説明

ベルト式無段変速機の変速制御装置

【課題】ベルト戻り不良の程度が大きい範囲におけるベルト滑りの発生を防ぐことと、ベルト戻り不良の程度が小さい範囲における変速追従性を向上させることとの両立を図る。
【解決手段】ベルト式無段変速機では、プライマリプーリ36とセカンダリプーリ37との間にベルト37が掛け渡され、変速を行うプライマリプーリ36のプーリ幅を油圧アクチュエータ41に対する作動油の給排により変化させることによって変速比を変更する。また、発進時の実変速比が、発進時に通常設定される目標変速比に対し増速側へ所定範囲を超えて乖離している場合、発進時、変速比を減速側へ変更する。その際、発進時の乖離度が大きい範囲では、油圧アクチュエータ41に対する作動油の排出流量を小さく設定する一方、発進時の乖離度が小さい範囲では、油圧アクチュエータ41に対する作動油の排出流量を大きく設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車等の車両に搭載されるベルト式無段変速機における変速を制御するための装置に関する。
【背景技術】
【0002】
従来、自動車用エンジンの出力側に搭載される変速機として、ベルト式の無段変速機(CVT:Continuously Variable Transmission)が知られている。このベルト式無段変速機は、互いに平行に配置されたプライマリシャフト(駆動側シャフト)およびセカンダリシャフト(従動側シャフト)と、各シャフトにそれぞれ個別に設けられたプライマリプーリ(駆動側プーリ)およびセカンダリプーリ(従動側プーリ)とを有している。
【0003】
プライマリプーリおよびセカンダリプーリは、ともに、固定シーブと可動シーブとを組み合わせた構成となっている。各可動シーブは、油圧アクチュエータによりそれぞれ固定シーブに対して接離可能な構成となっている。プライマリプーリおよびセカンダリプーリの固定シーブと可動シーブとの対向面間には、それぞれV字形状の溝が形成されている。これらプライマリプーリのV溝およびセカンダリプーリのV溝にわたって、ベルトが巻き掛けられている。
【0004】
そして、一方のプーリのV溝の溝幅(プーリ幅)を拡げるとともに、他方のプーリのV溝のプーリ幅を狭くすることにより、それぞれのプーリに対するベルトの巻き掛け半径(有効径)を連続的に変化させて変速比を無段階に変更する。また、ベルト式無段変速機において伝達されるトルクは、ベルトとプーリとを相互に接触させる方向に作用する荷重に応じたトルクとなる。このため、ベルトに張力を付与するように、プーリによってベルトを挟み付けている。
【0005】
このように、ベルト式無段変速機では、ベルトに張力を付与するためにプーリによってベルトを挟み付けるとともに、変速比の変更(変速)を実行するためにプーリによるベルトの挟み付け状態を変更する。このため、従来では、例えば、特許文献1に記載されているように、ベルト式無段変速機において、エンジン負荷等に代表される要求トルクに応じた油圧をセカンダリプーリ側の油圧アクチュエータに供給して必要な伝達トルク容量を確保し、また、変速を行うための油圧をプライマリプーリ側の油圧アクチュエータに供給し、プライマリプーリのプーリ幅を変更すると同時にセカンダリプーリのプーリ幅を変更するようにしている。
【0006】
ところで、ベルト式無段変速機においては、車両が急停止した場合等に、いわゆるベルト戻り不良の状態が発生する可能性がある。すなわち、車両停止にともないベルト式無段変速機が停止すると、変速を行うことができなくなる。このため、例えば、車両が急停止した場合等のように、停止までの時間が短時間の場合、発進時に通常設定される最減速状態の変速比(最大変速比γmax)まで変速比が戻りきらないことがある。言い換えれば、ベルトの巻き掛け位置が、最大変速比γmaxに対応する位置に比べ小さい変速比側(増速側,アップシフト側)の位置までしか戻らないことがある。
【0007】
このようなベルト戻り不良の状態で車両が発進すると、ベルト式無段変速機では、変速比を最大変速比γmaxに急速に設定するようなフィードバック制御が行われる。この変速制御は、具体的には、プライマリプーリのプーリ幅を最大変速比γmaxに対応する状態まで急速に拡大することにより実行されるが、このとき、プライマリプーリ側の油圧アクチュエータに供給される油圧が急速に低下する。したがって、プライマリプーリ側の油圧アクチュエータから急速に作動油が排出される。その結果、ベルトに緩みが生じ、ベルトとプーリとの間に滑りが生じる可能性がある。
【0008】
従来では、そのようなベルト滑りを防止するため、例えば、特許文献1に示されるように、ベルト戻り不良の状態で発進する際には、上述した通常のフィードバック制御の場合とは異なる変速ゲインを設定するようにしている。この際、設定される変速ゲインは、図6に示すように、予め定められた所定値であって、通常のフィードバック制御の場合に比べて小さい値となっている。変速ゲインは、変速を行うための油圧アクチュエータに対する作動油の給排流量に対応づけられる量であり、例えば、プライマリプーリ側の油圧アクチュエータに接続されているソレノイドバルブに対する制御信号のデューティ比を演算するための係数が挙げられる。そして、この場合、変速ゲインが大きいほど、プライマリプーリ側の油圧アクチュエータからの排出流量が大きくなる。これにともない、プライマリプーリのプーリ幅が拡大する変化速度が大きくなり、変速比の減速側(ダウンシフト側)への変化速度が大きくなる。逆に、変速ゲインが小さいほど、プライマリプーリ側の油圧アクチュエータからの排出流量が小さくなる。これにともない、プライマリプーリのプーリ幅が拡大する変化速度が小さくなり、変速比の減速側(ダウンシフト側)への変化速度が小さくなる。なお、図6のZ1で示す範囲(γz〜γmaxの範囲)は、車両の発進時に通常の変速制御を行ったとしても、つまり、変速ゲインを別設定しなくても、ベルト滑りが発生しない範囲であり、車両の発進時に通常設定される目標変速比(最大変速比γmax)の近傍の範囲となっている。
【特許文献1】特開2001−330122号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
従来では、ベルト戻り不良の状態で発進する際に、別設定される変速ゲインが予め定められた所定値であったので、次のような問題点があった。
【0010】
変速ゲインとしては、ベルト戻り不良の程度が大きい範囲(例えば、図6のZ3で示す範囲)においても、ベルト滑りの発生を防止するために、小さい値が設定されていた。しかし、この場合、プライマリプーリ側の油圧アクチュエータからの排出流量が小さく設定されるので、プライマリプーリのプーリ幅が緩やかに拡大し、変速比は、ダウンシフト側へ緩やかに変化するようになる。その結果、ベルト戻り不良の程度が小さい範囲(例えば、図6のZ2で示す範囲)において、変速を迅速に行うことができず、変速追従性が低下するという問題点があった。
【0011】
なお、変速ゲインとして大きい値を設定すると、プライマリプーリ側の油圧アクチュエータからの排出流量が大きく設定されるので、ベルト戻り不良の程度が小さい範囲における変速追従性は確保することができるものの、プライマリプーリのプーリ幅が急速に拡大される結果、ベルト戻り不良の程度が大きい範囲において、ベルト滑りの発生を防止することができなくなるという問題点がある。
【0012】
したがって、従来では、ベルト戻り不良の程度が大きい範囲におけるベルト滑りの発生を防ぐことと、ベルト戻り不良の程度が小さい範囲における変速追従性を向上させることとの両立を図ることは困難であった。
【0013】
本発明は、そのような問題点を鑑みてなされたものであり、ベルト戻り不良の程度が大きい範囲におけるベルト滑りの発生を防ぐことと、ベルト戻り不良の程度が小さい範囲における変速追従性を向上させることとの両立を図ることが可能なベルト式無段変速機の変速制御装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明は、駆動側シャフトに設けられる駆動側プーリと従動側シャフトに設けられる従動側プーリとの間にベルトが動力伝達可能に掛け渡され、前記両プーリのプーリ幅を変化させることによって変速比を変更するように構成されるとともに、車両の発進時の実変速比が、車両の発進時に通常設定される目標変速比に対し増速側へ所定範囲を超えて乖離している場合、車両の発進時、変速比を減速側へ変更するように構成されたベルト式無段変速機の変速制御装置において、車両の発進時に変速比を減速側へ変更する際、前記発進時の乖離度が大きい範囲では、前記プーリ幅の変化速度を小さく設定する一方、前記発進時の乖離度が小さい範囲では、前記プーリ幅の変化速度を大きく設定する速度設定手段を備えていることを特徴としている。
【0015】
上記構成によれば、発進時の乖離度が大きい範囲、つまり、ベルト戻り不良の程度が大きい範囲では、プーリ幅の変化速度が小さく設定されるので、ベルトの緩みや、それに起因するベルトの滑りを防止することができる。これに対し、発進時の乖離度が小さい範囲、つまり、ベルト戻り不良の程度が小さい範囲では、プーリ幅の変化速度が大きく設定されるので、これにともなって変速比の減速側への変化速度が大きくなる。これにより、変速が迅速に行われるようになり、変速追従性を向上させることができる。
【0016】
また、本発明は、駆動側シャフトに設けられる駆動側プーリと従動側シャフトに設けられる従動側プーリとの間にベルトが動力伝達可能に掛け渡され、油圧アクチュエータにより前記駆動側プーリのプーリ幅を変化させることによって変速比を変更するように構成されるとともに、車両の発進時の実変速比が、車両の発進時に通常設定される目標変速比に対し増速側へ所定範囲を超えて乖離している場合、車両の発進時、変速比を減速側へ変更するように構成されたベルト式無段変速機の変速制御装置において、車両の発進時に変速比を減速側へ変更する際、前記発進時の乖離度が大きい範囲では、前記油圧アクチュエータに対する作動油の排出流量を小さく設定する一方、前記発進時の乖離度が小さい範囲では、前記油圧アクチュエータに対する作動油の排出流量を大きく設定する流量設定手段を備えていることを特徴としている。
【0017】
上記構成によれば、発進時の乖離度が大きい範囲、つまり、ベルト戻り不良の程度が大きい範囲では、油圧アクチュエータに対する作動油の排出流量が小さく設定されるので、プーリ幅が緩やかに変化するようになる。これにより、ベルトの緩みや、それに起因するベルトの滑りを防止することができる。これに対し、発進時の乖離度が小さい範囲、つまり、ベルト戻り不良の程度が小さい範囲では、油圧アクチュエータに対する作動油の排出流量が大きく設定されるので、これにともなって変速比の減速側への変化速度が大きくなる。これにより、変速が迅速に行われるようになり、変速追従性を向上させることができる。
【0018】
本発明において、前記流量設定手段は、前記油圧アクチュエータに接続されているソレノイドバルブに対する信号のデューティ比を演算するための変速ゲインを、前記発進時の乖離度が大きい範囲では小さく設定する一方、前記発進時の乖離度が小さい範囲では大きく設定することによって、前記油圧アクチュエータに対する作動油の排出流量を制御するように構成されている。
【0019】
また、本発明において、前記流量設定手段は、車両の発進後の実変速比が前記目標変速比に対し増速側へ所定範囲を超えて乖離している場合には、車両の発進後においても、前記発進後の乖離度が小さくなるほど変速ゲインが大きくなるような関係に基づいて前記変速ゲインの設定を行うことが好ましい。
【0020】
ここで、車両の発進時に設定された変速ゲインが変化しなければ、発進時の乖離度が大きい場合(ベルト戻り不良の程度が大きい場合)、変速ゲインが小さく設定されると、油圧アクチュエータに対する排出流量が小さく設定された状態で維持される。この場合、発進後の乖離度が所定範囲を超えない程度まで変速比を減速側に変化させるには、かなりの時間を要することになる。
【0021】
これに対し、上記構成によれば、変速比が減速側へ変化するほど、油圧アクチュエータからの排出流量が大きく設定されるようになる。したがって、変速比が減速側へ変化するほど、変速比の変化速度が大きくなる。これにより、発進後の乖離度が所定範囲を超えない程度まで変速比を減速側に変化させるのに要する時間を短縮できるようになる。その結果、車両の停車時のベルト戻り不良の程度が大きい場合においても、変速追従性を向上させることが可能になる。また、車両の停車時のベルト戻り不良の程度が小さい場合にも、より効果的に変速追従性の向上を図ることが可能になる。
【発明の効果】
【0022】
本発明によれば、ベルト戻り不良の程度が大きい範囲では、プーリ幅の変化速度が小さくなるので、ベルトの緩みや、それに起因するベルトの滑りを防止することができる。これに対し、ベルト戻り不良の程度が小さい範囲では、プーリ幅の変化速度が大きくなるので、これにともなって変速比の減速側への変化速度が大きくなる。これにより、変速が迅速に行われるようになり、変速追従性を向上させることができる。
【発明を実施するための最良の形態】
【0023】
本発明を実施するための最良の形態について添付図面を参照しながら説明する。以下では、本発明を自動車等の車両に搭載されるベルト式無段変速機に適用した例について説明する。また、フロントエンジン・フロントドライブ(FF)方式の車両に搭載されるベルト式無段変速機を例に挙げて説明する。
【0024】
まず、ベルト式無段変速機が搭載されたトランスアクスルの全体構成について説明する。
【0025】
図1は、ベルト式無段変速機をFF車両に適用した場合のトランスアクスルのスケルトン図である。図1に示す例では、車両の駆動源として、エンジン1が用いられている。このエンジン1の種類は特に限定されないが、以下においては、エンジン1として、燃料をシリンダの内部に直接噴射し、その噴射量およびタイミングを制御することにより均質燃焼や成層燃焼の可能ないわゆる直噴ガソリンエンジン、あるいは、スロットル開度を電気的に自由に制御できる電子スロットルバルブを備えたガソリンエンジンを採用した例を説明する。すなわち、エンジン1は、電気的に制御できるように構成されており、その制御を実行するための電子制御装置(E/G・ECU)400が設けられている。E/G・ECU400は、演算処理装置(CPUまたはMPU)、記憶装置(RAMおよびROM)、入出力インターフェースを主体とするマイクロコンピュータにより構成される。
【0026】
エンジン1の出力側には、トランスアクスル3が設けられ、このトランスアクスル3は、エンジン1の出力側(車両の側方側)に取り付けられたトランスアクスルハウジング4と、このトランスアクスルハウジング4におけるエンジン1とは反対側の開口端に取り付けられたトランスアクスルケース5と、このトランスアクスルケース5におけるトランスアクスルハウジング4とは反対側の開口端に取り付けられたトランスアクスルリヤカバー6とを順に有している。トランスアクスルハウジング4の内部には、トルクコンバータ(T/C)7が設けられており、トランスアクスルケース5およびトランスアクスルリヤカバー6の内部には、前後進切り換え機構8、ベルト式無段変速機(CVT)9、差動機構を有する最終減速機10等が設けられている。
【0027】
トランスアクスルハウジング4の内部には、クランクシャフト2と同一軸線上にインプットシャフト11が設けられており、このインプットシャフト11におけるエンジン1側の端部には、タービンランナ13が取り付けられている。一方、クランクシャフト2の端部には、ドライブプレート14を介してフロントカバー15が連結されており、このフロントカバー15には、ポンプインペラ16が連結されている。タービンランナ13およびポンプインペラ16は互いに対向して配置され、これらタービンランナ13およびポンプインペラ16の内側にはステータ17が設けられている。また、トルクコンバータ7と前後進切り換え機構8との間には、オイルポンプ20が設けられている。
【0028】
トルクコンバータ7の動作としては、エンジン1の駆動によるクランクシャフト2の回転にともない、ドライブプレート14およびフロントカバー15を介してポンプインペラ16が回転し、オイルポンプ20から供給される作動液(作動油)の流れによりタービンランナ13が引きずられるようにして回転し始める。ポンプインペラ16およびタービンランナ13の回転速度差が大きいとき、ステータ17が作動液の流れをポンプインペラ16の回転を助ける方向に変換する。
【0029】
そして、車両の発進後、車速が所定速度に達すると、ロックアップクラッチ18が作動し、エンジン1からフロントカバー15に伝えられた動力がインプットシャフト11に機械的かつ直接的に伝達されるようになる。また、フロントカバー15からインプットシャフト11に伝達されるトルクの変動は、ダンパ機構19によって吸収される。
【0030】
前後進切り換え機構8は、インプットシャフト11とベルト式無段変速機9との間の動力伝達経路に設けられている。この前後進切り換え機構8は、ダブルピニオン形式の遊星歯車機構24を有している。この遊星歯車機構24は、インプットシャフト11に設けられたサンギヤ25と、このサンギヤ25の外周側に、サンギヤ25と同心状に配置されたリングギヤ26と、サンギヤ25に噛み合わされた内側のピニオンギヤ27と、この内側のピニオンギヤ27およびリングギヤ26に噛み合わされた外側のピニオンギヤ28と、これらピニオンギヤ27,28を自転可能に支持し、かつ、ピニオンギヤ27,28を、サンギヤ25の周囲で一体的に公転可能な状態で保持したキャリヤ29とを有している。
【0031】
このキャリヤ29と、ベルト式無段変速機9の後述するプライマリシャフト(変速機入力軸)30とが連結されている。また、キャリヤ29とインプットシャフト11との間の動力伝達経路を接続・遮断するフォワードクラッチCL、および、リングギヤ26の回転・固定を制御するリバースブレーキBRがそれぞれ設けられている。そして、これらフォワードクラッチCLおよびリバースブレーキBRを制御することにより動力伝達経路を変更して前進回転動力(正回転方向)や後進回転動力(逆回転方向)に切り換え可能な構成となっている。
【0032】
ベルト式無段変速機9は、インプットシャフト11と同一軸線上に配置されたプライマリシャフト(駆動側シャフト)30と、このプライマリシャフト30に平行に配置されたセカンダリシャフト(従動側シャフト)31とを有している。プライマリシャフト30は、軸受32,33により回転自在に支持されている。また、セカンダリシャフト31は、軸受34,35により回転自在に支持されている。
【0033】
プライマリシャフト30側には、プライマリプーリ(駆動側プーリ)36が設けられており、セカンダリシャフト31側には、セカンダリプーリ(従動側プーリ)37が設けられている。また、プライマリシャフト30およびセカンダリシャフト31の回転数を所定時間ごとに検出するための回転数センサ71,72がそれぞれ設けられている。
【0034】
プライマリプーリ36は、プライマリシャフト30に一体的に形成された固定シーブ38と、プライマリシャフト30の軸線方向に移動可能に構成された可動シーブ39とを有している。そして、固定シーブ38と可動シーブ39との対向面間にV字形状の溝40が形成されている。また、可動シーブ39をプライマリシャフト30の軸線方向に動作させることにより、可動シーブ39と固定シーブ38とを接近・離隔させる油圧アクチュエータ41が設けられている。つまり、この油圧アクチュエータ41内に形成された作動油圧室に所定油圧を作用させることで可動シーブ39を固定シーブ38に対して進退移動させる構成となっている。
【0035】
一方、セカンダリプーリ37も、同様に、セカンダリシャフト31に一体的に形成された固定シーブ42と、セカンダリシャフト31の軸線方向に移動可能に構成された可動シーブ43とを有し、固定シーブ42と可動シーブ43との対向面間にV字形状の溝44が形成されている。また、可動シーブ43をセカンダリシャフト31の軸線方向に動作させることにより、可動シーブ43と固定シーブ42とを接近・離隔させる油圧アクチュエータ45が設けられている。つまり、この油圧アクチュエータ45内に形成された作動油圧室に所定油圧を作用させることで可動シーブ43を固定シーブ42に対して進退移動させる構成となっている。
【0036】
プライマリプーリ36の溝40およびセカンダリプーリ37の溝44に対し、ベルト46が巻き掛けられている。このベルト46は、いわゆる押し式金属ベルトとして構成されており、多数の金属製の駒および複数本のスチール製等のリングを有している。
【0037】
そして、ベルト式無段変速機9では、プライマリプーリ36およびセカンダリプーリ37の一方のプーリの溝の溝幅(プーリ幅)を拡大するとともに、他方のプーリの溝のプーリ幅を縮小することにより、それぞれのプーリに対するベルト46の巻き掛け半径(有効径)を連続的に変化させて変速比を無段階に変更する。
【0038】
さらに、セカンダリシャフト31には、カウンタドライブギヤ47が固定されており、このカウンタドライブギヤ47は、軸受48,49により支持されている。セカンダリシャフト31を支持する一方の軸受35(トランスアクスルリヤカバー6側の軸受)とセカンダリプーリ37との間には、パーキングギヤPGが設けられている。
【0039】
また、ベルト式無段変速機9のカウンタドライブギヤ47と最終減速機10との間の動力伝達経路には、セカンダリシャフト31に平行なインターミディエイトシャフト50が軸受51,52により支持された状態で配設されている。インターミディエイトシャフト50には、カウンタドライブギヤ47に噛み合うカウンタドリブンギヤ53と、ファイナルドライブギヤ54とが設けられている。
【0040】
最終減速機10は、軸受56,57により回転自在に支持された中空のデフケース55を有し、このデフケース55の外周には、ファイナルドライブギヤ54と噛み合うファイナルリングギヤ58が設けられている。そして、デフケース55の内部には、2つのピニオンギヤ60,60が取り付けられたピニオンシャフト59が配置されている。ピニオンギヤ60には、2つのサイドギヤ61,61が噛み合わされ、それぞれ、左右のドライブシャフト62,62を介して車輪63に連結されている。
【0041】
そして、ベルト式無段変速機9のプライマリプーリ36側の油圧アクチュエータ41およびセカンダリプーリ37側の油圧アクチュエータ45には、油圧制御回路200を介して、上記オイルポンプ20で発生された油圧がそれぞれ供給される。油圧制御回路200は、オイルパン21から吸引されオイルポンプ20により吐出された作動油を、プライマリプーリ36の制御動作(可動シーブ39の進退移動動作)およびセカンダリプーリ37の制御動作(可動シーブ43の進退移動動作)に適した油圧とするべくプライマリ側の油圧アクチュエータ41への供給油圧およびセカンダリ側の油圧アクチュエータ45への供給油圧をそれぞれ独立して制御する構成となっている。
【0042】
詳細には、セカンダリプーリ37側の油圧アクチュエータ45には、アクセル開度に代表される出力要求に基づいて求められる要求トルクに応じた油圧が供給され、可動シーブ43を固定シーブ42側に押圧してベルト46を挟み付けることにより、トルクを伝達するのに必要な張力をベルト46に付与するようになっている。
【0043】
また、プライマリプーリ36側の油圧アクチュエータ41には、プライマリシャフト30の実回転数を目標回転数に一致させる変速比となるように、油圧が供給されている。すなわち、プライマリプーリ36のプーリ幅およびセカンダリプーリ37のプーリ幅を変化させることにより、各プーリ36,37に対するベルト46の巻き掛け半径が大小に変化して変速が実行されるようになっている。より具体的には、プライマリシャフト30の実回転数と目標回転数との回転数偏差に基づいて、プライマリプーリ36側の油圧アクチュエータ41に供給する油圧をフィードバック制御することにより変速が実行されるようになっている。変速比は、最大変速比γmaxと最小変速比γminとの間で無段階に変更される。
【0044】
ここで、変速比を増大させる場合、つまり、ダウンシフトの場合、プライマリプーリ36側の油圧アクチュエータ41から作動油を排出してプライマリプーリ36のプーリ幅を拡大する。油圧アクチュエータ41には、ドレーンに接続された流量制御弁(ダウンシフトを実行するための流量制御弁)が接続されており、この流量制御弁には、後述するCVT・ECU300から入力される制御信号のデューティ比に応じて出力圧が高くなるソレノイドバルブが接続されている。そして、この場合、ソレノイドバルブに対する制御信号のデューティ比を制御することにより、油圧アクチュエータ41に対する作動油の排出流量が制御される。この際、その作動油の排出流量を増大させることにより、変速比の変速速度が大きくなる。
【0045】
また、変速比を低下させる場合、つまり、アップシフトの場合、プライマリプーリ36側の油圧アクチュエータ41に作動油を供給してプライマリプーリ36のプーリ幅を縮小する。油圧アクチュエータ41には、ライン圧が供給される流量制御弁(アップシフトを実行するための流量制御弁)が接続されており、この流量制御弁には、上記ソレノイドバルブが接続されている。そして、この場合、ソレノイドバルブに対する制御信号のデューティ比を制御することにより、油圧アクチュエータ41に対する作動油の供給流量が制御される。この際、その作動油の供給流量を増大させることにより、変速比の変速速度が大きくなる。
【0046】
ベルト式無段変速機9の変速制御は、電子制御装置(CVT・ECU)300によって実行される。CVT・ECU300は、演算処理装置(CPUまたはMPU)、記憶装置(RAMおよびROM)、入出力インターフェースを主体とするマイクロコンピュータにより構成されている。
【0047】
CVT・ECU300に対しては、上記回転数センサ71,72からの信号の他に、トランスアクスル3の状態を表す種々のパラメータ、例えば、トルクコンバータ7のトルク比や車速等の情報が入力される。一方、上記E/G・ECU400には、エンジン1の運転状態を表す種々のパラメータ、例えば、エンジン回転速度、アクセル開度、スロットル開度センサの信号等が入力され、その演算結果の情報が必要に応じてCVT・ECU300に入力される。
【0048】
このようにして、CVT・ECU300に対し、回転数センサ71,72によるプライマリシャフト30の回転数Npおよびセカンダリシャフト31の回転数Ns等、さらには、車速等の情報が各種センサや演算結果の信号として入力されると、予め実験等により求められているマップ等に基づいて、所要の変速比等を得るようなベルト式無段変速機9の変速制御が実行されるようになっている。この場合、CVT・ECU300から上記油圧制御回路200に対し制御信号が送られて、油圧アクチュエータ41,45に対する作動油の給排流量が制御される。
【0049】
そして、本実施形態の特徴としては、ベルト式無段変速機9においてベルト戻り不良の状態が発生し、そのベルト戻り不良の状態で発進する際には、ベルト式無段変速機9の変速制御装置において、通常のフィードバック制御の場合とは異なる変速ゲインを設定する点にある。
【0050】
詳細には、車両の発進時には、通常、変速比が最減速状態の変速比(最大変速比γmax)に設定されるが、ベルト戻り不良の状態では、変速比は、目標変速比である最大変速比γmaxに比べ小さくなっている。つまり、変速比が目標変速比である最大変速比γmaxに比べ増速側(アップシフト側)の状態になっている。このため、ベルト戻り不良の状態で発進する際には、変速比を大きくするような変速制御が行われる。つまり、発進の際、変速比を目標変速比である最大変速比γmaxに近づけるような変速制御が行われる。この際、変速ゲインは、図3に示すようなマップを参照して設定される。
【0051】
変速ゲインは、変速を行うための油圧アクチュエータに対する作動油の給排流量に対応づけられる量である。この実施形態では、変速ゲインは、上記油圧制御回路200のソレノイドバルブに入力する制御信号のデューティ比を演算するための係数となっている。ダウンシフトの場合、変速ゲインが大きいほど、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が大きくなり、プライマリプーリ36のプーリ幅が速やかに拡大するようになる。これにともなって変速比の減速側(ダウンシフト側)への変化速度が大きくなる。逆に、変速ゲインが小さいほど、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が小さくなり、プライマリプーリ36のプーリ幅が緩やかに拡大するようになる。これにともなって変速比のダウンシフト側への変化速度が小さくなる。
【0052】
図3の横軸は、停止時の実変速比(発進時の実変速比)を表している。図3に示すように、設定される変速ゲインは、X2およびX3で示す範囲(γmin〜γxの範囲)では、発進時の実変速比とリニアな関係にある。具体的には、変速ゲインは、発進時の実変速比が小さいほど、小さくなるように設定され、逆に、発進時の実変速比が大きいほど、大きくなるように設定される。換言すれば、変速ゲインは、発進時の実変速比と発進時の目標変速比との乖離度(変速比偏差)が大きいほど小さくなるように設定され、逆に、その乖離度が小さいほど大きくなるように設定される。乖離度は、ベルト戻り不良の程度を表しており、この乖離度が大きいほど、ベルト戻り不良の程度が大きく、逆に、乖離度が小さいほど、ベルト戻り不良の程度が小さいことを意味する。
【0053】
図3のX3で示すような上記発進時の乖離度が大きい範囲では、プライマリプーリ36側の油圧アクチュエータ41からの排出流量を大きくすると、ベルト46の滑り等の発生が懸念されるため、変速ゲインを小さく設定するようにしている。これに対し、図3のX2で示すような上記発進時の乖離度が小さい範囲では、プライマリプーリ36側の油圧アクチュエータ41からの排出流量を大きくしても、ベルト46の滑り等の発生の可能性が小さいため、変速ゲインを大きく設定するようにしている。
【0054】
続いて、図2のフローチャートを参照して、ベルト戻り不良の状態で発進する際に行われるベルト式無段変速機の変速制御について説明する。
【0055】
まず、ステップST1において、車両の停止時に、ベルト式無段変速機9において、ベルト戻り不良の状態が発生したか否かが判定される。ここでは、車両の発進時の実変速比が、車両の発進時に通常設定される目標変速比(最大変速比γmax)に対しアップシフト側へ予め設定された所定範囲を超えて乖離しているか否かが判定される。言い換えれば、車両の発進時の実変速比が予め設定された所定値未満であるか否かが判定される。上記所定範囲は、車両の発進時に通常の変速制御を行ったとしても、ベルト滑りが発生しない範囲を意味し、車両の発進時に通常設定される目標変速比(最大変速比γmax)の近傍の範囲である。例えば、上記所定範囲は、図3のX1で示す範囲(γx〜γmaxの範囲)に設定され、また、上記所定値は、図3のγxに設定される。
【0056】
ベルト式無段変速機9においては、回転数センサ71,72により検出されるプライマリシャフト30の回転数Npおよびセカンダリシャフト31の回転数Nsに基づいて、変速比(Np/Ns)が算出される。この実施形態では、停止時に回転数センサ71,72により検出されるプライマリシャフト30の回転数Npおよびセカンダリシャフト31の回転数Nsに基づいて、停止時の実変速比(発進時の実変速比)および上述した発進時の乖離度を求めて、車両の停止時のベルト戻り不良の状態の発生の有無を判定するとともに、そのベルト戻り不良の程度を検知するようにしている。
【0057】
そして、発進時の乖離度が所定範囲を超えていない場合には(車両の発進時の実変速比が所定値以上である場合には)、ベルト戻り不良の状態は発生していないと判定され、この変速制御を終了する。これに対し、発進時の乖離度が所定範囲を超えている場合には(車両の発進時の実変速比が所定値未満である場合には)、ベルト戻り不良の状態が発生していると判定され、ステップST2へ移行する。
【0058】
ステップST2において、車両の発進が検知されると、次に、ステップST3において、変速ゲインが設定される。ステップST3では、マップ(図3)が参照され、変速ゲインとして発進時の乖離度に対応するものが取得される。つまり、変速ゲインとして停止時の実変速比(発進時の実変速比)に対応するものが取得される。このようにして、設定された変速ゲインに基づいて、上記油圧制御回路200のソレノイドバルブに入力する制御信号のデューティ比が演算され、そのデューティ比に基づいて油圧アクチュエータ41に対する作動油の排出流量が制御される。これにより、変速比がダウンシフト側へ変化し、目標変速比との乖離度が徐々に小さくなる。
【0059】
詳細には、発進時の乖離度が大きいほど(発進時の実変速比が小さいほど)、変速ゲインが小さくなるように設定される。このため、発進時の乖離度が大きいほど、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が小さく設定され、プライマリプーリ36の可動シーブ39の移動速度が小さく設定されるようになる。つまり、プライマリプーリ36のプーリ幅が拡大する速度が小さく設定される。これにより、変速比のダウンシフト側への変化速度が小さく設定されるようになる。したがって、発進時の乖離度が大きい範囲(例えば、図3のX3で示す範囲)では、変速比がダウンシフト側へ緩やかに変化することになる。
【0060】
これに対し、発進時の乖離度が小さいほど(発進時の実変速比が大きいほど)、変速ゲインが大きくなるように設定される。このため、発進時の乖離度が小さいほど、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が大きく設定され、プライマリプーリ36の可動シーブ39の移動速度が大きく設定されるようになる。つまり、プライマリプーリ36のプーリ幅が拡大する速度が大きく設定される。これにより、変速比のダウンシフト側への変化速度が大きく設定されるようになる。したがって、発進時の乖離度が小さい範囲(例えば、図3のX2で示す範囲)では、変速比がダウンシフト側へ速やかに変化することになる。
【0061】
ステップST4では、車両の発進後に、ベルト戻り不良の状態が解消したか否かが判定される。ここでは、ステップST3の流量制御(速度制御)によりダウンシフト側へ変化した変速比と、上記目標変速比との乖離度(発進後の乖離度)が上記所定範囲(図3のγx〜γmaxの範囲)を超えていないか否かが判定される。言い換えれば、車両の発進後に、ダウンシフト側へ変化した変速比(発進後の実変速比)が上記所定値(図3のγx)以上あるか否かが判定される。
【0062】
そして、発進後の乖離度が上記所定範囲を超えていない場合には(発進後の実変速比が上記所定値以上である場合には)、ベルト戻り不良の状態が解消したと判定され、この変速制御を終了する。一方、発進後の乖離度が上記所定範囲を超えている場合には(発進後の実変速比が上記所定値未満である場合には)、発進後の乖離度が上記所定範囲を超えるようになるまで、ステップST3で設定された変速ゲインに基づいた流量制御が継続して行われる。
【0063】
本実施形態のベルト式無段変速機の変速制御装置によれば、変速ゲインは、従来例の場合とは異なり、予め定められた所定値ではなく、ベルト戻り不良の程度に応じて設定されるので、次のような効果が得られる。
【0064】
上述したように、発進時の乖離度が大きい範囲(ベルト戻り不良の程度が大きい範囲)では、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が小さく設定される。これにともなって、プライマリプーリ36のプーリ幅が緩やかに拡大されるようになるので、ベルト46の緩みや、それに起因するベルト46の滑りを防止することができる。
【0065】
これに対し、発進時の乖離度が小さい範囲(ベルト戻り不良の程度が小さい範囲)では、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が大きく設定され、これにともなって変速比のダウンシフト側への変化速度が大きくなる。これにより、変速が迅速に行われるようになり、変速追従性を向上させることができる。
【0066】
以上より、ベルト戻り不良の程度が大きい範囲におけるベルト滑りの発生を未然に防ぐことと、ベルト戻り不良の程度が小さい範囲における変速追従性を向上させることとの両立を図ることが可能になる。
【0067】
以上、本発明の実施形態について説明したが、ここに示した実施形態は一例であり、さまざまに変形することが可能である。
【0068】
上述した変速制御を行うための油圧制御回路の構成は一例であり、それ以外の構成を採用してもよい。
【0069】
上記実施形態では、車両の停止時の実変速比および乖離度をそのまま車両の発進時の実変速比および乖離度として用いた場合について説明したが、車両の発進時に、回転数センサ71,72により検出されたプライマリシャフト30の回転数Npおよびセカンダリシャフト31の回転数Nsに基づいて、発進時の実変速比および発進時の乖離度を求め、その発進時の実変速比および発進時の乖離度に基づいて変速ゲインの設定を行うことも可能である。
【0070】
変速ゲインの設定の際に参照される図3のマップは一例であり、設定される変速ゲインと発進時の実変速比との関係はリニア以外の関係であってもよい。マップに替えて、テーブルを参照して変速ゲインの設定することも可能である。要するに、変速ゲインを、ベルト戻り不良の程度が大きい範囲では小さく設定し、ベルト戻り不良の程度が小さい範囲では大きく設定することが可能なものであればよい。
【0071】
上記実施形態では、変速ゲインの設定を車両の発進時に行う場合について説明したが、車両の発進時だけでなく、発進後においても変速ゲインの設定を行うようにしてもよい。つまり、車両の発進後、変速ゲインの設定を随時行うようにする。この場合、車両の発進後にダウンシフト側へ変化する変速比に追従させて変速ゲインの設定を行うことが好ましい。例えば、図4、図5に示すように、変速ゲインを車両の発進後に現在の実変速比に応じて設定することが可能である。
【0072】
図4のフローチャートでは、ステップST11およびステップST12は、上記実施形態のステップST1およびステップST2と同様であるが、ステップST13およびステップST14は、上記実施形態のステップST3およびステップST4と異なっている。ここでは、異なる点について簡単に説明する。
【0073】
ステップST13では、マップ(図5)が参照され、変速ゲインとして現在の実変速比(発進時の実変速比を含む)に対応するものが取得される点で、上記実施形態とは異なる。ここで、図5の横軸は、現在の実変速比を表している。現在の実変速比は、所定時間ごとに検出される回転数センサ71,72によりプライマリシャフト30の回転数Npおよびセカンダリシャフト31の回転数Nsに基づいて求めることができる。そして、図5に示すように、設定される変速ゲインは、Y2およびY3で示す範囲(γmin〜γyの範囲)では、現在の実変速比とリニアな関係にある。なお、図5のマップは一例であり、設定される変速ゲインと現在の実変速比との関係はリニア以外の関係であってもよいが、現在の実変速比が大きくなるほど(発進後の乖離度が小さくなるほど)、設定される変速ゲインが大きくなる関係であることが好ましい。つまり、変速ゲインが、車両の発進後においてダウンシフト側へ変化する変速比に追従して増大するような関係であることが好ましい。
【0074】
ステップST14では、ステップST13の流量制御(速度制御)によりダウンシフト側へ変化した後の変速比(現在の実変速比)が予め設定された所定値(例えば、図5のγy)未満である場合には、ステップST13に移行する点で、上記実施形態とは異なる。したがって、現在の実変速比が所定値以上になるまで、ステップST13、ST14が繰り返し実行される。
【0075】
そして、この変速制御によれば、次のような効果も得られる。
【0076】
ここで、車両の発進時に設定された変速ゲインが変化しなければ、発進時の乖離度が大きい場合(ベルト戻り不良の程度が大きい場合)、変速ゲインが小さく設定されると、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が小さく設定された状態で維持される。この場合、変速比を上記所定値以上になるまで変化させるには、かなりの時間を要することになる。
【0077】
これに対し、上述のように、車両の発進後においても、現在の実変速比が大きくなるほど変速ゲインが大きくなるような関係に基づいて、変速ゲインを設定するような構成とすれば、変速比がダウンシフト側へ変化するほど、プライマリプーリ36側の油圧アクチュエータ41からの排出流量が大きく設定されるようになる。したがって、変速比がダウンシフト側へ変化するほど、変速比の変化速度が大きくなる。これにより、変速比を上記所定値以上になるまで変化させるのに要する時間を短縮できるようになる。その結果、車両の停車時のベルト戻り不良の程度が大きい場合においても、変速追従性を向上させることが可能になる。また、車両の停車時のベルト戻り不良の程度が小さい場合にも、より効果的に変速追従性の向上を図ることが可能になる。
【0078】
ベルト式無段変速機が搭載される車両は、FF方式に限らず、例えば、フロントエンジン・リヤドライブ(FR)方式や、他の駆動方式の車両であってもよい。
【0079】
車両の駆動源として挙げたガソリンエンジンは一例であり、本発明は、ディーゼルエンジンを駆動源とする車両や、ハイブリッド車両にも適用可能である。
【図面の簡単な説明】
【0080】
【図1】ベルト式無段変速機を備えたトランスアクスルを示すスケルトン図である。
【図2】ベルト戻り不良の状態で発進する際に行われるベルト式無段変速機の変速制御の一例を示すフローチャートである。
【図3】ベルト戻り不良の状態で発進する際、ベルト式無段変速機の変速制御装置において設定される変速ゲインの一例を示す図である。
【図4】ベルト戻り不良の状態で発進する際に行われるベルト式無段変速機の変速制御の他の例を示すフローチャートである。
【図5】ベルト戻り不良の状態で発進する際、ベルト式無段変速機の変速制御装置において設定される変速ゲインの他の例を示す図である。
【図6】ベルト戻り不良の状態で発進する際、従来のベルト式無段変速機の変速制御装置において設定される変速ゲインを示す図である。
【符号の説明】
【0081】
9 ベルト式無段変速機
30 プライマリシャフト
31 セカンダリシャフト
36 プライマリプーリ
37 セカンダリプーリ
40,44 溝
41,45 油圧アクチュエータ
46 ベルト
71,72 回転数センサ
200 油圧制御回路
300 CVT・ECU

【特許請求の範囲】
【請求項1】
駆動側シャフトに設けられる駆動側プーリと従動側シャフトに設けられる従動側プーリとの間にベルトが動力伝達可能に掛け渡され、前記両プーリのプーリ幅を変化させることによって変速比を変更するように構成されるとともに、
車両の発進時の実変速比が、車両の発進時に通常設定される目標変速比に対し増速側へ所定範囲を超えて乖離している場合、車両の発進時、変速比を減速側へ変更するように構成されたベルト式無段変速機の変速制御装置において、
車両の発進時に変速比を減速側へ変更する際、前記発進時の乖離度が大きい範囲では、前記プーリ幅の変化速度を小さく設定する一方、前記発進時の乖離度が小さい範囲では、前記プーリ幅の変化速度を大きく設定する速度設定手段を備えていることを特徴とするベルト式無段変速機の変速制御装置。
【請求項2】
駆動側シャフトに設けられる駆動側プーリと従動側シャフトに設けられる従動側プーリとの間にベルトが動力伝達可能に掛け渡され、油圧アクチュエータにより前記駆動側プーリのプーリ幅を変化させることによって変速比を変更するように構成されるとともに、
車両の発進時の実変速比が、車両の発進時に通常設定される目標変速比に対し増速側へ所定範囲を超えて乖離している場合、車両の発進時、変速比を減速側へ変更するように構成されたベルト式無段変速機の変速制御装置において、
車両の発進時に変速比を減速側へ変更する際、前記発進時の乖離度が大きい範囲では、前記油圧アクチュエータに対する作動油の排出流量を小さく設定する一方、前記発進時の乖離度が小さい範囲では、前記油圧アクチュエータに対する作動油の排出流量を大きく設定する流量設定手段を備えていることを特徴とするベルト式無段変速機の変速制御装置。
【請求項3】
前記流量設定手段は、前記油圧アクチュエータに接続されているソレノイドバルブに対する信号のデューティ比を演算するための変速ゲインを、前記発進時の乖離度が大きい範囲では小さく設定する一方、前記発進時の乖離度が小さい範囲では大きく設定することによって、前記油圧アクチュエータに対する作動油の排出流量を制御することを特徴とする請求項2に記載のベルト式無段変速機の変速制御装置。
【請求項4】
前記流量設定手段は、車両の発進後の実変速比が前記目標変速比に対し増速側へ所定範囲を超えて乖離している場合には、車両の発進後においても、前記発進後の乖離度が小さくなるほど変速ゲインが大きくなるような関係に基づいて前記変速ゲインの設定を行うことを特徴とする請求項3に記載のベルト式無段変速機の変速制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−196581(P2008−196581A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2007−32041(P2007−32041)
【出願日】平成19年2月13日(2007.2.13)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】