説明

Fターム[2G001FA06]の内容

Fターム[2G001FA06]に分類される特許

121 - 140 / 669


【課題】複数本のX線ラインセンサを被検査物の搬送方向に備える構成であっても、各X線ラインセンサからの検出信号から生成される被検査物の画像の境界を一致させることができるX線異物検出装置およびX線異物検出方法を提供すること。
【解決手段】搬送路21上を搬送される被検査物WにX線を照射するX線発生器9と、被検査物Wの搬送方向に複数配置され、被検査物Wを透過するX線に応じた検出信号を出力するX線ラインセンサと、X線ラインセンサからの検出信号が入力され、X線ラインセンサの間隔および被検査物Wの搬送速度に基づいて、搬送方向の上流側のX線ラインセンサほどX線ラインセンサの検出信号を遅延させて出力する遅延部44と、遅延部44からの検出信号を合成して被検査物Wに対応する画像データとして出力する合成部46と、合成部が出力する画像データに基づいて被検査物W中の異物の有無を判定する判定部48と、を備えた。 (もっと読む)


【課題】高解像度かつS/N特性に優れた画像に基づいて物品の検査を行うことができるX線検査装置を提供する。
【解決手段】第1X線センサ220aと第2X線センサ220bとは、互いに水平に並んで配設される。第1X線センサ220aは、フォトダイオードで構成され、例えばSi(珪素)を含んでなる検出部223を有する。検出部223は主に可視光を検出するとともにX線210を検出する。第2X線センサ220bは、シンチレータ221およびフォトダイオード222により構成される。シンチレータ221は、検出したX線210を光に変換する変換層224を備える。フォトダイオード222は、第1X線センサ220aと同様に、Siを含んでなる検出部225を備える。 (もっと読む)


【課題】幾何条件を変更した後に最初に断層撮影をする場合に、スキャン開始から断面像の完成までの時間を短くできるCT装置を提供する。
【解決手段】透過像の回転中心位置を求め記憶する回転中心求出部9eと、スキャン制御部9dと回転中心求出部9eと再構成部9fとを制御して、被検体5に対し第一のスキャンを実施して、第一のスキャンデータから回転中心位置の求出と記憶を行い、引き続き、被検体5に対し第二のスキャンを実施して第二のスキャンデータを記憶しつつ、第二のスキャンデータから順次、回転中心位置を用いて再構成処理を前記第二のスキャンと並行して行い、被検体5の断面像を再構成する撮影制御部9cを有するCT装置。 (もっと読む)


【解決課題】散乱法や遮光法における気泡による計測誤差、異種元素によるカウントロス、乳化による計測不能などの問題を解決し、低コストで簡易に、流体中の微粒子の数量及び粒子径などを正確に測定できる方法及び装置を提供することを目的とする。
【解決手段】流体を流すフローセル10と、フローセル10の側面からX線を照射するX線源20と、X線源20から照射されたX線が流体中の微粒子によって減弱された透過X線量を検出するX線検出器30と、X線源から照射されたX線により流体中の微粒子によって放出される蛍光X線を検出する蛍光X線検出器40と、透過X線量及び蛍光X線量の各基準量からの変動量に基づいて流体中の微粒子及び気泡を識別して微粒子の量及び粒径を算出する演算処理装置と、を具備する流体中微粒子の検出装置。 (もっと読む)


【課題】
レビューSEMを用いて回路パターンを定点観察する場合に、観察する回路パターンのばらつきが大きい場合でも、虚報の発生を抑えて安定した検査を行えるようにする。
【解決手段】
レビューSEMを用いて所定の回路パターンを順次撮像してえたSEM画像を記憶手段に記憶し、この記憶したSEM画像の中から設定した条件に適合する画像を選択し平均化して平均画像(GP画像)を作成し、このGP画像を用いたGP比較によりパターン検査を行うことにより、回路パターンのばらつきが大きい場合でも虚報の発生をおさえた検査を可能にした。 (もっと読む)


【課題】試料の径が大きくなっても、試料に対応した大面積の面状のX線検出器を、X線トポグラフの分解能を低下させること無く、使用できるようにする。また、試料の径が大きくなったことに対応して大面積の面状のX線検出器を使用することになった場合でも、X線検出部の全体形状を大きくしなくて済むようにする。
【解決手段】試料11を線状のX線で走査したときに試料11で回折したX線をX線検出器28によって検出して平面的な回折像を得るX線トポグラフィ装置である。X線検出器28は試料11よりも大きい面積を有する円筒形状のイメージングプレート28であり、線状のX線の走査移動Fに関連させてイメージングプレート28を円筒形状の中心軸X0を中心としてα回転させる。円筒形状の中心軸X0は線状のX線の走査移動方向Fと直角方向に延在する。 (もっと読む)


セキュリティ・チェックポイントで例えば手荷物容器の内容を点検するために、X線システムは、容器のX線透過スペクトルを決定して、スペクトルを参照データベースの周知の禁制品材料のスペクトルと比較する。異なるX線システム間のわずかな変化は、参照データベースが個々のX線システムに適していることを必要とする。本発明によれば、2つのX線システムA及びBは、システムAからシステムBへの測定されたデータのコンバートのための伝達関数を産出するステップウェッジを利用して相互に校正される。 (もっと読む)


【課題】評価対象パターンの画像を高速で処理するとともに、コンピュータ資源の効率を向上させる。
【解決手段】CD−SEM300により撮像された評価対象パターンの一連の画像Img1〜Imgnを一枚当たりTiの時間で取り込む画像取込装置10と、一連の画像Img1〜Imgnを一枚当たりTpの時間で処理して評価対象パターンの評価結果を出力するクラスタノードCN1〜CNMと、クラスタノードCN1〜CNMが接続されてこれらを制御するメインノードMNを備える分散コンピューティングシステム1において、時間TiおよびTpを測定して一連の画像Img1〜Imgnの取得時間とその処理時間とが一致するように、クラスタノードCN1〜CNm(m≦M)を推定して一連の画像処理に割り当てる。 (もっと読む)


【課題】従来の三元散布図では表現できなかった3元素の強度の絶対値情報を併せて表示することにより、相解析の効率化や精度向上を図る。
【解決手段】
3元素の強度を強度和で規格化した相対値を表す軸(A軸、B軸、C軸)を正三角形の三辺に割り当て、その三角形が載る平面に直交する方向に3元素の強度の和を表す軸(D軸)を追加した、三角柱状の3次元空間を、マッピング分析において1箇所の微小領域で得られたデータ点をプロットする空間として設定する。そして、この3次元的なグラフを平面化して表示部の画面上に描画する。3次元的なグラフを見る方向を任意に変化可能とすることにより、従来の三元散布図上でのデータ点の位置も把握可能であるとともに、三元素の強度の絶対値も容易に知ることができる。 (もっと読む)


【課題】運動する被検査物の内部を簡単に透視できる放射線透視装置を提供することを目的とする。
【解決手段】放射線透視装置が、放射線照射部から離間した被検査物に放射線を照射して被検査物の内部を透視する放射線透視装置であって、被検査物の位置を検出する位置検出手段と、該位置検出手段が、検出した被検査物の位置に向けて放射線を照射するように放射線照射部を制御する制御手段とを具備する。 (もっと読む)


【課題】蛍光X線スペクトルによる組成分析を行う際に、簡易な手順で精度よく組成分析を行う。
【解決手段】第1の元素xおよび第2の元素yを含む混合試料の蛍光X線スペクトルStにおいて、第1の元素xの蛍光X線の積分強度が第1の領域A>第2の領域B、第2の元素yの蛍光X線の積分強度が第2の領域B>第1の領域Aとなるように設定された第1の領域Aおよび第2の領域Bの積分強度Atおよび積分強度Btをそれぞれ算出し(ステップS106)、積分強度Btに基づき第2の領域Bにおける第2の元素yの強度分By/tの値を設定し、当該強度分By/tおよび第2の元素yの蛍光X線スペクトルSyの第1の領域Aおよび第2の領域Bの強度比(Ay/By)に基づき、第1の領域Aの第2の元素yの強度分Ay/tを算出し、第1の領域Aの第1の元素xの強度分Ax/tを、Ax/t=At−Ay/tから算出する(ステップS108)。 (もっと読む)


本発明は、試料のX線回折(XRD)解析及び/又はX線蛍光(XRF)解析を実行する方法であって、X線源からのX線を試料に照射し、走査波長選択器と波長選択器により選択されたX線を検出するX線検出器とを備えるXRD・XRF複合検出装置を提供し、走査波長選択器を使用して試料により回折されるX線の固定波長を選択してX線検出器を使用して試料での1つ又は複数の値の回折角φでの選択された固定波長のX線を検出することにより試料のXRD解析を実行し、及び/又は、走査波長選択器を使用して試料により発せられたX線の波長を走査してX線検出器を使用して走査された波長のX線を検出することにより試料のXRF解析を実行する方法を提供する。試料のXRD解析及びXRF解析の両方を実行する装置であって、走査波長選択器と、XRD・XRF複合検出装置を備える装置も提供される。 (もっと読む)


【課題】撮像対象被検体の任意の指定された特定領域のみ高い空間分解能で撮像可能であるとともに、簡便に高精度で画像合成が可能な産業用X線CT装置および撮像方法を提供することにある。
【解決手段】制御手段20は、X線焦点サイズ調整手段9と検出器ピクセル積算処理手段5とを制御して、被検体全体を粗い空間分解能で撮像した画像と、前記被検体の一部に指定された領域に対して、細かい分解能で撮像した画像を得る。合成画像作成手段4Aは、全体領域の粗い画像データの中に特定の指定領域の細かい画像データを組み込み合成させて一体画像データを合成する。 (もっと読む)


本発明は、比較的に柔らかいパーツおよび比較的に硬いパーツからなる構造の数値的三次元モデルを形成するための方法に関する。この方法は、透過性放射線によって相互距離に位置する構造の複数の数値的な断面図を形成し、その放射線に対する吸収を表すこと、数値的な断面図をメモリ内に記憶すること、そしてメモリ内に記憶された数値的な断面図に基づいて構造の数値的三次元モデルを構築することからなり、少なくとも断面図の形成中、構造の比較的に柔らかいパーツの少なくとも一部には、比較的に柔らかいパーツのそれと実質的に異なる放射線に対する吸収係数を持つ造影剤の層が設けられることを特徴とする。
(もっと読む)


【課題】
レビューSEMにおいて、目標とする欠陥を間違いなく検査する。
【解決手段】
欠陥検査装置が検出した欠陥から目的とする欠陥を選定し、その座標を取得し、レビューSEMの視野を目的とする欠陥の座標に合わせてSEM像を撮像し、SEM像中の欠陥を画面内の座標と共に検出し、欠陥検査装置が検出した欠陥と対応するSEM像中の欠陥を重ねるための座標調整値を求め、目的とする欠陥の調整した座標に合わせて、拡大SEM像を撮像する。 (もっと読む)


【課題】被検査物の形状異常を容易かつ迅速な方法で判断することができるX線検査装置を提供する。
【解決手段】形状異常判断部は、一の領域における濃淡情報として変化線KH1と、他の領域における濃淡情報として変化線KH2とを比較することにより、被検査物の形状異常を判断する。具体的には、同一の検出位置における変化線KH1の濃淡値と変化線KH2の濃淡値とが比較される。例えば、検出位置A1における変化線KH1の濃淡値K1と変化線KH2の濃淡値K2との差S1が所定範囲内か否かが形状異常判断部により判断される。この場合、差S1が所定範囲を超えるものであれば、形状異常が存在すると判断される。 (もっと読む)


【課題】試料の組成が異なる場合でも蛍光X線分析を利用して試料中の測定対象物の濃度を計測することができる濃度計測方法、及び蛍光X線分析装置を提供する。
【解決手段】本発明では、硫黄等の測定対象成分を含む液体燃料等の試料に対して蛍光X線分析を行い、蛍光X線分析により取得したスペクトルから求められる測定対象成分の蛍光X線強度から、散乱X線及びシステムピークによるバックグラウンドを減算し、バックグラウンドを減算した蛍光X線強度に対し、試料の組成に起因する蛍光X線強度変化の補正を行う。バックグラウンドを減算した蛍光X線強度に対して補正を行った後の値と測定対象成分との関係を示す検量線を予め定めておき、検量線に基づいて、試料中の測定対象成分の濃度を計算する。 (もっと読む)


【課題】摩擦材の構成をより正確に解析可能な技術を提供する。
【解決手段】前記摩擦材を構成する材料とは異なる性質を有する所定の液体を、前記摩擦材の空隙に含ませる含浸ステップと、前記所定の液体を含む前記摩擦材からなる試料に対して所定のX線を照射し、前記空隙に存在する前記所定の液体の反応から、少なくとも前記空隙の位置に関する情報と形状に関する情報とのうち少なくともいずれか一方を含む摩擦材の構成情報を取得する構成情報取得ステップと、前記構成情報取得ステップで取得された前記構成情報に基づいて画像を生成する画像生成ステップと、を備える。 (もっと読む)


【課題】
観察座標を算出するのに不適当な,観察装置で検出するのが困難な欠陥(例えば,膜下欠陥など)が多発する品種・工程のウェーハにおいて,安定かつ高スループットに検査装置と観察装置の座標系のずれを補正する。
【解決手段】
観察装置を,座標変換情報を記憶する記憶手段と、検査装置で検出した複数の欠陥の座標情報を記憶手段に記憶しておいた座標変換情報を用いてそれぞれの欠陥に対応する観察装置上の座標情報に変換する座標情報変換手段と、座標情報変換手段で変換した観察装置上の座標情報に基づいてそれぞれの欠陥を撮像する撮像手段と、撮像手段で取得した画像から抽出した欠陥の座標情報と座標変換手段で変換したそれぞれの欠陥の座標情報とから記憶手段に記憶しておいた座標変換情報を修正する座標情報修正手段とを備えて構成した。 (もっと読む)


【課題】測定値からノイズの影響を除去する。
【解決手段】測定対象物上に複数の測定点P1〜PNを設定し、測定点P1〜PNの並ぶ方向に沿って振動させながら測定ビームを照射する。測定ビームの振幅Wの範囲にM個の測定点P4〜P8が含まれているとすると、M個の測定点P4〜P8から得られる2M個の測定値f1〜f2Mから、下記(7a)(7b)式、


に従って、フーリエ係数b1(振幅が測定ビーム径の1/2の場合)、又はb2(振幅が測定ビーム径と等しい場合)を求め各測定点のフーリエ係数b1又はb2の推移を求め、微小領域の分析を行なう。 (もっと読む)


121 - 140 / 669