説明

ガスバリア性フィルムおよびその製造方法

【課題】優れた基材とガスバリア層との密着性を有し、インラインでの処理が可能な高い生産能率のガスバリア性フィルムの製造方法を提供する。
【解決手段】基材100上に中間密着層101とガスバリア層102とを形成したガスバリア性フィルムの製造方法であって、基材が走行する金属ロール電極と、対向電極としてS・N極一対以上の磁石を設置した接地電極とを備え、両電極間の最短距離を特定範囲としたRIE処理装置を用い、前記電極間に、酸化用ガスを含む処理ガスと、気化した有機シリコン化合物を導入して、処理空間内の圧力を0.5〜20Paとして、30kHz以上4MHz以下の高周波を、特定値以上となるように印加し、基材表面に厚さ3nm以上の中間密着層を形成する工程と、中間密着層面上にガスバリア層を形成する工程とを具備する製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスバリア性フィルムおよびその製造方法に関し、例えば、食品や医薬品等の包装分野、太陽電池の保護シートに用いられるガスバリアを有した機能性フィルムおよびその製造方法に関するものである。
【背景技術】
【0002】
水蒸気や酸素のガスバリア性能は、従来の食品や医薬品等の包装分野の用途に加えて、有機ELディスプレイや薄膜太陽電池の保護シート用途として、最近、大きく注目されている。中でも、太陽電池の保護シートは、太陽電池モジュールの起電部分であるシリコン薄膜の湿度による劣化を防止するために、太陽電池の裏側に配置されており、酸素や水蒸気のガスを外気と遮断すると同時に、屋外の苛酷環境化で使用しても、外観劣化の少ない耐久性能が求められている。
【0003】
また、従来から、食品や医薬品類あるいは、ハードディスクや半導体モジュールの包装に用いられる包装材料においても、内容物を保護する用途で必要とされてきた。例えば、食品包装においては、酸化や変質を抑制し、味や鮮度を保持することが必要になる。また無菌状態での取り扱いが必要とされる医薬品類においては、有効成分の変質を抑制し、効能を維持することが求められる。これらの内容物の品質を保護する際に、酸素や水蒸気、その他内容物を変質させる気体を遮断するガスバリア性、そして、それぞれの使用環境で、劣化しない耐久性能を備える包装材料が求められている。
【0004】
ガスバリア性フィルムとしては、プラスチックフィルム基材表面に、酸化珪素、酸化アルミニウム等からなる金属酸化膜を形成した透明性の高いガスバリア性フィルムが、一般的に数多く、実用化されている。特許文献1は、高分子樹脂フィルム上に炭化酸化珪素を有するガスバリア性フィルムを提案している。特許文献2は、透明プラスチック基体上に、非晶質の酸化アルミニウム薄膜を設けたガスバリア性フィルムを提案している。ところが、プラスチック基体にこれらの蒸着膜を単純に積層しても、基材と蒸着層との密着性が十分でなく、レトルト処理やボイル処理、耐環境試験等により、基材と蒸着層間で簡単に剥離してしまうことも少なくない。
【0005】
そのため、基材と蒸着層の密着性を上げるために、基材に、プラズマ処理、火炎処理、コロナ処理等の一般的な表面処理を基材表面に施す方法や、アンカーコート層をウエット法によりコーティングする方法が多く提案されている(特許文献3・4・5)。減圧プラズマ処理などの表面処理方法は、蒸着層成膜プロセスとインラインでの処理を可能にできる場合もある。しかし、未処理基材に比べて、密着を強くすることは可能であるが、絶対的なものではなく、十分な密着が得られない場合が多い。一方で、アンカーコート層のコーティングは、処方次第で、大変強固な密着を得ることは出来るが、処理工程が増えることにより、生産能率が落ちるため、インラインで、強固な密着力を得られる密着方法が望まれている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−179104号公報
【特許文献2】特開昭62−179935号公報
【特許文献3】特開2006−116703号公報
【特許文献4】特開2006−205533号公報
【特許文献5】特開2006−321194号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、上記問題を解決するために、優れた基材とガスバリア層との密着性を有し、インラインでの処理が可能な高い生産能率のガスバリア性フィルムの製造方法および該方法により製造されたガスバリア性フィルムを提供することを目的とする。
【課題を解決するための手段】
【0008】
請求項1に記載の発明は、ウェブ状の基材上に中間密着層とガスバリア層とをこの順に形成したガスバリア性フィルムの製造方法であって、
基材が走行する高周波印加電極である金属ロール電極と、
対向電極として、面上に、S・N極一対以上の磁石を設置した、円弧状あるいは多面状により前記金属ロール電極に沿った形状にて配置された接地電極と、を備え、
両電極間を結ぶ最短距離をdminとした時、10mm≦dmin≦100mmで設置したリアクティブイオンエッチング(RIE)処理装置を用い、
前記電極間に、酸化用ガスを含む、窒素、ヘリウムおよびアルゴンから選択された1種類以上のガスと、気化した有機シリコン化合物を導入して、処理空間内の圧力を0.5Pa以上20Pa以下として、30kHz以上4MHz以下の高周波を、前記金属ロール電極に投入する電力(kW)とプラズマ照射部分の面積(m)の比が、4.0kW/m以上となるように電力を印加することで、電極間に高密度なプラズマを発生させて、前記金属ロール電極上を走行する基材表面に、プラズマ化学気相蒸着(PECVD)法により、厚さ3nm以上の中間密着層を形成する工程と、
中間密着層面上に、ドライコーティング法により、ガスバリア層を形成する工程と
を具備することを特徴とするガスバリア性フィルムの製造方法である。
【0009】
請求項2に記載の発明は、前記中間密着層とガスバリア層とを、インラインで連続して処理することを特徴とする請求項1に記載のガスバリア性フィルムの製造方法である。
【0010】
請求項3に記載の発明は、前記酸化用ガスとして、酸素、水蒸気、二酸化炭素、一酸化炭素、オゾンからなるガスを単体あるいは2種類以上混合して使用して、処理することを特徴とする請求項1または2に記載のガスバリア性フィルムの製造方法である。
【0011】
請求項4に記載の発明は、前記有機シリコン化合物が、前記金属ロール電極と前記接地電極との間で、前記基材の走行方向に沿った複数の導入管によって導入され、前記複数の導入管が電気的に浮遊した状態であることを特徴とする請求項1から3のいずれか一項に記載のガスバリア性フィルムの製造方法である。
【0012】
請求項5に記載の発明は、前記有機シリコン化合物が、ヘキサメチルジシロキサン、テトラエチルシロキサン、テトラメチルジシロキサン、テトラメチルシクロテトラシロキサン、トリエチルシラン、トリメチルシラン、テトラメチルシラン、テトラエトキシシラン、テトラメトキシシラン、ヘキサメチルジシラザンおよびテトラメチルジシラザンから選択される1種類以上のガスであることを特徴とする請求項1から4のいずれか一項に記載のガスバリア性フィルムの製造方法である。
【0013】
請求項6に記載の発明は、前記中間密着層が、炭化酸化珪素(SiOxCy)からなり、0<x<2.2、0<y<2であることを特徴とする請求項1から5のいずれか一項に記載のガスバリア性フィルムの製造方法である。
【0014】
請求項7に記載の発明は、前記基材としてポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリアミド系フィルムを用いることを特徴とする請求項1から6のいずれか一項に記載のガスバリア性フィルムの製造方法である。
【0015】
請求項8に記載の発明は、請求項1から7のいずれか一項に記載の製造方法によって製造されたガスバリア性フィルムである。
【発明の効果】
【0016】
本発明によれば、優れた基材とガスバリア層との密着性を有し、インラインでの処理が可能な高い生産能率のガスバリア性フィルムの製造方法および該方法により製造されたガスバリア性フィルムを提供することができる。
【0017】
密着性を上げる効果としては、基材とガスバリア層との間に、それぞれと密着性の高いCVD法による酸化珪素系の中間密着層を設けることに由来し、レトルト滅菌処理やボイル処理、プレッシャークッカー試験(PCT)、各種環境耐久試験などの後にも、強固な密着を持続することが可能となる。
【0018】
また、従来、このような強固な中間密着層の作成方法は、ウェットコーティング法によるものであった。本発明によれば、低スペース、高速で処理することを可能にしたCVD法で作成することにより、高速成膜が可能な蒸着と同等の速度で、インラインでの処理を可能とするため、生産性は大幅に向上する。
【図面の簡単な説明】
【0019】
【図1】本発明のガスバリア性フィルムの一例を示す断面図である。
【図2】本発明のガスバリア性フィルムの中間密着層の製造装置の説明図である。
【図3】本発明のガスバリア性フィルムの中間密着層の製造装置の説明図である。
【発明を実施するための形態】
【0020】
以下に、本発明の実施の形態について、説明する。
【0021】
図1は、本発明のガスバリア性フィルムの一例を断面図で示した概略図である。プラスチックフィルム材料からなる基材100の一方の面上に、PECVD法により作成した炭化酸化珪素からなる中間密着層101を介して、蒸着法により作成した酸化珪素からなるガスバリア層102が形成されている構造である。
【0022】
基材のプラスチックフィルム100は、特に制限を受けるものではなく、公知のものを使用することができる。例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)のポリエステル系フィルムが特に、好適であるが、他にも、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系フィルム、ナイロン−6、ナイロン−66等のポリアミド系フィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリアクリルにトリルフィルム、ポリイミドフィルム、セルロース系フィルム等が挙げられる。また、この基材の蒸着層が設けられる面と反対側の表面に、周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤などが使用されていても良い。なかでもポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリアミド系フィルムを用いることが好ましい。
【0023】
基材の厚さに関しても、特に制限を受けるものではなく、中間密着層やガスバリア層を成膜する際の加工性や、更には、後加工性を考慮と、6〜100μmの範囲であることが好ましい。
【0024】
基材100上に、炭化酸化珪素からなる中間密着層101をプラズマ化学気相成長法(PECVD)により、形成する際、その原料ガスとなる有機シリコン化合物としては、ヘキサメチルジシロキサン(HMDSO)、テトラエチルシロキサン、テトラメチルジシロキサン(TMDSO)、テトラメチルシクロテトラシロキサン、トリエチルシラン、トリメチルシラン、テトラメチルシラン(TMS)、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、ヘキサメチルジシラザン、テトラメチルジシラザン等の有機シリコン化合物を選択できる。これらの有機シリコン化合物は、一種類あるいは複数を混合して使用しても良い。これら、特に制限はないが、HMDSOが、安全性、低蒸気圧性、比較的に低価格、反応性が良い等の面で、最も好適な材料である。
【0025】
上記の有機シリコン化合物に加え、例えば酸素、水蒸気、一酸化炭素、二酸化炭素、オゾンからなる酸化用ガスを含む、窒素、ヘリウム、アルゴンからなる1種類以上のガスをプラズマ発生空間に導入する。これらのガスは、あらかじめ混合して、放電空間に送っても良いし、それぞれ、別々に放電空間に送っても良いが、有機シリコン化合物に関しては、処理面全面に、満遍なくガスが行き渡るように、電極間の流れ方向から見て、複数回に分けて、プラズマ空間内に直接導入する方がよい。この時、原料ガスの導入管は、電気的には、浮遊した状態にしておく。
【0026】
中間密着層101の処理室内は、上記のガスを適宜選択して、圧力を0.5Pa以上20Pa以下となるように調整する。PECVDのプロセス的には、圧力が低い方が高密度な膜を形成しやすい。しかし、圧力が0.5Pa未満であると、放電が安定しにくく、安定したサンプルを得ることができない。また、圧力が20Paを超えると、分解しきれないモノマーが膜を形成するため、膜面の平滑性を損ないやすい。また、20Paを超える領域では、接地電極2に設置した磁石による磁気誘導の効果が急激に弱くなる。そのため、1〜10Paの圧力帯で処理を実施するのが好ましい。
【0027】
プラズマ発生電源としては、周波数が、30kHz以上4MHz以下のMF〜RF周波数帯の電源を使用する。電源出力は、高周波印加金属ロール電極に印加する電圧(kV)とプラズマ照射部分の面積(m)の比が、4.0kW/m以上となるように電力を印加する必要がある。これより弱いと、レートの低下および膜質の低下を引き起こし、十分な処理が行うことが出来ない。ここで、プラズマ照射部分とは、図2の太線部分Sのことをいう。
【0028】
この中間密着層101は、炭化酸化珪素からなり、中間密着層として、作用させるため、単層でのガスバリア性能を必要としない。そのため、膜質も、有機シリコン化合物が平滑性を持って、プラスチックフィルム上に形成していれば良い。好ましくは、炭化酸化珪素膜の化学式をSiOxCyとした時、xの範囲が、0<x<2.2、yの範囲が、0<y<2であることにより、密着性の良い中間密着層101を形成することができる。従って、本発明の中間密着層成膜速度は、真空蒸着法同等の高速成膜を可能にする。中間密着層101の厚さは、効果の点から3nm以上であることが好ましく、5nm〜50nmであることがさらに好ましい。
【0029】
中間密着層101上に形成するガスバリア層102について、説明する。無機酸化物からなるガスバリア層は、酸化珪素、酸化アルミニウム、酸化錫、酸化マグネシウム等の単体あるいは混合物をドライコーティング法により形成し、透明性および、酸素、水蒸気等のガスバリア性能を有する層である。中間密着層101が、有機珪素系の化合物であることから、特に、酸化珪素との密着性が良好であり、好適である。
【0030】
ガスバリア層102の厚さは、用いられる無機酸化物の種類・構成により最適な条件は異なり、特に制限はないが、一般的には、5〜300nmの範囲内の厚さが、好ましく用いられる。膜厚が5nm未満であると、膜厚が十分ではなく、ガスバリア層としての機能を十分に果たせない。また、膜厚が300nmを超えると、フレキシビリティを保持することが出来ず、薄膜に亀裂が入りやすくなる。また、生産性も悪くなる。性能と生産性も考慮すると、10−200nmの膜厚がより好ましい。
【0031】
ガスバリア層102を、形成するドライコーティング法は、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを用いることが可能である。但し、生産性を考慮すれば、真空蒸着法が、最適な生産方法である。真空蒸着法の加熱方法としては、電子線加熱方式や抵抗加熱方式、誘導過熱方式のいずれかの方法を用いることが好ましい。また、蒸着膜の緻密性を向上させるために、プラズマやイオンビーム等を用いたアシスト法を採用することも可能である。このようなコーティング処理室の前段に中間密着層処理室を設けることで、インラインで連続して、極めて生産性良く、密着性のよいガスバリア性フィルムを作成することができる。
【0032】
また、無機酸化物からなるガスバリア層102の上に、保護層あるいは、ラミネートなどの後加工適性を向上させるためのオーバーコート層を積層しても構わない。この場合、例えば水溶性高分子を水あるいは水/アルコール混合溶媒で融解させたものに金属アルコキシドを直接あるいはあらかじめ加水分解させるなどの処理を行ったものを混合し、この混合溶液を無機酸化物上に塗布、乾燥して形成することができる。また混合溶液中にシランカップリング剤等を添加使用しても良い。
【0033】
図2、図3は、本発明におけるガスバリア性フィルムの中間密着層の製造装置の一例である。なお該装置は一例であり、本発明はこの装置を用いることに限定されるものではない。
【0034】
ウェブ状の基材が走行する金属ロール電極1は、高周波電源3より、MF〜RF帯の高周波電圧が印加される。金属ロール電極1の温度は、20℃から80℃に調整することが好ましい。その対向電極として、面内に、S・N極一対以上の磁石5a、5bを設置した円弧状あるいは多面状により金属ロール1に沿った形状にて配置された接地電極2を、設置する。図2は、金属ロール電極1の表面とほぼ平行な円弧状の接地電極2を示している。図3は、金属ロール電極1の表面にほぼ追随する形状であるとともに、複数の平板電極201,202,203をその端部で接合した多面状の接地電極2を示している。S・N極一対以上の磁石5a、5bを設置することにより、プラズマの密度が上がり、基材に形成される膜質が向上する。S・N極一対以上の磁石5a、5bの設置箇所としては、例えば、図2、図3に示すように、接地電極2の金属ロール電極1側に、基材の流れ方向に沿って設置する。S・N極一対以上の磁石5a、5bの設置箇所は、図2、図3で示した設置箇所に限定されず、プラズマの密度を上げることができれば、接地電極2のどの面内に設置してもよい。また、磁石5a、5bの形状やS・N極対の個数についても、装置の大きさ、プラズマ密度の程度などによって適宜選択される。
【0035】
両電極間を結ぶ最短距離は、その距離をdminとした時、10mm≦dmin≦100mmで設置する。ガス導入管4は、電極間に満遍なく処理ガスを行き渡らせるため、電極間に基材の走行方向に沿った複数の導入管を配置し、該複数の導入管が電気的に浮遊した状態であることが望ましい。基材であるプラスチックフィルムは、カソード側すなわち金属ロール電極1上を走行しながら、中間密着層101が形成される。基材は、カソード側に設置することで、使用するモノマーの分解を推進し、イオンが基材に効率的に衝突する事で、緻密かつ強固な密着を得ることができる。この基材と電極配置の位置関係は、リアクティブイオンエッチング(RIE)処理と同様であり、RIE処理装置をそのまま応用展開することも可能である。また、中間密着層とガスバリア層とを、インラインで連続して処理することにより、生産効率がさらに高まり好ましい。
【実施例】
【0036】
以下、本発明の実施例を比較例とともに具体的に説明する。
【0037】
<実施例1>
厚さ12μmのポリエチレンテレフタレート(PET)のフィルムの未処理面に、有機シリコン化合物としては、ヘキサメチルジシロキサン(HMDSO)を気化させたガスと酸素を用いて、中間密着層を以下の条件で形成した。また、中間密着層は、図2に示す構成の処理装置を用いた。
【0038】
HMDSO/酸素流量:100sccm/500sccm(総流量)
圧力:5Pa
電源周波数:300kHz、投入電力:2.0kW
プラズマ照射部分の面積:0.075m
ラインスピード:60m/min
接地電極の磁石:有り
dmin:45mm
【0039】
以上の条件で、中間密着層を厚さ15nm作成した後、電子線加熱方式による真空蒸着により厚さ40nmの酸化珪素膜を積層して、ガスバリア性フィルムを作成した。
【0040】
<比較例1>
実施例1において、処理装置の接地電極2面上の磁石を取り除き、厚さ12μmのポリエチレンテレフタレート(PET)のフィルムの未処理面に、有機シリコン化合物としては、ヘキサメチルジシロキサン(HMDSO)を気化させたガスと酸素を用いて、中間密着層を以下の条件で形成した。
【0041】
HMDSO/酸素流量:100sccm/1000sccm(総流量)
圧力:27Pa
電源周波数:300kHz、投入電力:2.0kW
開口部の面積:0.075m
ラインスピード:60m/min
接地電極の磁石:無し
dmin:45mm
【0042】
以上の条件で、中間密着層を厚さ15nm作成した後、電子線加熱方式による真空蒸着により厚さ40nmの酸化珪素膜を積層して、ガスバリア性フィルムを作成した。
【0043】
<比較例2>
厚さ12μmのポリエチレンテレフタレート(PET)のフィルムの未処理面に、有機シリコン化合物としては、ヘキサメチルジシロキサン(HMDSO)を気化させたガスと酸素を用いて、中間密着層を以下の条件で形成した。
【0044】
HMDSO/酸素流量:200sccm/1500sccm(総流量)
圧力:40Pa
電源周波数:300kHz、投入電力:2.0kW
開口部の面積:0.075m
ラインスピード:60m/min
接地電極の磁石:有り
dmin:45mm
【0045】
以上の条件で、中間密着層を形成した後、インライン上で、電子線加熱方式による真空蒸着により厚さ40nmの酸化珪素膜を積層して、ガスバリア性フィルムを作成した。
【0046】
<比較例3>
厚さ12μmのポリエチレンテレフタレート(PET)のフィルムの未処理面に、Ar雰囲気30Paにて、RIE処理を施した後、インライン上で、電子線加熱方式による真空蒸着により厚さ40nmの酸化珪素膜を積層して、ガスバリア性フィルムを作成した。
【0047】
<比較例4>
厚さ12μmのポリエチレンテレフタレート(PET)のフィルムの未処理面に、処理を施さずに、直接、電子線加熱方式による真空蒸着により厚さ40nmの酸化珪素膜を積層して、ガスバリア性フィルムを作成した。
【0048】
<評価1 ガスバリア性>
本発明品のガスバリア性を水蒸気透過度測定装置(モダンコントロール社製、MOCON PERMATRAN 3/33 40℃90%RH雰囲気)を用いて、測定した。その結果を表1に示す。
【0049】
<評価2 密着性>
実施例または比較例の製品の密着性を、90℃の温度の浴槽の中で、任意の時間ボイルした後、セロハンテープ剥離試験を実施した。結果を表1に示す。
【0050】
【表1】

【0051】
実施例1で作成したガスバリア性フィルムは、比較例と比べ、若干良好なバリア性能を示し、十分な密着性能を示した。
【産業上の利用可能性】
【0052】
本発明によるガスバリア性フィルムの産業上の利用可能性は、食品や医薬品等の包装分野や太陽電池のバックシート等が挙げられる。
【符号の説明】
【0053】
100・・・基材
101・・・中間密着層
102・・・ガスバリア層
201、202、203・・・平板電極
1・・・金属ロール電極
2・・・接地電極
3・・・高周波電源
4・・・ガス導入管
5a・・・N極磁石
5b・・・S極磁石
S・・・プラズマ照射部分

【特許請求の範囲】
【請求項1】
ウェブ状の基材上に中間密着層とガスバリア層とをこの順に形成したガスバリア性フィルムの製造方法であって、
基材が走行する高周波印加電極である金属ロール電極と、
対向電極として、面上に、S・N極一対以上の磁石を設置した、円弧状あるいは多面状により前記金属ロール電極に沿った形状にて配置された接地電極と、を備え、
両電極間を結ぶ最短距離をdminとした時、10mm≦dmin≦100mmで設置したリアクティブイオンエッチング(RIE)処理装置を用い、
前記電極間に、酸化用ガスを含む、窒素、ヘリウムおよびアルゴンから選択された1種類以上のガスと、気化した有機シリコン化合物を導入して、処理空間内の圧力を0.5Pa以上20Pa以下として、30kHz以上4MHz以下の高周波を、前記金属ロール電極に投入する電力(kW)とプラズマ照射部分の面積(m)の比が、4.0kW/m以上となるように電力を印加することで、電極間に高密度なプラズマを発生させて、前記金属ロール電極上を走行する基材表面に、プラズマ化学気相蒸着(PECVD)法により、厚さ3nm以上の中間密着層を形成する工程と、
中間密着層面上に、ドライコーティング法により、ガスバリア層を形成する工程と
を具備することを特徴とするガスバリア性フィルムの製造方法。
【請求項2】
前記中間密着層とガスバリア層とを、インラインで連続して処理することを特徴とする請求項1に記載のガスバリア性フィルムの製造方法。
【請求項3】
前記酸化用ガスとして、酸素、水蒸気、二酸化炭素、一酸化炭素、オゾンからなるガスを単体あるいは2種類以上混合して使用して、処理することを特徴とする請求項1または2に記載のガスバリア性フィルムの製造方法。
【請求項4】
前記有機シリコン化合物が、前記金属ロール電極と前記接地電極との間で、前記基材の走行方向に沿った複数の導入管によって導入され、前記複数の導入管が電気的に浮遊した状態であることを特徴とする請求項1から3のいずれか一項に記載のガスバリア性フィルムの製造方法。
【請求項5】
前記有機シリコン化合物が、ヘキサメチルジシロキサン、テトラエチルシロキサン、テトラメチルジシロキサン、テトラメチルシクロテトラシロキサン、トリエチルシラン、トリメチルシラン、テトラメチルシラン、テトラエトキシシラン、テトラメトキシシラン、ヘキサメチルジシラザンおよびテトラメチルジシラザンから選択される1種類以上のガスであることを特徴とする請求項1から4のいずれか一項に記載のガスバリア性フィルムの製造方法。
【請求項6】
前記中間密着層が、炭化酸化珪素(SiOxCy)からなり、0<x<2.2、0<y<2であることを特徴とする請求項1から5のいずれか一項に記載のガスバリア性フィルムの製造方法。
【請求項7】
前記基材としてポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリアミド系フィルムを用いることを特徴とする請求項1から6のいずれか一項に記載のガスバリア性フィルムの製造方法。
【請求項8】
請求項1から7のいずれか一項に記載の製造方法によって製造されたガスバリア性フィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−62514(P2012−62514A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−207098(P2010−207098)
【出願日】平成22年9月15日(2010.9.15)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】