説明

低炭素鋼と、高炭素鋼との溶接

溶接部(6、26)が、低炭素鋼の薄い肉盛溶接(4)を、少なくとも溶接部が形成される表面に沿って高炭素鋼を含有する基板(2)へ接合する。上記溶接部は、融接(融解)または固体状態拡散によって生じさせることができる。いずれにおいても、上記溶接部の周りの基板中に熱影響域(HAZ)(18、30)が形成される。上記HAZは、十分なオーステナイトおよび、ことによってはベイナイトも含有し、HAZを比較的延性があり、耐亀裂性がある状態とする。上記溶接部に隣接する領域においては、HAZは58HRCを超えない硬度を有する。上記溶接部は、高エネルギービームまたは抵抗溶接装置によって形成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願のクロスリファレンス
この出願は2005年4月29日に出願された米国特許出願番号11/118、311から派生し、その優先権を主張する。
【0002】
本発明は、概して溶接に関し、特には高炭素鋼と、低炭素鋼とを溶接するプロセス、および上記プロセスによって形成された溶接物に関する。
【背景技術】
【0003】
鋼が、当該鋼中の炭素の量によって異なる上部臨界(upper critical)温度よりも高く加熱された場合、鋼は、鉄と炭素との固溶体であるオーステナイトとして知られる相となる。上記鋼が急速に冷却されると、上記オーステナイトの一部は極めて硬いマルテンサイトに変態する一方、残りの大半は、他の延性のある成分も通常は存在するにもかかわらず、大幅に軟らかく、より延性のあるオーステナイトのままである。形成されるマルテンサイトの量は、高温においてオーステナイト中に溶解している炭素の量に大きく依存する。高炭素鋼は、低炭素鋼よりも硬いマルテンサイトを含有する。硬いことにより、高炭素マルテンサイト鋼は摩耗や変形に耐えるため、ベアリング、ギアおよびそのような用途の製品において有用である。しかしながら、その同じ鋼は延性に欠け、すなわち、脆弱であり、亀裂が入りやすい。低炭素(フェライト、ハマイト(hamite))鋼は、急冷されると、低炭素マルテンサイト、および、いくらかの非マルテンサイト変態生成物(Nonmartensitic Transformation Products (NMTP))を含有する。上記低炭素の急冷された鋼はそれほど脆弱ではないが、摩耗や変形にも耐えない。
【0004】
ベアリングレース(race)などの浸炭硬化(case carburized)部品は、高炭素鋼および低炭素鋼の両方の有益な特性を有する。それは、衝撃に耐え得る延性のある核と、変形および摩耗に耐える硬いケースを有する。
【0005】
溶接による物質の接合は、接合部の近傍における物質を融解すること、または、融解を回避して固体状態の拡散結合をもたらすことのいずれかによって起こり得る。溶接プロセスにおいて融解が生じた場合、そのプロセスは融接と呼ばれる。2つの鋼から成る成分の融接の状態を考察する。固化が始まると、融解していない表面上にオーステナイトの結晶が形成し、固化が進行するにつれて、寸法および量において成長する。上記固体の炭素濃度は、それから形成される液体の炭素濃度よりも少なくなければならないため、過剰な炭素は液体中に残る。上記液体は炭素量が強化される。温度が下がり続けるにつれて、溶融帯の大部分は固体となり、その粒子の周りに減少する体積の液体が残る。
【0006】
最後の液体が固体へと凝固すると、その新しく形成された固体物質の体積は縮む。固相は、より小さい体積を有する。上記縮小は残留応力を、溶融帯として知られる新しい固体内に生じさせる。継続的な冷却がされると、より高温なオーステナイト相の大部分は、炭素濃度および冷却速度次第で、フェライト、パーライト、ベイナイトおよび/またはマルテンサイトへ変態する。
【0007】
冷却速度は、上記2つの成分の温度を上昇させる、溶接直前の熱処理によって影響を受け得る。この上昇された温度は、固化された溶融帯の冷却速度の遅れの原因となり、その結果、NMTPの形成を許容する。上記NMTPは、亀裂に対する耐久性がある。大きな体積率のマルテンサイトを含有する微細構造は、亀裂に対する耐久性がない。従って、マルテンサイト形成の最小化のため、固化され、冷却された溶融帯には、縮小に起因する残留応力に対応しては、亀裂は入らない。上記成分の予熱は、よく知られた手法ではあるが、予熱が行なえない場合がある。上記成分の軟化、寸法変化、歪曲、および/または望ましくない表面のスケーリングおよび着色が、予熱を望ましくない状態にし得る。
【0008】
予熱を行なわないで、鋼を融接する状態を考察する。成分中の金属の質量が放熱板として機能し、溶接領域の鋼を急速に冷却する−実質的な自己急冷−結果として、溶融帯の鋼は、一定量のマルテンサイトを得る。予熱されていない低炭素鋼の溶接中に形成される、固化された、冷却された溶融帯は、比較的軟らかい低炭素マルテンサイト、いくらかのNMTP、およびいくらかの残留オーステナイトから成る。上記溶融帯は、縮小に起因する残留応力に対応しては、亀裂は入らない。
【0009】
予熱なしでの二つの高炭素鋼の接合は、溶接者にとって、特別な問題をもたらす。固化され、冷却された高炭素鋼の溶融帯は、比較的硬い高炭素マルテンサイト、および、より少ない量の残留オーステナイトから成る。この脆弱な微細構造は、縮小に起因する残留応力に対応しては、亀裂が入る。縮小に起因する残留応力によって引き起こされた溶融帯内の亀裂は、「凝固割れ」および「高温割れ」として知られる。
【0010】
前述は、溶融帯に焦点を合わせた。次に、上記溶融帯に隣接する熱影響域(HAZ)の状態を考察する。溶接の熱は、HAZの温度をも上部臨界温度を超えて上昇させる。HAZが冷却される際、HAZも縮小に起因する残留応力に曝される。しかしながら、HAZ内の物質は、より高温な溶融帯よりも冷たく、より強いままである。HAZの亀裂は、必ずしも固化に伴わない。亀裂が生じる場合は、数秒から数日遅れて生じる。
【0011】
二つの低炭素鋼の融接は、最初にオーステナイト化され、その後冷却されて、低炭素マルテンサイト、NMTPおよびいくらかの残留オーステナイトを含有する、耐亀裂性複合材微細構造を形成するHAZをもたらす。二つの高炭素鋼の融接は、亀裂易発性高炭素マルテンサイトおよびいくらかの残留オーステナイトを作り出す、加熱され、冷却されたHAZをもたらす。このように、高炭素鋼のHAZには亀裂が入りやすい。
【0012】
全ての溶接物が融接を含有するわけではない−溶接は、拡散結合である可能性がある。摩擦かくはん溶接がその例である。融解が生じない場合、溶融帯およびその結果の縮小応力が成長できない。溶融帯が存在しない場合でも、HAZは接合部の両側に生じる。成長するHAZ微細構造は、冷却速度および炭素濃度に依存する。予熱がされない場合、自己冷却に起因し、冷却速度が速い。急激な急冷のため、上記HAZ微細構造は必ずマルテンサイトを含有する。その結果炭素濃度は、HAZ微細構造の決定要因である。低炭素鋼の固体状態溶接は、耐亀裂性微細構造を作り出し、亀裂易発性微細構造は高炭素鋼のHAZにおいて形成される。
【0013】
金属フィラーなしの高炭素鋼へ低炭素鋼を溶接者が融接する際、幾分似た問題が発生する。この場合も、融解物およびHAZが成長し、自己急冷が生じる。溶融帯内の鋼が、高炭素鋼および低炭素鋼の混合物を象徴し、その結果上記二つの鋼の炭素含有量の中間の炭素の量を含有する。通常は、硬いプレート型マルテンサイトの形成では十分でなく、そのため、溶融帯は比較的延性があるままとなる。低炭素鋼と共に位置するHAZの大部分は、懸念を生じるに足りるほど脆弱ではない。しかしながら、高炭素鋼と共に位置する部分であるHAZの残りは、かなりの量のプレート型マルテンサイトを獲得し、その結果硬くて脆弱であり、残留および付与の両方の応力下でのクラッキングにさらされる。高炭素鋼の溶接の問題は、より高い高炭素鋼へ、または低炭素鋼への場合の何れにおいても、突合せ溶接および隅肉溶接において特に深刻である。しかしながら、レーザー重ねシーム溶接抵抗溶接においても出現する。
【0014】
一般的に、耐摩耗性ベアリングのレースは、上記レース上に硬い表面を形成するための熱処理を行なった、浸炭硬化鋼から形成されるか、あるいは、熱処理において硬化された高炭素鋼から形成されている。しかしながらレースは、シールドまたはその他の構成部品に適合されていなければならないことが多く、低炭素鋼からスタンプ形成されることが多い。現在の技術において、溶接は実行可能な選択肢ではないため、構成部品はその上にプレスされ、その内部または上部にはめ込まれ、また、他の方法においてはレースに機械的に接続される。溶接が実用であれば、望ましい代替手段として機能する。確かに、低炭素鋼への、高炭素鋼の溶接からの有害な結果を少なくするための手順は存在する。その一つは予熱である。しかしながら予熱は、ことによると所望の程度を超えて両方の鋼を軟化させる。また、形成後に、溶接物に硬度調整(temper)パルスを付与するという手順もある。しかしながらこれらの手順では、所望の延性は得られない。通常は、約58HRC(ロックウェルC)以上に硬さを低下させ、好ましくは50HRC以上である。この場合も、伝統的な焼き戻しがあるが、それはかなりの時間を要する拡散プロセスであり、しかも約58HRCまでしか高炭素鋼の硬度を低下させない。
【発明を実施するための最良の形態】
【0015】
図を参照すると、溶接物A(図1)は、浸炭硬化基板2と、上記基板2を覆う肉盛溶接(overlay)4の形の、二つの成分を含有する。加えて、上記溶接物Aは、上記肉盛溶接4を基板2へと接合し、これらの二つの成分をしっかりと付着させる、重ねシーム溶接部6を含有する。上記基板2は耐摩耗性ベアリング用のレースという形をとっていてよく、上記肉盛溶接4は、ベアリングの内部から汚染物質を締め出すためのシールの一部を形成するシールドまたはケースでもよい。溶接部6において上記基板2は、上記肉盛溶接4よりも相対的に大きな厚みおよび質量を有する。上記溶接部6は、上記肉盛溶接4を貫通するが、基板2は貫通しない。
【0016】
上記基板2(図1および2)は、一体形および単一の構造であるが、低炭素鋼の核10と、高炭素鋼のケース12とを有する。上記核10は上記成分6の圧倒的に大きな質量を構成し、ケース12は非常に薄く、単に核10中に拡散する。実際には、上記ケース12は、上記核10の上に伸張し、上記核10を包む。このように、これは、基板2上に外表面14を提供する。上記核10の、重量における炭素含有量は、0.10%から0.30%の間の範囲であり、上記核10の残りは原則的に鉄であってもよい。上記表面14における上記ケース12の、重量における炭素含有量は0.7%から1.3%の間の範囲であってもよい。熱処理を施すことにより、上記ケース12は非常に硬い。実際は、その硬度は58から64HRCの間の範囲であってもよい。
【0017】
上記肉盛溶接4は、非常に薄く、約.030および0.200インチの範囲の厚みである。それは、少なくとも上記溶接部6の幅と同等の重なりを有する状態で、上記基板2の硬いケース12上の表面14に覆いかぶさる。上記肉盛溶接4は、重量炭素における0.09%から0.20%の間を含有する低炭素鋼から形成される。大抵上記肉盛溶接4は、厚さ約0.200インチ以下、好ましくは0.059から0.135インチの、鉄シートから形成されている。それは、余白(margin)または境界15を有する。
【0018】
重ねシーム溶接部6は、肉盛溶接4を貫通し、基板2のケース12へ侵入し、低炭素肉盛溶接4を上記基板2へ、上記基板2の高炭素ケース12において付着させる。それ自身の内部において、上記溶接部6は連続的であり、それ故、それはその幅よりも、長さの方がかなり長い。それは、上記境界15から内側へ配置されている。それは(図2)、上記肉盛溶接4を通り、ことによると基板2の核10を越えて、ケース12へと伸張する溶融帯16を作り出す−実際は、以前融解されていた金属の領域。上記溶融帯16内の鋼は、上記肉盛溶接4および基板2のみから由来する鋼である。金属フィラーは添加されていない。上記溶接部16は、少なくとも上記基板2の内部、特に、ケース12によって占有される基板2の部分に位置する、溶融帯16の大半を覆う、熱影響域(HAZ)18も形成する。その構成要素も、また鋼であり、実際は、HAZ18の深さがどれぐらいかによって、ケース12または核10の炭素含有量である鋼である。確かに、HAZ18は、残りのケース12または核10と同じ硬度を有さないかもしれないが、少なくとも炭素含有量は同じである。
【0019】
基板2が浸炭硬化鋼(図2)でできている場合は、上記溶接部6は、肉盛溶接4の、肉盛溶接4がその下に位置する基板2と付着される場所に、高エネルギービームの焦点を合わせた、ワンパスに形成される。他の高エネルギービームでも足りるが、上記ビームはレーザーによって作り出されることが好ましい。上記高エネルギービームは、焦点を合わせた局部的な領域において、肉盛溶接4の鋼と、その下に位置する基板2の鋼とを融解するのに十分に強力である。それは、溶融帯16およびHAZ18を作り出す。
【0020】
上記高エネルギービームは、焦点を合わせた場所の溶接物Aの温度を、肉盛溶接4の低炭素鋼および基板2上のケース10の高炭素鋼を融解するのに十分なほどに上昇させる。上記融解された鋼は、冷却および固化の際に、溶融帯16となる。上記高エネルギービーム16は、ケース12内の周辺の鋼の温度も、高炭素鋼の上部臨界温度よりも高く上昇するが、実際にその鋼を融解するには十分ではない。上記熱は、周辺の鋼を、オーステナイトの固溶体の変態し、このようにしてHAZ18を形成する。高エネルギービームが動くに従って、上記融解した鋼は急激に冷却され、その熱は基板2の残りの領域内へと急速に消散し、肉盛溶接4内へはあまり消散しない。実際は、溶融帯16およびHAZ18は、自己急冷される。
【0021】
高い硬度を回避するために、マルテンサイトの大部分は、基板2用の浸炭硬化鋼のHAZ18内での成長から構造化し、上記高エネルギービームの強度は、高炭素鋼ケース12内へ浸透するためだけに要求されるものを超える。実際は、上記ビームの強度は、HAZ18の、溶融帯16およびHAZ18の間の境界面の温度を、少なくとも華氏1750度まで上昇させるのに十分である。HAZ18の温度を少なくともその程度まで上昇させることの結果は、オーステナイト中の入手可能な炭素を溶解することである。上記高エネルギービームが前進すると、上記境界面付近のHAZ18内のオーステナイトは、M温度を通って冷却され、その熱は上記基板2の質量内へ消散する。溶液中の、増加された溶解炭素のおかげで、HAZ18中のオーステナイトは、大部分のマルテンサイトおよび残留オーステナイトの複合構造へと変態する。今のオーステナイト体積率は30%〜50%である。いかなる場合も、上記臨界面付近のHAZ18中の残留オーステナイトの程度は、高炭素ケース10中のHAZ18の外に存在するものよりも大幅に大きい。このことは、上記臨界面付近のHAZ18を、56〜58HRCを越えない硬度とする。残留オーステナイトの比較的高い体積率は、亀裂の形成を抑制するのに十分な延性である。
【0022】
HAZ18のより深く、華氏1750度よりも高く上昇した領域から離れた場所では、微細構造は、より少ない残留オーステナイトと、より多いマルテンサイトとから成る。しかしながら、以下の二つの理由から、亀裂は形成されない:(1)上記臨界面から離れた場所では、残留応力の状態が大幅に少ない、および(2)上記マルテンサイトが、少ない炭素、微小亀裂がなくて脆弱性が少ないラス型マルテンサイトを含有する。
【0023】
溶融帯16およびHAZ18の温度が、M温度を通り、オーステナイト中の入手可能な炭素を溶解することなく急激に下がると、それは最高の炭素含有量を有するため、HAZ18中が最大の濃度となるように、マルテンサイトが形成し始める。実際は、HAZ18中のマルテンサイトは、HAZ18を、63〜64HRCもの高い硬度とする。高硬度に伴う脆弱性および高い残留応力に起因して、溶融帯16およびHAZ18との境界に沿って破断が生じやすい。
【0024】
上記基板2が相同(homogenous)の場合、ある意味ではそれはもっぱら高炭素鋼から形成されており、硬化され(through hardened)、上記溶接部6は二以上のパスで形成される。第一のパスは、後続のパスよりもかなり高い強度を有する。第二のパスは、溶融帯16およびHAZ18の冷却を阻害するように作用する。上記第二のパスは、およそ3から5秒で、上記第一のパスに続く。すなわち、最初の高エネルギービームが特定の場所を離れると、第二のパスにおける同じまたは他の高エネルギービームが、同じ場所を数秒後に通過する。いかなる場合も、第一のパス後のHAZ18中の高炭素鋼の温度は、第一および第二のパスの間、上記溶接部6に沿った任意の点において、HAZ18中の鋼が原則的にオーステナイトにとどまるように、M温度より高いままでなければならない。第二のパス中に、鋼の温度は再び上昇するが、第一のパス中ほどは高くなく、共析温度よりも低い。上記鋼の全部ではなく、一部は、溶融帯16中で融解するが、HAZ18中ではしない。HAZ18中の鋼は、オーステナイトの一部を、マルテンサイトに比べて比較的軟らかいベイナイトへ変態するのに十分な時間M温度よりも高いままである。上記高エネルギービームは動き、溶融帯16およびHAZ18の鋼は、基板2および肉盛溶接4の質量へ熱を消散させ、再び冷却される。上記鋼はM温度より低くまで冷却され、オーステナイトの一部がマルテンサイトへ変態するが、鋼が第一のパスの後に常温まで冷却された場合と同じ量ほどではない。実際は、変態するオーステナイトが少なく存在する。いかなる場合も、高炭素HAZ18の鋼は、M温度から常温へのさらなる冷却に際し、ベイナイトが体積率で少なくとも10%、好ましくは約35%に達する状態で、ベイナイト、マルテンサイト、および、いくらかの残留オーステナイトを含有する。上記ベイナイトおよびオーステナイトは比較的軟らかく、それらがより硬いマルテンサイトと共に存在することは、HAZ18の硬度を、境界面おいて好ましくは46〜50HRCとし、いかなる場合においても55HRCより低くする。溶融帯16はそれよりも軟らかい。結果として、残留応力は低減され、溶融帯16およびHAZ18の間の境界に沿っての割れ目は成長しにくい。第一の冷却、その後の、冷却を中断させる加熱、その後の第二の冷却は、ケース12の、特に表面14における鋼に特有な、TTT図によって示すことができる(図3)。この手順は、浸炭硬化基板2との使用にも適している。
【0025】
肉盛溶接4は、それぞれには割れ目がなく、かつ、他の面では溶接部26自体だけではなく、上記溶接部26の周りも、比較的軟らかい鋼と特徴付けられる、一以上の抵抗プロジェクション溶接26(図5)で基板2に付着されていてもよい。基板2は、浸炭硬化鋼または硬化処理された高炭素鋼のいずれかで形成されていてもよい。上記プロセスは、両方に施されてもよい。それぞれのプロジェクション溶接26は、肉盛溶接4および基板2の間およびそれらの内部に存在するが、何れも貫通しない溶融帯28を含有していてもよい。溶融帯28の回避が望まれる場合がある。実際は、上記溶融帯28は、固体状態拡散が生じるように、上昇された温度において、圧力および温度で形成された圧着によって置き換えられてもよい。より低い温度と、プロセスの熱とが、破断を最小とする。それでも、基板2のケース12内には、上記溶接部26はHAZ30を構築する。連続的または、少なくとも、その幅よりも長い長さである重ねシーム溶接6に対し、上記プロジェクション溶接26は一般に円形かつ制限された小さなスポットである。
【0026】
プロジェクション溶接26を形成するために、肉盛溶接4は金型の上に位置され、基板2へ付着されるべき場所の一方の面にはくぼみを、もう一方には戻り止め(detent)または突起32を付与するために、パンチで打たれる(図4)。一旦突起32が形成されると、肉盛溶接4は、基板2の固定される場所の上に、上記突起32が基板2の外表面14に対するように配置される。実際には、肉盛溶接4は、突起32の後ろのくぼみの周りに、肉盛溶接4に接触する電極34によって、基板2に対してしっかりと押さえつけられる。突起32が基板2の表面14に対してしっかりと接触する状態で、電極34は、それが接触する肉盛溶接4と一緒に、電気エネルギー源を横切って配置される。それは、突起32を通過し、突起32において肉盛溶接4が基板2へ、融接(融解)または固体状態拡散のいずれかによって結合することを招くのに十分高く、突起32を加熱する。電流の程度が、突起32を融解するものである場合、上記突起32は消滅し、肉盛溶接4が基板2の上の表面14に設置される(図5)。上記電流は突起32のみを融解するのではなく、突起32が接触する基板2も融解する。すなわち上記電流は、肉盛溶接4内および基板2内にも位置する溶融帯28を作り出す。加えて、上記電流は、基板2内に存在する、溶融帯28の周りおよび下のHAZ30を作り出す。一方、上記電流が固体状態拡散を形成する場合には、HAZ30はまだ成長する。
【0027】
融着の場合、溶融帯28およびHAZ30はこの時点で常温まで冷却され、溶融帯28はいくらかのマルテンサイトを取得するが、過剰に硬く、脆弱にするには十分ではない。結局それは、肉盛溶接4の低炭素含有量と、基板2のケース12の高炭素含有量との間のどこかの炭素含有量である。しかしながら基板2の質量への熱の急速な消散の結果、HAZ30は、急峻な温度低下を経験する。オーステナイトの大部分は、HAZ30がM温度より低く冷却された場合は、マルテンサイトに変態し、このことはHAZ30を極めて硬く、かつ脆弱にする。同じことが固体状態拡散においてもいえる。
【0028】
しかしながらプロジェクション溶接26は、硬化された高炭素基板2用の重ねシーム溶接6と同様に、2工程プロセスにおいて形成される。第一工程は溶融帯28、または少なくとも固体状態拡散結合およびHAZ30を作り出す。第二工程は、両者を再加熱する電位の一以上の投与から成る。より具体的には、HAZ30中の鋼がM温度まで冷却される前に、それは少なくとも一度溶接部26を、電位を横切るように配置し、電流をその内部へ導くことによって再加熱される。上記一以上の再加熱は、HAZ30の温度を上昇させるが、共析温度に達するのには十分ではない。実際には、これらの電流を後に付与することは、HAZ30中のオーステナイトの一部がベントナイトへと変態するのに十分な熱および十分な時間を生み出す。最終的に電位が除去されると、HAZ30および溶融帯28拡散結合は、冷却の大部分が基板2の質量への熱の消散−実際には自己急冷によって、常温まで冷却される。温度が、M温度を通って下がり、M温度に近づくと、オーステナイトの一部はマルテンサイトへ変態する。しかしながらマルテンサイトは、最初の溶接部26の形成後の冷却が中断されなかった場合よりもかなり少ない。
【0029】
基本的に、肉盛溶接4を基板2へ接合するために用いられるのと同じ2工程の手順は、後者が浸炭硬化ケースまたは硬化処理されていても、抵抗スポット溶接または抵抗シーム溶接によって、肉盛溶接4を基板へ接合するのに用いることができる。両方の場合において、溶接は突起32が欠落すると生じる。
【0030】
肉盛溶接4と基板2とが重ねシーム溶接6または、抵抗溶接26のいずれで接合されるとにかかわらず、形成された溶接部6または26は、低炭素鋼を高炭素鋼へ溶接する従来の手順による場合よりも、少ないマルテンサイト、多いオーステナイト、ことによるとベイナイトを含有する。このことは、基板2が浸炭硬化または硬化処理のいずれにおいても、同様のことがいえる。上記溶接は、低炭素鋼と、高炭素鋼との間の結合を作り出し、上記結合は、上記二つの鋼を融解することによって形成される融着でも、固体状態拡散結合でもよい。溶接の種類にかかわらず、溶接は肉盛溶接4と、基板2との温度を上昇させ、熱影響域(HAZ)を作り出し、HAZはマルテンサイトを含有する一方、溶接部においては十分なオーステナイトも含有し、ベイナイトも含有してもよい−全ては、その場所の硬度が、好ましくは55HRC、確実に58HRCを越えない、もしくはHAZを耐亀裂性とする硬度を形成するのに十分な量である。
【0031】
溶接プロセスの状況では、低炭素鋼は重量で約0.30%以下の炭素を含有し、高炭素鋼は重量で約0.60%以上の炭素を含有する。
【図面の簡単な説明】
【0032】
【図1】図1は、本発明の一部を形成し、本発明のプロセスに従って形成された溶接物の断片的な斜視図である。
【図2】図2は、図1の線2−2に沿った断面図である。
【図3】図3は、2ステージプロセスによって形成された溶接物を冷却する手法を示すTTT図である。
【図4】図4は、抵抗プロジェクション溶接によって接合される前の高炭素鋼成分および低炭素鋼成分を示す断片的な断面図である。
【図5】図5は、本発明に従って形成された抵抗プロジェクション溶接の断面図である。

【特許請求の範囲】
【請求項1】
低炭素鋼から形成される第一成分と;
二つの成分が接合されている表面を有する第二成分であって、前記第二成分の鋼は、少なくとも前記二つの成分が接合されている表面においては、高炭素鋼である、第二成分と;
前記二つの成分を接合する、前記二つの成分の間の結合を形成する溶接部であって、第二成分内の前記溶接部の周りに熱影響域を作り出す溶接部と;
マルテンサイト、および、残留オーステナイトを含有し、前記結合に沿って、58HRCを超えない硬度を有する、前記熱影響域と、を含有する溶接物。
【請求項2】
前記溶接部が、前記第一および第二成分の両方の鋼に由来する融着を形成することを特徴とする、請求項1に記載の溶接物。
【請求項3】
前記溶接部が、固体状態拡散結合であることを特徴とする、請求項1に記載の溶接物。
【請求項4】
前記成分が接合される表面における前記第二成分が、浸炭硬化(case carburized)されていることを特徴とする、請求項1に記載の溶接物。
【請求項5】
前記第二成分が、相同(homogenous)であり、硬化されている(through hardened)ことを特徴とする、請求項1に記載の溶接物。
【請求項6】
前記第二成分が、耐摩耗性ベアリングのレース(race)であることを特徴とする、請求項1に記載の溶接物。
【請求項7】
前記結合における熱影響域が、体積率で、30%〜50%のオーステナイトを含有することを特徴とする、請求項1に記載の溶接物。
【請求項8】
前記熱影響域が、体積率で、少なくとも10%のベイナイトを含有することを特徴とする、請求項1に記載の溶接物。
【請求項9】
前記溶接部が、高エネルギービームによって形成された、重ねシーム溶接であることを特徴とする、請求項1に記載の溶接物。
【請求項10】
前記溶接部が、プロジェクション溶接であることを特徴とする、請求項1に記載の溶接物。
【請求項11】
前記溶接部が、抵抗溶接であることを特徴とする、請求項10に記載の溶接物。
【請求項12】
第一および第二鋼成分を接合する方法であって、
前記第一成分は、低炭素鋼から形成され、
前記第二成分は、その表面に沿って高炭素鋼を有する、浸炭硬化(case carburized)鋼から形成され、
前記方法は:前記第一成分が前記第二成分を覆うように、前記二つの成分を一緒に配置することと;
前記第二成分を覆い、前記第二成分と接触している前記第一成分の局部的な領域に、前記第一成分の前記局部的な領域と、前記局部的な領域の下に覆われている前記第二成分とを融解し、両方の成分内に位置する溶融帯と、前記第二成分内の、その域内の鋼がオーステナイトを含有する熱影響域とを作り出し、さらに前記オーステナイト内の入手できる炭素を溶解するのに十分に強力なビームである高エネルギービームを導くことと;
前記高エネルギービームを前記局部的な領域から分離し、前記溶融帯および熱影響域内の鋼を冷却すること、とを含有する方法。
【請求項13】
高エネルギービームが、前記熱影響域内の鋼の温度を、少なくとも華氏1750度まで上昇させることを特徴とする、請求項12に記載の方法。
【請求項14】
前記第一成分が、前記第二成分を覆い、かつ、余白(margin)があり;
前記高エネルギービームが、前記第二成分上の余白から離れた、前記第一成分上に作用することを特徴とする、請求項13に記載の方法。
【請求項15】
前記溶融帯内の鋼と、前記熱影響域内の鋼とが、前記鋼に付与された熱を、前記熱影響域を越えて前記第二成分へと消散させることにより、冷却されることを特徴とする、請求項12に記載の方法。
【請求項16】
前記高エネルギービームが、重ねシーム溶接を形成することを特徴とする、請求項12に記載の方法。
【請求項17】
第一および第二鋼成分を溶接する方法であって、
前記第一成分は、低炭素鋼から形成され、
前記第二成分は、その表面に高炭素鋼を含有し、
前記方法は:前記第一成分が、前記第二成分上の高炭素含有の表面に接触するように、前記二つの成分を一緒に配置することと;
前記成分が一緒にある場所である、局部的な領域内の前記成分を、その領域内の前記二つの成分の前記鋼間の結合に作用するように十分に加熱し、前記加熱はさらに、前記第二成分における近隣の高炭素鋼を、高炭素鋼がオーステナイトである熱影響域へと変態することと;
前記局部的な領域内の鋼を冷却するけれども、オーステナイトにとどめることと;
前記熱影響域内の鋼がオーステナイトにとどまっている間に、前記融解物および熱影響域を加熱し、マルテンサイトの形成の前に、冷却を妨げることと;
その後、前記熱影響域内の鋼を、その領域内のオーステナイトの一部がベイナイトへと変態することを可能とするのに十分な高温に維持することと;および
その後、前記熱影響域内の鋼の、マルテンサイト開始温度未満まで、鋼を冷却し、前記熱影響域内の鋼に、マルテンサイトに加えてベイナイトを含有させること、とを含有する方法。
【請求項18】
前記局部的な領域内の成分の加熱が、前記局部的な領域における前記二つの成分の鋼を融解し、前記熱影響域に囲まれた溶融帯を作り出すことを特徴とする、請求項17に記載の方法。
【請求項19】
前記溶接部が、高エネルギービームによって形成された、重ねシーム溶接であることを特徴とする、請求項17に記載の方法。
【請求項20】
前記溶接部が、プロジェクション溶接であることを特徴とする、請求項17に記載の方法。
【請求項21】
前記溶接部が、抵抗溶接であることを特徴とする、請求項17に記載の方法。
【請求項22】
前記成分を加熱して前記鋼を融解することが、前記二つの成分が一緒にある場所における、前記二つの成分を高エネルギービームへ曝すことを含むことを特徴とする、請求項17に記載の方法。
【請求項23】
前記成分を加熱して前記鋼を融解することが、前記第一成分が前記第二成分と接触している場所に、前記成分を介して、電流を導くことを含むことを特徴とする、請求項17に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2008−539086(P2008−539086A)
【公表日】平成20年11月13日(2008.11.13)
【国際特許分類】
【出願番号】特願2008−509112(P2008−509112)
【出願日】平成18年4月25日(2006.4.25)
【国際出願番号】PCT/US2006/015994
【国際公開番号】WO2006/118936
【国際公開日】平成18年11月9日(2006.11.9)
【出願人】(507356176)ザ ティムケン カンパニー (5)
【氏名又は名称原語表記】THE TIMKEN COMPANY
【住所又は居所原語表記】1835 Dueber Avenue S., Canton, OH 44706−0930
【Fターム(参考)】