成信号可聴音除去フィルタ部の出力信号とマイク信号可聴音除去フィルタ部の出力信号からインパルス応答を求める。ピーク検出部は、インパルス応答計算部の出力からピークを検出し、生成信号可聴音除去フィルタ部から信号が出力されてからピークまでの時間を求め、距離情報を求める。 (もっと読む)


【課題】肉厚測定用センサ検知部の肉厚測定位置をマーキングするために用いられるマーキング用テンプレートを提供する。
【解決手段】少なくとも2箇所以上切れ込まれた長溝12と、被測定物を測定するセンサ検知部の大きさに対応した大きさに開口された円穴11とを備えたマーキング用テンプレート10を提供する。上記構成により、所定の肉厚測定位置の中心に上記円穴11を当てて上記長溝12を介して配管表面1上に直線形状のマーク3を施せば、当該マーク3の延長線上に交わる交点を中心として、所定の肉厚測定位置を一意に特定することが可能となる。そのため、上記所定の肉厚測定位置に、円状のマーク5、超音波接触媒質などを塗布したり拭き取ったりする作業を何度も行なっても、前回肉厚測定した位置とズレが生じることなく、精度の高い肉厚測定結果を得ることが可能となる。 (もっと読む)


【課題】 超音波を用いた簡単な構成により、容器板厚を容易にかつ高精度に測定できる超音波板厚測定装置を提供する。
【解決手段】 超音波板厚測定装置1においては、周波数を複数の設定値に変更しつつ超音波送信部2により被測定系に超音波を送信し、各周波数にて超音波受信部2による残響振動波形の減衰レベルを測定する。そして、各周波数における残響振動波形の減衰レベル測定結果の集合に基づき、当該測定の範囲内にて減衰レベルが極小化される周波数を板厚反映周波数として特定し、予め記憶されている板厚/周波数関係を参照して、特定された板厚反映周波数に対応する板厚を測定実施位置における容器190の壁部板厚として算出する。 (もっと読む)


【課題】
雑音に強く遠方まで音波を届かせることが可能であり、波形の減衰を防いで正確に管長を測定する。
【解決手段】
可動機構部11と測定管12を有する測定機構1を配管3に接続した状態で、測定管内にハウリングが発生するように配置した、マイクロホン103から発せられた受音信号をスピーカ102より受信する。スピーカ102とマイクロホン103による大きな振幅の音波が配管3内に発生し、駆動部104を制御して定在波スペクトルが検出される時点まで、スピーカ102とマイクロホン103の間隔を一定に保ちつつ、これら2つを同時に調整する。この時の、配管に関する温度データと定在波のピーク周波数を用いて、測定装置2の制御部21で所定の式に基づき管長を計算する。 (もっと読む)


【課題】埋設コンクリート基礎の形状寸法測定に利用する振動モードと埋設コンクリート基礎に発生するその他の振動モードとの区別を明瞭にしてノイズを低減し、測定精度を向上させる。
【解決手段】コンクリート基礎2の軸周りに捩れ振動が起きるように加振して捩れ振動の加速度を検出し、その加速度検出値の複数の共振振動数fを抽出し、その抽出した複数の共振振動数fと、捩れ振動の共振振動数fとコンクリート基礎2の各部の寸法との関係を表した共振条件式に基づいて、コンクリート基礎2の寸法を求める。 (もっと読む)


【課題】コンクリート中に磁性体が含まれていても「かぶり厚さ」を検査することができると共に、コンクリート構造物の形状の影響や鉄筋相互の影響を受けることなくコンクリートの強度を高精度で検査することができるコンクリート構造物品質検査方法及びコンクリート構造物品質検査装置を得る。
【解決手段】センサ素子10Aに印加した発振信号と該発振信号をセンサ素子10Bで受振して得られた受振信号との位相差と、センサ素子10A、10B間距離とに基づいて伝播速度を求める。そして、発振素子11に印加した発振信号と該発振信号をセンサ素子10Cで受振して得られた受振信号との位相差と、前記伝播速度とから「かぶり厚さ」を求める。また、各センサ素子10A〜10Cに設けた温度センサ素子106によってコンクリート21の温度を検出し、一定時間毎に積算した積算温度値からコンクリート21の強度を推定する。 (もっと読む)


【課題】膜厚以外の情報を極力排除した状態で膜厚情報を取得し、膜厚情報以外の情報も精度よく計測可能な超音波測定方法を提供する。
【解決手段】第1物体と第2物体の間の膜厚、油膜への気泡混入、第1物体と第2物体の直接接触を測定するものであり、第1物体に取り付ける送信用の第1探触子11と、第2物体に取り付ける受信用の第2探触子12と、を用いて、第1探触子11から油膜に向けて超音波を送信し、油膜を透過した波を第2探触子12により受信し、第2探触子12により受信した波のうち、油膜を透過して最初に第2探触子12に到達した第1波で膜厚の測定を行い、第2探触子12と第2物体との界面で反射した波が油膜との界面で再反射することで第2探触子12に到達した第2波と、第2波と同じように進行した波が再び第2探触子12と第2物体との界面で反射し、潤滑膜との界面で再反射することで第2探触子12に到達した第3波とで、気泡の混入や直接接触の測定を行う。 (もっと読む)


【課題】迅速に且つ精度よく有害なひび割れを検知する。
【解決手段】コンクリートWの表面のひび割れC1、C2を挟んだ一方側で発振手段1により振動波を発振し、他方側でコンクリートW内部を伝播してくる前記振動波を受振して、コンクリート表面の有害な深さのひび割れを測定する。ひび割れの有害な深さの基準をd(コンクリートのかぶり厚さに等しい値)、前記振動波のコンクリート表面における伝達速度をVとするとき、ひび割れを挟んだ一方側で次の周波数fの振動波を発振する。
f≒V/4d
そして、ひび割れを挟んだ他方側で受振した振動波の振幅の減衰の度合を測定することで、ひび割れが基準d以上の深さのものか基準d以下のものかを評価する。 (もっと読む)


81 - 100 / 194