説明

パターンマッチング方法及び装置

【課題】オペレータフリーな完全自動化された高スループットを実現するパターンマッチング方法及び装置を提供する。
【解決手段】本発明は、設計データと走査型電子顕微鏡にて取得される画像との間でパターンマッチングを行うパターンマッチング方法及び装置であって、設計データのエッジと、走査型電子顕微鏡によって取得される画像のエッジ間で、方向別のマッチング処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、設計データを利用して半導体ウェハ上のパターンマッチングを行うパターンマッチング方法及び装置に関し、特に設計データからパターンの撮影/検査条件を自動的に生成するシステム構成と設計データとSEM(走査型電子顕微鏡、Scanning Electron Microscopeの略語)画像とのマッチング処理を安定して行う方法及び装置に関するものである。
【背景技術】
【0002】
近年、半導体業界がメモリ生産からシステムLSI(大規模集積回路、Large Scale Integrated Circuitの略語)生産へシフトして来ている。半導体ウェハ上のパターンとして見ると、システムLSIのパターンは、メモリのパターンと異なり、単なる繰返しパターンとして作られていない。したがって、半導体評価装置の一つである測長SEMで、システムLSIのパターン測定を行う場合、測定する位置つまりマッチング用のテンプレートを頻繁に変える必要が生じる。実際の測定の際に頻繁にテンプレート登録用の撮影を行うことは全体のスループットを著しく低下させることになるため、CAD(コンピュータを利用した設計、Computer Aided Designの略語)の様な予めある設計データから直接、テンプレートを生成することが望まれている。また、ウェハの大きさが300mmとなり人手による運搬ができなくなり、さらには高純度のクリーンルームでの検査が必要になってきていることから、半導体工場内は完全にロボット化することが望まれている。したがって、位置決めのためのテンプレートのみではなく、設計情報から撮影の条件、測長するポイント、測長のアルゴリズムまで検査に必要な全ての条件を作成し、その条件で実際の検査を行うオペレータフリーな完全自動化された半導体検査システムが求められている。
【0003】
従来の測長SEMでは、画像認識のためのポイントや測長位置及び測長アルゴリズムの登録は、実際のウェハを一度撮影してみて、それを用いて行っていた。つまり、実際のウェハが必要であり、しかもSEM画像の撮影及び諸条件の登録を行うために一時的に測長SEMを占有しなければならない。また、設計データとSEM画像とのマッチング技術も充分ではなく精度よくマッチングが行えなかった。例えば、従来技術で設計データをテンプレートに使用して半導体ウェハのSEM画像上のパターン位置を特定する場合は、SEM画像に対してソーベルフィルタ等のフィルタリングを行いエッジ成分を検出してエッジ画像を作成し、そのエッジ画像と設計データの間で正規化相関処理の様なマッチングを行っていた。
【0004】
従来処理の概略フローと処理に使われる画像例を図1.と図7.に示す。初めに、101で設計データから求めたいパターンのテンプレート登録を行う。設計データから登録されたパターンを701に示す。次に102でSEM画像を取得する。取得されたSEM画像を702に示す。103で取得したSEM画像にソーベルフィルタ等のエッジ強調フィルタを施す。104でエッジが強調された画像を2値化してエッジだけが抽出された線画像にする。703に702のSEM画像から抽出された線画像を示す。105では101で登録された設計データと正規化相関等のマッチング処理を行う。
【0005】
【特許文献1】特開昭64−54305号公報
【特許文献2】特開2000−266706号公報
【特許文献3】特開2000−236007号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
従来の半導体検査システムでは、画像認識のためのポイントや測長位置及び測長アルゴリズムの登録は、実際のウェハを一度撮影してみて、それを用いて行っていた。そのため、登録のための時間がかかることとその時間装置を占有することからスループットが向上しないという問題があった。また、実際のSEM画像を見て人が判断し登録するため必ず操作者が必要となりオペレータフリーな完全自動化された半導体検査システムが構築できないという問題があった。さらに、設計情報とSEM画像のマッチング技術においても従来の技術では、CADデータとSEM画像の形状変化に対応できないことや、SEM画像からエッジ情報を取り出す場合に画像のS/N(信号/雑音比)によりエッジ情報を充分に取り出せないことや、2値化により線画像を作る場合に閾値の決定が難しく最適な値を求められないことがあった。そのため、その後の正規化相関によるマッチング処理で、相関係数が非常に小さくなる問題があった。
【0007】
本発明はこのような状況に鑑みてなされたものであり、CADデータ等の設計情報から撮影の条件、測長するポイント、測長のアルゴリズムまで検査に必要な全ての条件を作成し、その条件で実際の検査を行うオペレータフリーな完全自動化された半導体検査システムを実現することとそのシステムにおいて設計データをテンプレートにしてSEM画像とのマッチング処理行う場合に、相関値が高く安定したマッチング処理を実行できる方法及び装置を実現するものである。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明のパターンマッチング方法は、設計データと走査型電子顕微鏡によって取得される画像との間でパターンマッチングを行うパターンマッチング方法において、前記設計データのエッジと、前記走査型電子顕微鏡によって取得される画像のエッジ間で、方向別のマッチング処理を行うことを特徴とする。
【0009】
さらに、本発明のパターンマッチング装置は、設計データと走査型電子顕微鏡によって取得される画像との間でパターンマッチングを行うパターンマッチング装置において、前記設計データのエッジと、前記走査型電子顕微鏡によって取得される画像のエッジを取得するエッジ取得手段と、前記設計データのエッジと前記画像のエッジ間で、方向別のマッチング処理を行うパターンマッチング手段と、を備えることを特徴とする。
【発明の効果】
【0010】
本発明によれば、相関値が高く安定したマッチング処理を実行できる方法及び装置を実現することができる。
【発明を実施するための最良の形態】
【0011】
図3は、本発明の走査型電子顕微鏡システムの構成概要のブロック図である。301は電子顕微鏡の鏡体部であり、電子銃302から発せられた電子線303が図には描かれていない電子レンズによって収束され、試料305に照射される。電子線照射によって、試料表面から発生する二次電子、或いは反射電子の強度が電子検出器306によって検出され、増幅器307で増幅される。304は電子線の位置を移動させる偏向器であり、制御用計算機310の制御信号308によって電子線303を試料表面上でラスタ走査させる。増幅器307から出力される信号を画像処理プロセッサ309内でAD変換し、デジタル画像データを作る。311は、その画像データを表示する表示装置である。また、画像処理プロセッサ309は、デジタル画像データを格納する画像メモリと各種の画像処理を行う画像処理回路、表示制御を行う表示制御回路を持つ。制御用計算機310には、キーボードやマウス等の入力手段312が接続される。
【0012】
半導体デバイス作成時、ウェハ上に描かれた微細なパターンの線幅を計測する場合に電子顕微鏡装置が使われる。この時、ウェハ上の線幅を計測する部分を見つけ出す方法として、現在では、正規化相関法が使われており、その場合に最適なテンプレート選択が必要とされている。本発明の画像処理プロセッサ309は、テンプレートマッチングにおけるテンプレート選択を最適に行うことができるよう構成されているため、電子顕微鏡装置に適応することが可能である。
【0013】
図2は、本発明の一実施例である設計データとSEM画像を使ったマッチング処理フローである。初めに201で設計データから検出したいパターン部分をテンプレート登録する。202でSEM画像を取得し、203でマッチング処理を行う。このマッチング処理に関しては、いろいろな手法があるが、例えば図1の103〜105と同様な手法(エッジ強調フィルタ処理、2値化処理、正規化相関処理)を用いれば良い。その結果、設計データのパターンと相対応したSEM画像上位置が204で検出される。次に205で、204で検出された位置に対応したSEM画像の部分をテンプレートとして再登録する。その後、206でSEM画像を取得し、205で再登録したSEM画像をテンプレートとしてマッチング処理を行い、208で位置検出を行う。こうすることで、再登録したテンプレートがSEM画像であるので、SEMの濃淡画像同士のマッチング処理となるため、相関値を高く、検出率も安定したマッチング処理を行う事が可能になる。複数の検出を行う場合は、206から209までの過程を繰り返すことになる。なお、最初に登録するテンプレートを予め設定しておけば、その後の処理はコンピュータプログラムにより自動的に進行させられる。
【0014】
図4は、本発明の一実施例である経時的にテンプレートとしてSEM画像を再登録する場合の処理フローである。401から408は図2の201から208に対応する。409で一定の時間間隔または処理回数間隔でテンプレート再登録を行うか行わないかの判定を行い、行う場合は、再度、設計データとSEM画像を使ったマッチング処理を行うため、402から405の工程を実行する。こうすることで、撮影途中でのSEM画像が経時変化しても、相関値を高く、検出率も安定したマッチング処理を行う事ができる。
【0015】
図5は、本発明の一実施例である前回の相関値より大きい相関値が得られた場合にテンプレートとしてSEM画像を再登録する場合の処理フローである。501から504と506から510は図4の401から404と405から409に対応する。510で一定の時間間隔または処理回数間隔でテンプレート再登録を行うか行わないかの判定を行い、行う場合は、再度、設計データとSEM画像を使ったマッチング処理を行うため、502から504の工程を実行する。次に505で今回検出された位置の相関値が前回までのテンプレートの相関値より大きい場合は、506のテンプレート再登録を行うが、小さい場合は、再登録を行わず、507からの処理に入る。したがって、使用するテンプレートを相関値が最も高いテンプレートに最適化を行うことができる。
【0016】
図6は、本発明の一実施例である任意回数、設計データとSEM画像とのマッチング処理を行い、その内、相関値が最も高い位置のSEM画像をテンプレートとして再登録する場合の処理フローである。601から604と606から610は図2の201から204と205から209に対応する。602から605まで任意回数、設計データとSEM画像を使ったマッチング処理を繰返し、606で、検出された位置の内で相関値が最も高い位置のSEM画像をテンプレートとして再登録する。そのため、相関値が高いSEM画像のテンプレートを選択できる。複数の検出を行う場合は、そのテンプレートを使い、607から609までの過程を繰り返すことになる。なお、図4から図6の処理もコンピュータプログラムによる自動化が可能である。
【0017】
図8は、本発明の一実施例であるビットマップデータのテンプレートとSEM画像とのマッチング処理の処理フローである。801でビットマップデータとSEM画像、それぞれからエッジ情報を抽出する。この部分の処理には、一般的にはソーベルフィルタ等のエッジ強調フィルタが用いられる。この部分で両画像は、コントラスト情報が失われマッチングがしやすくなるが、SEM画像は実際のCADデータとはかなり形状が異なっているため、このままではマッチングの検出率が低いものになってしまう。そこで、802でエッジ画像となった両画像に対して平滑化処理を施して両者の形状変化を補う。この部分の処理には、やや強めの平滑フィルタを施す。また、CADデータとSEM画像の平滑化の強度を変え、CADデータの平滑化をより強めに行う必要がある。このように、形状変形部分を補正したエッジ画像同士を803でマッチング処理するため検出率の高いマッチング処理が行える。なお、最初に抽出するビットマップデータとSEM画像、それぞれからエッジ情報を予め設定しておけば、コンピュータプログラムによるマッチング処理の自動化が可能である。
【0018】
図9は、本発明の別の実施例であるビットマップデータのテンプレートとSEM画像とのマッチング処理の処理フローである。図8の処理フローと異なる点は、901でのエッジ抽出を方向別に行う点である。方向別のエッジ抽出処理には、一般的に方向別のエッジを抽出ができるソーベルフィルタを用いる。方向は、X,Yの2方向もしくはX,Y,XY,YXの4方向を用いる。902では、形状変化部分を補うための平滑化処理を各方向に分解されたエッジ画像それぞれに対して行う。903では、各方向に分割された画像を図10のように合成統合する。このように合成することで903では1枚の画像同士のマッチングとして処理を行うことができる。もちろん、903の統合を行わず、それぞれの方向同士を別々にマッチング処理させることもできる。このように方向別にエッジを抽出しマッチング処理させることで、各方向のマッチング精度を向上させることができる。なお、図10の元画像は図9のテンプレート及び入力SEM画像に対応しており、これらの画像のX方向微分を求めるときには、元画像をY方向に複数行に分割して行う。また、Y方向微分を求めるときには、元画像をX方向に複数行に分割して行う。このマッチング処理についてもコンピュータプログラムによる自動化が可能である。
【0019】
図11は、本発明の一実施例である半導体検査システムの構成図である。1101がCADデータ等の半導体チップの設計情報を格納し、その設計情報内から検査すべき領域を任意に取り出すことのできるナビゲーションシステムである。1102がその情報を使って実際に半導体ウェハの撮影を行い、所定の検査を実行する走査型電子顕微鏡システムである。これらのシステム1101と1102はネットワークで繋がっており、情報やデータをやり取りできる構成になっている。
【0020】
図12は、本発明の一実施例であるナビゲーションシステムの構成図である。ナビゲーションシステム1101は、格納されている設計情報から所望の設計データを取り出し、ビットマップデータを作成する機能を有するビットマップデータ作成部1201とその設計データから走査型電子顕微鏡システム1102で使用する撮影/検査条件を編集し送信する機能を有する撮影/検査条件編集部1202から構成される。また、ナビゲーションシステム1101は、1台のWS(ワークステーション)もしくはPC(パーソナルコンピュータ)内にビットマップデータ作成部1201と撮影/検査条件編集部1202の機能部分を分割し構成しても良いし、2台もしくは複数のWSもしくはPCに機能を分割して構成しても良い。
【0021】
図13は、本発明の一実施例である半導体検査システムの構成図である。1302のナビゲーションシステムは、自ら半導体パターンの設計機能を持ち、設計機能を持たない場合は、ネットワークを介して接続されていて設計機能を持つ他のシステム1301から設計情報を受け取り、その情報を用いる。
【0022】
図14は、本発明の一実施例である半導体検査システムのネットワーク構成図である。本発明の半導体検査システムにおいては、ナビゲーションシステム1401は、設置施設のネットワークに接続されている他のナビゲーションシステム1402〜1404とデータの授受ができ、さらにネットワークに接続されている複数の走査型電子顕微鏡システム1405〜1406へ撮影/検査条件を送信できる。こうすることで撮影/検査条件の共有化ができると伴に複数のシステムを同時に自動運転することができる。
【0023】
図15は、本発明の一実施例であるナビゲーションシステムでの表示例である。ナビゲーションシステムには、半導体の設計データ1501が格納されていて、操作者が1502のレイヤ、セル等の設計情報を指定入力することで、その設計データ1501から指定部分1502を取り出し、1503のように表示画面上に表示する機能を持つ。この場合、1501は、図13のようにネットワークで繋がった設計システム上にあってもよい。
【0024】
図16は、本発明の一実施例であるナビゲーションシステム1302で作成されるビットマップデータ例である。1601が図15で設計データから取り出された領域であり、この領域内から1602のような検査/測長する部分を指定する。この場合、検査/測長指定領域1602は1603のようなビットマップデータに変換され、走査型電子顕微鏡システム1303へ送られる。ここでは、ビットマップデータ1603として白黒2値を用いているが、この色は任意に設定することができる。
【0025】
図17は、本発明の一実施例であるナビゲーションシステムで行われる処理フローである。1701で、図15に示したように、設計のレイヤ、セル情報等を指定し、格納されている設計データから指定されたデータを画面上に表示する。1702は撮影領域の指定であり、1703で視野内(撮影領域として指定された領域)のパターンデータと位置情報を取り込み、ビットマップデータ1603に変換する。この部分は図16に示した内容と同じである。次に1704で検査/測長する箇所を指定し、その座標データを読み込み、1705で位置決め用のテンプレートの指定を行う。テンプレートの指定は、通常最も特異性の強い特徴のある部分を操作者が選んで指定するが、このような特徴のある部分は画像の高周波成分や特異性を評価する画像処理技術を用いて自動指定することも可能である。最後に1706で、1701から1705の情報に基づいて走査型電子顕微鏡システムで撮影/検査を行うために必要な全ての情報を編集し、操作型電子顕微鏡システムへ送信する。
【0026】
図18は、本発明の一実施例であるナビゲーションシステムにおける測長点とテンプレートの指定例である。1801が測長点の指定であり、1802がテンプレートの指定である。ここで指定対象の画像をビットマップデータとしたが、もちろんビットマップデータ変換前の設計データ上で指定しても構わない。
【0027】
図19は、本発明の一実施例である走査型電子顕微鏡システムで行われる処理フローである。1901から1904においては、図17の1706から送られた情報からウェハアライメント情報、位置決め用のテンプレート情報、測長点情報、及び撮影条件と測長方法の登録を行う。1905で実際の撮影を行い、1906で1902で登録されたテンプレートを使ったサーチ処理(位置検出)を実行する。1907では1906で検出した位置決め座標から測長点を算出し測長を実行する。1908は全測長点に対して測長が終了したか否かの判定で、全測長点に対して測長を行うためである。
【0028】
図20は、本発明の一実施例である撮影/検査条件を登録した自動条件ファイルである。自動条件ファイルはナビゲーションシステムもしくは走査型電子顕微鏡システムのどちらあっても良い。自動条件ファイル2001に登録されている条件に従って走査型電子顕微鏡システムで実際の撮影/検査が行われる。ナビゲーションシステムで得られた情報から撮影/検査条件を決定する場合に本発明のように事前に登録されてあるレシピの中から最も適した条件を選択するようにすれば、条件作成処理を簡略化でき、管理やメンテナンスにおいても便利である。また、自動条件ファイルに登録されている各レシピは、2002のように一部変更、削除が可能であり、また別の名前で登録することも可能である。さらに、各レシピがどの程度使用されているか統計をとり、使用頻度の少ないレシピは自動的に削除していくことも可能である。
【0029】
図21は、本発明の一実施例である自動条件ファイルを使った場合の処理フローである。2101でレシピを新規作成すべきか否かを判断する。既に同一か一部修正可能なレシピが自動条件ファイル2001に存在していなければ、2102で新規に作成する。作成したら、2106で自動条件ファイル2001に新規レシピを登録する。登録後は当該レシピを参照して、2108で実行することが可能である。登録せずに実行のみ行うこともある。同一か一部修正可能なレシピが自動条件ファイル2001に既に存在している場合は、2103で自動条件ファイル内にある既存のレシピを参照して、2104で一部変更をすべきか否かを判断する。同一であれば一部変更の必要はなく、2108でそのまま既存のレシピを実行する。また、同一でなくても既存レシピで代用可能であれば同様である。一部変更する場合は、2105で一部変更の後に、2106で自動条件ファイル2001に変更したレシピを登録すべきか否かの判断を行い、2107、2008で登録して実行するか、登録せず2108で実行する。このフローに従い一度使ったレシピを自動条件ファイルに登録することで、次回その条件を参照にすることが可能になる。また、撮影/検査条件の一部を変更した場合、2106で、その条件を別の条件として登録することも可能であり、この場合は変更前、変更後どちらのファイルも参照可能となる。
【0030】
本実施形態は、以上説明してきたように構成されているので以下に記載されるような効果を奏する。
【0031】
従来の半導体検査システムでは、画像認識のためのポイントや測長位置及び測長アルゴリズムの登録は、実際のウェハを一度撮影してみて、それを用いて行っていた。そのため、登録のための時間がかかることとその時間装置を占有することからスループットが向上しないという問題があった。また、実際のSEM画像を見て人が判断し登録するため必ず操作者が必要となりオペレータフリーな完全自動化された半導体検査システムが構築できないという問題があった。
【0032】
これらの問題に対し、本発明は、CADデータ等の設計情報から撮影の条件、測長するポイント、測長のアルゴリズムまで検査に必要な全ての条件を作成し、その条件で実際の検査を行うので、オペレータフリーな完全自動化された高スループットな半導体検査システムを実現することができる。
【0033】
また、従来、設計データとSEM画像のマッチング処理を行う場合、設計データとSEM画像の形状変化分が対策できずに相関係数が非常に小さくなり、安定したマッチング処理を行うことができなかった。この問題に対し、本発明は設計データとSEM画像のマッチング処理を行う場合に方向別のエッジ情報とその平滑化により形状変化分を補うマッチング処理を行う。また本発明は、エッジ画像と設計データのテンプレートとの間でマッチング処理を行い、検出された位置に対応したSEM画像の部分をテンプレートとして再登録しなおしマッチング処理を行うため、相関値が高く、検出率も安定したマッチング処理を実現することができる。
【0034】
本実施形態のパターンマッチング方法は、設計データと走査型電子顕微鏡にて取得される画像との間でパターンマッチングを行うパターンマッチング方法に関する。このパターンマッチング方法において、設計データをビットマップに変換して、このビットマップ化された設計データと、走査型電子顕微鏡によって取得された画像とのマッチングを行う。これにより、設計情報を利用した精度が高く効率的なマッチング処理の自動化が可能となる。
【0035】
また、このビットマップに対してエッジ強調が行われた後に、マッチング処理が行われるようにするので、マッチング処理がしやすくなる。さらに、このエッジ強調が行われたビットマップに対して、平滑化処理が施された後に、マッチング処理を行えば、検出率をより高くすることができる。
【図面の簡単な説明】
【0036】
【図1】従来の設計データとSEM画像のマッチング処理フロー
【図2】本発明の一実施例である設計データとSEM画像を使ったマッチング処理フロー
【図3】本発明の画像処理装置の一実施例である半導体検査システムの構成概要
【図4】本発明の一実施例である経時的にテンプレートとしてSEM画像を再登録する場合の処理フロー
【図5】本発明の一実施例である前回の相関値より高い場合にテンプレートとしてSEM画像を再登録する処理フロー
【図6】本発明の一実施例である任意回数の設計データとSEM画像とのマッチング処理の内で相関値が最も高い位置のSEM画像をテンプレートとして再登録する処理フロー
【図7】従来の処理に使われる画像例
【図8】本発明の一実施例であるビットマップデータのテンプレートとSEM画像とのマッチング処理の処理フロー
【図9】本発明の別の実施例であるビットマップデータのテンプレートとSEM画像とのマッチング処理の処理フロー
【図10】各方向に分割された画像の合成統合方法
【図11】本発明の一実施例である半導体検査システムの構成図
【図12】本発明の一実施例であるナビゲーションシステムの構成図
【図13】本発明の一実施例である半導体検査システムの構成図
【図14】本発明の一実施例である半導体検査システムのネットワーク構成図
【図15】本発明の一実施例であるナビゲーションシステムでの表示例
【図16】本発明の一実施であるナビゲーションシステムで作成されるビットマップデータ例
【図17】本発明の一実施例であるナビゲーションシステムで行われる処理フロー
【図18】本発明の一実施例であるナビゲーションシステムにおける測長点とテンプレートの指定例
【図19】本発明の一実施例である走査型電子顕微鏡システムで行われる処理フロー
【図20】本発明の一実施例である撮影/検査条件を登録した自動条件ファイル
【図21】本発明の一実施例である自動条件ファイルを使った場合の処理フロー
【符号の説明】
【0037】
1101・・・ナビゲーションシステム、1102・・・走査型電子顕微鏡システム

【特許請求の範囲】
【請求項1】
設計データと走査型電子顕微鏡によって取得される画像との間でパターンマッチングを行うパターンマッチング方法において、
前記設計データのエッジと、前記走査型電子顕微鏡によって取得される画像のエッジ間で、方向別のマッチング処理を行うことを特徴とするパターンマッチング方法。
【請求項2】
設計データと走査型電子顕微鏡によって取得される画像との間でパターンマッチングを行うパターンマッチング装置において、
前記設計データのエッジと、前記走査型電子顕微鏡によって取得される画像のエッジを取得するエッジ取得手段と、
前記設計データのエッジと前記画像のエッジ間で、方向別のマッチング処理を行うパターンマッチング手段と、
を備えることを特徴とするパターンマッチング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2008−159061(P2008−159061A)
【公開日】平成20年7月10日(2008.7.10)
【国際特許分類】
【出願番号】特願2007−332968(P2007−332968)
【出願日】平成19年12月25日(2007.12.25)
【分割の表示】特願2006−201138(P2006−201138)の分割
【原出願日】平成13年4月27日(2001.4.27)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】