説明

半導体装置およびその作製方法

【課題】安定した電気特性を有する薄膜トランジスタを有する、信頼性のよい半導体装置を作製し、提供することを課題の一とする。
【解決手段】チャネル形成領域を含む半導体層を酸化物半導体膜とする薄膜トランジスタを有する半導体装置の作製方法において、酸化物半導体膜の純度を高め、不純物である水分などを低減する加熱処理(脱水化または脱水素化のための加熱処理)を行う。また、酸化物半導体膜中だけでなく、ゲート絶縁層内に存在する水分などの不純物を低減し、上下に接して設けられる膜と酸化物半導体膜の界面に存在する水分などの不純物を低減する。

【発明の詳細な説明】
【技術分野】
【0001】
酸化物半導体を用いる半導体装置及びその作製方法に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
【背景技術】
【0003】
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。金属酸化物は多様に存在しさまざまな用途に用いられている。酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで必要とされる透明電極材料として用いられている。
【0004】
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては、例えば、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛などがあり、このような半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジスタが既に知られている(特許文献1乃至4、非特許文献1)。
【0005】
ところで、金属酸化物は一元系酸化物のみでなく多元系酸化物も知られている。例えば、ホモロガス相を有するInGaO(ZnO)(m:自然数)は、In、Ga及びZnを有する多元系酸化物半導体として知られている(非特許文献2乃至4)。
【0006】
そして、上記のようなIn−Ga−Zn系酸化物で構成される酸化物半導体を薄膜トランジスタのチャネル層として適用可能であることが確認されている(特許文献5、非特許文献5及び6)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開昭60−198861号公報
【特許文献2】特開平8−264794号公報
【特許文献3】特表平11−505377号公報
【特許文献4】特開2000−150900号公報
【特許文献5】特開2004−103957号公報
【非特許文献】
【0008】
【非特許文献1】M. W. Prins, K. O. Grosse−Holz, G. Muller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf、「A ferroelectric transparent thin−film transistor」、 Appl. Phys. Lett.、17 June 1996、 Vol.68 p.3650−3652
【非特許文献2】M. Nakamura, N. Kimizuka, and T. Mohri、「The Phase Relations in the In2O3−Ga2ZnO4−ZnO System at 1350℃」、J. Solid State Chem.、1991、Vol.93, p.298−315
【非特許文献3】N. Kimizuka, M. Isobe, and M. Nakamura、「Syntheses and Single−Crystal Data of Homologous Compounds, In2O3(ZnO)m(m=3,4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m(m=7,8,9, and 16) in the In2O3−ZnGa2O4−ZnO System」、 J. Solid State Chem.、1995、Vol.116, p.170−178
【非特許文献4】中村真佐樹、君塚昇、毛利尚彦、磯部光正、「ホモロガス相、InFeO3(ZnO)m(m:自然数)とその同型化合物の合成および結晶構造」、固体物理、1993年、Vol.28、No.5、p.317−327
【非特許文献5】K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono、「Thin−film transistor fabricated in single−crystalline transparent oxide semiconductor」、SCIENCE、2003、Vol.300、p.1269−1272
【非特許文献6】K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono、「Room−temperature fabrication of transparent flexible thin−film transistors using amorphous oxide semiconductors」、NATURE、2004、Vol.432 p.488−492
【発明の概要】
【発明が解決しようとする課題】
【0009】
安定した電気特性を有する薄膜トランジスタを有する、信頼性のよい半導体装置を作製し、提供することを課題の一とする。
【課題を解決するための手段】
【0010】
チャネル形成領域を含む半導体層を酸化物半導体膜とする薄膜トランジスタを有する半導体装置の作製方法において、酸化物半導体膜の純度を高め、不純物である水分などを低減する加熱処理(脱水化または脱水素化のための加熱処理)を行う。また、酸化物半導体膜中だけでなく、ゲート絶縁層内に存在する水分などの不純物を低減し、上下に接して設けられる膜と酸化物半導体膜の界面に存在する水分などの不純物を低減する。
【0011】
水分などの不純物を低減するため、酸化物半導体膜を形成後、酸化物半導体膜が露出した状態で窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体雰囲気下、或いは減圧下での200℃以上、好ましくは400℃以上600℃以下の加熱処理を行い、酸化物半導体膜の含有水分を低減する。加熱後は不活性気体雰囲気下で室温以上100℃未満の範囲まで徐冷する。
【0012】
窒素、またはアルゴンなどの不活性気体雰囲気下、或いは減圧下での加熱処理によって膜中の含有水分を低減させた酸化物半導体膜を用いて、薄膜トランジスタの電気特性を向上させるとともに、量産性と高性能の両方を備えた薄膜トランジスタを実現する。
【0013】
加熱温度の条件を振り、窒素雰囲気下で加熱処理を行った複数の試料を昇温脱離分析TDS(Thermal Desorption Spectroscopy)測定で測定した結果を図2、図3、及び図4に示す。
【0014】
昇温脱離分析装置は、試料を高真空中で加熱・昇温中に試料から脱離、発生するガス成分を四重極質 量分析計で検出、同定する装置であり、試料表面、内部から脱離するガス及び分子が観察できる。電子科学株式会社製の昇温脱離分析装置(製品名:EMD−WA1000S)を用い、測定条件は、昇温約10℃/分とし、測定中は約1×10−7(Pa)の真空度である。また、SEM電圧は1500Vとし、Dwell Timeは、0.2[sec]とし、使用チャネル数は23個とする。なお、HOのイオン化係数を1.0、HOのフラグメンテーション係数を0.805、HOのスルーパス係数を1.56、HOのポンピングレートを1.0とする。
【0015】
図2は、ガラス基板のみの試料(比較試料)と、ガラス基板上に設定膜厚50nm(実際にはエッチング後の膜厚約30nm)のIn−Ga−Zn−O系非単結晶膜を成膜した試料(サンプル1)とを比較したTDSの結果を示すグラフである。図2はHOについて測定した結果を示し、300℃付近にピークが見られることからIn−Ga−Zn−O系非単結晶膜から水分(HO)などの不純物が脱離されていることが確認できる。
【0016】
また、図3は、ガラス基板上に設定膜厚50nmのIn−Ga−Zn−O系非単結晶膜を成膜した試料(サンプル1)と、ガラス基板上に設定膜厚50nmのIn−Ga−Zn−O系非単結晶膜を成膜した後、大気雰囲気下で加熱温度350℃とし1時間の加熱処理を行った試料(サンプル2)と、窒素雰囲気で加熱温度350℃とし1時間の加熱処理を行った試料(サンプル3)とを比較したものであり、HOについてのTDS測定結果を示すグラフである。図3の結果から、サンプル3において、300℃付近のピークがサンプル2よりも低減されていることから窒素雰囲気での加熱処理により水分(HO)などの不純物が脱離されていることが確認できる。従って、大気雰囲気よりも窒素雰囲気での加熱のほうが膜中の水分(HO)などの不純物が低減されていることがわかる。
【0017】
また、図4は、ガラス基板上に設定膜厚50nmのIn−Ga−Zn−O系非単結晶膜を成膜した試料(サンプル1)と、窒素雰囲気下での加熱温度を250℃とし1時間の加熱処理を行った試料(サンプル4)と、窒素雰囲気下での加熱温度を350℃とし1時間の加熱処理を行った試料(サンプル3)と、窒素雰囲気下での加熱温度を450℃とし1時間の加熱処理を行った試料(サンプル5)と、窒素雰囲気下での加熱温度を350℃とし10時間の加熱処理を行った試料(サンプル6)を比較したものであり、HOについてのTDS測定結果を示すグラフである。図4の結果から、窒素雰囲気での加熱温度が高ければ高いほど、In−Ga−Zn−O系非単結晶膜中から脱離する水分(HO)などの不純物が低減されていることがわかる。
【0018】
また、図3及び図4のグラフから、200℃〜250℃付近で確認できる水分(HO)などの不純物が脱離したことを示す第1のピークと、300℃以上で水分(HO)などの不純物が脱離したことを示す第2のピークとが確認できる。
【0019】
なお、窒素雰囲気中で450℃の加熱処理を行った試料は、その後、室温で大気中に1週間程度放置しても200℃以上で脱離する水分は観測されず、加熱処理によって、In−Ga−Zn−O系非単結晶膜が安定化することが判明している。
【0020】
また、窒素雰囲気下での加熱温度条件を150℃、175℃、200℃、225℃、250℃、275℃、300℃、325℃、350℃、375℃、400℃、425℃、450℃と振り、それぞれキャリア濃度を測定した結果を図1に示す。
【0021】
図5(A)に酸化物半導体膜(In−Ga−Zn−O系非単結晶膜)の物性(キャリア濃度とHall移動度)を評価するための物性評価用試料510の立体視図を示す。物性評価用試料510を作製して室温にてHall効果測定を行い、酸化物半導体膜のキャリア濃度とHall移動度(ホール移動度)を評価した。物性評価用試料510は、基板500上に酸窒化珪素からなる絶縁膜501を形成し、その上に評価対象となる10mm×10mmの酸化物半導体膜502を形成し、その上にそれぞれ直径1mmの電極503乃至506を形成して作製した。Hall効果測定から求めた酸化物半導体膜のキャリア濃度は図1に示し、Hall移動度は図5(B)に示し、導電率を図5(C)に示す。
【0022】
図1、図2、図3、図4の結果から、TDS測定の250℃以上において、In−Ga−Zn−O系非単結晶膜中から水分(HO)などの不純物が脱離することと、キャリア濃度の変動との間に関係があることがわかる。In−Ga−Zn−O系非単結晶膜中から水分(HO)などの不純物が脱離することによってキャリア濃度が増加する。
【0023】
また、TDS測定により、HOの他にH、O、OH、H、O、N、N、及びArのそれぞれについて測定を行ったところ、HO、H、O、及びOHは、はっきりとピークが観測できたが、H、O、N、N、及びArはピークが観測できなかった。試料は、ガラス基板に設定膜厚50nmのIn−Ga−Zn−O系非単結晶膜を成膜したものを用いており、加熱条件は、窒素雰囲気下250℃1時間、窒素雰囲気下350℃1時間、窒素雰囲気下350℃10時間、450℃1時間とし、比較例として加熱処理なしのIn−Ga−Zn−O系非単結晶膜と、ガラス基板のみとをそれぞれ測定した。図37にHのTDS結果を示し、図38はOのTDS結果を示し、図39はOHのTDS結果を示し、図40はHのTDS結果を示す。なお、上記加熱条件での窒素雰囲気の酸素濃度は、20ppm以下である。
【0024】
以上の結果より、In−Ga−Zn−O系非単結晶膜の加熱処理を行うことにより、主として水分(HO)が放出されることがわかる。すなわち、加熱処理によりIn−Ga−Zn−O系非単結晶膜から水分(HO)の脱離が主として起こり、図37で示すH、図38で示すO及び図39で示すOHのTDSの測定値は、水分子が分解して生成されたものが影響している。なお、In−Ga−Zn−O系非単結晶膜には水素、OHも含まれると考えられることから、これらも熱処理により付随して放出されている。
【0025】
本明細書では、窒素、または希ガス(アルゴン、ヘリウムなど)の不活性気体雰囲気下、或いは減圧下での加熱処理を脱水化または脱水素化のための加熱処理と呼ぶ。本明細書では、この加熱処理によってHとして脱離させていることのみを脱水素化と呼んでいるわけではなく、H、OHなどを脱離することを含めて脱水化または脱水素化と便宜上呼ぶこととする。
【0026】
不活性気体下で加熱処理を行うことによって酸化物半導体層に含まれる不純物(HO)を低減してキャリア濃度を増加させた後、徐冷を行う。徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減することが、信頼性の向上に繋がる。
【0027】
酸化物半導体層は窒素雰囲気下における加熱処理によって、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)し、低抵抗化した酸化物半導体層とすることができる。その後、低抵抗化した酸化物半導体層に接して酸化物絶縁膜を形成すると、低抵抗化した酸化物半導体層において少なくとも酸化物絶縁膜と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満、さらに好ましくは1×1014/cm以下)し、高抵抗化酸化物半導体領域とすることができる。半導体装置のプロセス中、不活性気体雰囲気下(或いは減圧下)での加熱、徐冷及び酸化物絶縁膜の形成などによって酸化物半導体層のキャリア濃度を増減させることが重要である。また、酸化物半導体層に脱水化または脱水素化の加熱処理を行うことにより酸化物半導体層は酸素欠乏型となってN型化(N、Nなど)させ、その後、酸化物絶縁膜の形成を行うことにより酸化物半導体層を酸素過剰な状態とすることでI型化させているとも言える。また、In−Ga−Zn−O系非単結晶膜上に酸化物絶縁膜を形成すると、図1中点線10に示すキャリア濃度(1×1014/cm以下)以下となる。これにより、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置を作製し、提供することが可能となる。
【0028】
なお、低抵抗化した酸化物半導体層に接して形成する酸化物絶縁膜は、水分や、水素イオンや、OHなどの不純物をブロックする無機絶縁膜を用い、具体的には酸化珪素膜、または窒化酸化珪素膜を用いる。
【0029】
さらに、低抵抗化した酸化物半導体層上に接して保護膜となる酸化物絶縁膜を形成した後に、2回目の加熱を行ってもよい。酸化物半導体層上に接して保護膜となる酸化物絶縁膜を形成した後、2回目の加熱を行うと、薄膜トランジスタの電気的特性のばらつきを軽減することができる。
【0030】
本明細書で開示する本発明の一態様は、ゲート電極層と、該ゲート電極層上にゲート絶縁層と、該ゲート絶縁層上に酸化物半導体層と、酸化物半導体層上に絶縁層とを有し、前記ゲート絶縁層、前記酸化物半導体層、及び前記絶縁層の層内、前記ゲート絶縁層と前記酸化物半導体層の界面、及び前記酸化物半導体層と前記絶縁層の界面における水素濃度は、3×1020cm−3以下である半導体装置である。
【0031】
酸化物半導体層は、層内に含まれる水素だけでなく、水(HO)、M−OH、M−Hなど色々な形態を含み得るが、絶対量である水素濃度の平均値またはピーク値は、3×1020cm−3以下、好ましくは、1×1020cm−3以下である。
【0032】
これらの濃度範囲は、2次イオン質量分析法(SIMS)で得られたもの、またはそのデータに基づいて得られる。
【0033】
上記構成は、上記課題の少なくとも一つを解決する。
【0034】
また、上記構造を実現するための本発明の一態様は、ゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層を脱水化または脱水素化し、脱水化または脱水素化させた酸化物半導体層上にソース電極層及びドレイン電極層を形成し、ゲート絶縁層、酸化物半導体層、ソース電極層、及びドレイン電極層上に酸化物半導体層の一部と接する酸化物絶縁膜を形成することを特徴とする半導体装置の作製方法である。なお、脱水化または脱水素化は窒素雰囲気、または希ガス雰囲気、或いは減圧下の加熱である。
【0035】
また、上記構造を実現するための本発明の他の一態様は、ゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層を不活性雰囲気下で加熱してキャリア濃度を増加させた後、キャリア濃度を増加した酸化物半導体層上にソース電極層及びドレイン電極層を形成し、ゲート絶縁層、加熱した酸化物半導体層、ソース電極層、及びドレイン電極層上に前記加熱した酸化物半導体層の一部と接する酸化物絶縁膜を形成してキャリア濃度を低減することを特徴とする半導体装置の作製方法である。なお、酸化物半導体層を不活性雰囲気下、かつ温度400℃以上で加熱した後、室温以上100℃未満まで徐冷を行うことを特徴とする。
【0036】
また、上記構造を実現するための本発明の他の一態様は、ゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層を減圧下で加熱してキャリア濃度を増加させた後、キャリア濃度を増加した酸化物半導体層上にソース電極層及びドレイン電極層を形成し、ゲート絶縁層、加熱した酸化物半導体層、ソース電極層、及びドレイン電極層上に加熱した酸化物半導体層の一部と接する酸化物絶縁膜を形成してキャリア濃度を低減することを特徴とする半導体装置の作製方法である。
【0037】
上記各作製方法の構成において、キャリア濃度を増加した酸化物半導体層のキャリア濃度は、1×1018/cm以上である。また、酸化物絶縁膜を形成してキャリア濃度を低減した酸化物半導体層のキャリア濃度は、1×1018/cm未満、好ましくは1×1014/cm以下である。
【0038】
本明細書中で用いる酸化物半導体は、例えば、InMO(ZnO)(m>0)で表記される薄膜を形成し、その薄膜を半導体層として用いた薄膜トランジスタを作製する。なお、Mは、Ga、Fe、Ni、Mn及びCoから選ばれた一の金属元素又は複数の金属元素を示す。例えばMとして、Gaの場合があることの他、GaとNi又はGaとFeなど、Ga以外の上記金属元素が含まれる場合がある。また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素としてFe、Niその他の遷移金属元素、又は該遷移金属の酸化物が含まれているものがある。本明細書においては、InMO(ZnO)(m>0)で表記される構造の酸化物半導体層のうち、MとしてGaを含む構造の酸化物半導体をIn−Ga−Zn−O系酸化物半導体とよび、その薄膜をIn−Ga−Zn−O系非単結晶膜とも呼ぶ。
【0039】
また、酸化物半導体層に適用する酸化物半導体として上記の他にも、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、In−Ga−O系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体を適用することができる。また上記酸化物半導体層に酸化珪素を含ませてもよい。酸化物半導体層に結晶化を阻害する酸化珪素(SiOx(X>0))を含ませることで、製造プロセス中において酸化物半導体層の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができる。なお、酸化物半導体層は非晶質な状態であることが好ましく、一部結晶化していてもよい。
【0040】
酸化物半導体は、好ましくはInを含有する酸化物半導体、さらに好ましくは、In,及びGaを含有する酸化物半導体である。酸化物半導体層をI型(真性)とするため、脱水化または脱水素化の工程を経ることは有効である。
【0041】
また、薄膜トランジスタは静電気などにより破壊されやすいため、ゲート線またはソース線に対して、駆動回路保護用の保護回路を同一基板上に設けることが好ましい。保護回路は、酸化物半導体を用いた非線形素子を用いて構成することが好ましい。
【0042】
また、ゲート絶縁層、及び酸化物半導体膜を大気に触れさせることなく連続的に処理(連続処理、インサイチュ(insitu)工程、連続成膜とも呼ぶ)してもよい。大気に触れさせることなく連続処理することで、ゲート絶縁層と酸化物半導体膜の界面が、水やハイドロカーボンなどの、大気成分や大気中に浮遊する不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。
【0043】
本明細書中で連続処理とは、PCVD法またはスパッタ法で行う第1の処理工程からPCVD法またはスパッタ法で行う第2の処理工程までの一連のプロセス中、被処理基板の置かれている雰囲気が大気等の汚染雰囲気に触れることなく、常に真空中または不活性ガス雰囲気(窒素雰囲気または希ガス雰囲気)で制御されていることを言う。連続処理を行うことにより、清浄化された被処理基板の水分等の再付着を回避して成膜などの処理を行うことができる。
【0044】
同一チャンバー内で第1の処理工程から第2の処理工程までの一連のプロセスを行うことは本明細書における連続処理の範囲にあるとする。また、異なるチャンバーで第1の処理工程から第2の処理工程までの一連のプロセスを行う場合、第1の処理工程を終えた後、大気にふれることなくチャンバー間を基板搬送して第2の処理を施すことも本明細書における連続処理の範囲にあるとする。
【0045】
なお、第1の処理工程と第2の処理工程の間に、基板搬送工程、アライメント工程、徐冷工程、または第2の工程に必要な温度とするため基板を加熱または冷却する工程等を有しても、本明細書における連続処理の範囲にあるとする。
【0046】
ただし、洗浄工程、ウエットエッチング、レジスト形成といった液体を用いる工程が第1の処理工程と第2の処理工程の間にある場合、本明細書でいう連続処理の範囲には当てはまらないとする。
【発明の効果】
【0047】
安定した電気特性を有する薄膜トランジスタを作製し、提供することができる。また、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置を提供することができる。
【図面の簡単な説明】
【0048】
【図1】加熱温度に対する酸化物半導体層のキャリア濃度を示すグラフである。
【図2】TDS測定結果を示すグラフである。
【図3】TDS測定結果を示すグラフである。
【図4】TDS測定結果を示すグラフである。
【図5】(A)は物性評価用試料の立体視図であり、(B)は酸化物半導体層のHall効果測定結果を示し、(C)は導電率を示すグラフである。
【図6】本発明の一態様を示す作製工程の断面図である。
【図7】本発明の一態様を示す半導体装置を説明する図である。
【図8】本発明の一態様を示す作製工程の断面図である。
【図9】本発明の一態様を示す半導体装置を説明する図である。
【図10】本発明の一態様を示す作製工程の断面図である。
【図11】本発明の一態様を示す作製工程の断面図である。
【図12】本発明の一態様を示す半導体装置を説明する図である。
【図13】本発明の一態様を示す半導体装置を説明する図である。
【図14】電気炉の断面図
【図15】半導体装置を説明する図。
【図16】半導体装置を説明する図。
【図17】半導体装置を説明する図。
【図18】半導体装置の画素等価回路を説明する図。
【図19】半導体装置を説明する図。
【図20】半導体装置のブロック図を説明する図。
【図21】信号線駆動回路の構成を説明する図。
【図22】信号線駆動回路の動作を説明するタイミングチャート。
【図23】信号線駆動回路の動作を説明するタイミングチャート。
【図24】シフトレジスタの構成を説明する図。
【図25】図24に示すフリップフロップの接続構成を説明する図。
【図26】半導体装置を説明する図。
【図27】電子書籍の一例を示す外観図。
【図28】テレビジョン装置およびデジタルフォトフレームの例を示す外観図。
【図29】遊技機の例を示す外観図。
【図30】携帯型のコンピュータおよび携帯電話機の一例を示す外観図。
【図31】半導体装置の作製方法を説明する図。
【図32】本発明の一態様を示す半導体装置を説明する図。
【図33】本発明の一態様を示す半導体装置を説明する図。
【図34】本発明の一態様を示す半導体装置を説明する図。
【図35】本発明の一態様を示す半導体装置を説明する図。
【図36】本発明の一態様を示す半導体装置を説明する図。
【図37】HのTDS結果を示すグラフである。
【図38】OのTDS結果を示すグラフである。
【図39】OHのTDS結果を示すグラフである。
【図40】HのTDS結果を示すグラフである。
【図41】BT試験前後における薄膜トランジスタのVg−Id特性を示すグラフである。
【図42】計算で用いた酸化物半導体層の構造を説明する図である。
【図43】酸化物半導体層の酸素密度の計算結果を説明する図である。
【発明を実施するための形態】
【0049】
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
【0050】
(実施の形態1)
半導体装置及び半導体装置の作製方法を図6及び図7を用いて説明する。
【0051】
図7(A)は半導体装置の有する薄膜トランジスタ470の平面図であり、図7(B)は図7(A)の線C1−C2における断面図である。薄膜トランジスタ470はボトムゲート型の薄膜トランジスタであり、絶縁表面を有する基板である基板400上に、ゲート電極層401、ゲート絶縁層402、半導体層403、ソース電極層又はドレイン電極層405a、405bを含む。また、薄膜トランジスタ470を覆い、半導体層403に接する酸化物絶縁膜407が設けられている。
【0052】
酸化物半導体からなる半導体層403は、少なくとも酸化物半導体膜の成膜後に不純物である水分などを低減する加熱処理(脱水化または脱水素化のための加熱処理)が行われ、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)させた後、酸化物絶縁膜407を接して形成することにより、高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満、さらに好ましくは1×1014/cm以下)させて酸化物半導体膜をチャネル形成領域として用いることができる。
【0053】
さらに、脱水化または脱水素化のための加熱処理によって水分(HO)などの不純物を脱離させる過程を経た後、不活性雰囲気下で徐冷を行うことが好ましい。脱水化または脱水素化のための加熱処理及び徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減することが、薄膜トランジスタ470の信頼性の向上に繋がる。
【0054】
また、半導体層403内だけでなく、ゲート絶縁層402内、及び上下に接して設けられる膜と酸化物半導体である半導体層403の界面、具体的にはゲート絶縁層402と半導体層403の界面、及び酸化物絶縁膜407と半導体層403の界面に存在する水分などの不純物を低減する。
【0055】
ここで薄膜トランジスタ470の信頼性試験の結果を示す一例を図41を用いて説明する。
【0056】
薄膜トランジスタの信頼性を調べるための手法の一つに、バイアス−熱ストレス試験(以下、BT試験という)がある。BT試験は加速試験の一種であり、長期間の使用によって起こる薄膜トランジスタの特性変化を、短時間で評価することができる。特に、BT試験前後における薄膜トランジスタのしきい値電圧の変化量は、信頼性を調べるための重要な指標となる。BT試験前後において、しきい値電圧の変化量が少ないほど信頼性が高い。
【0057】
具体的には、薄膜トランジスタが形成されている基板の温度(基板温度)を一定に維持し、薄膜トランジスタのソースおよびドレインを同電位とし、ゲートにソースおよびドレインとは異なる電位を一定時間印加する。基板温度は、試験目的に応じて適宜設定すればよい。また、ゲートに印加する電位がソースおよびドレインの同電位よりも高い場合を+BT試験といい、ゲートに印加する電位がソースおよびドレインの同電位よりも低い場合を−BT試験という。
【0058】
BT試験の試験強度は、基板温度、ゲート絶縁膜に加えられる電界強度、電界印加時間により決定することができる。ゲート絶縁膜に加えられる電界強度は、ゲート、ソースおよびドレイン間の電位差をゲート絶縁膜の膜厚で除して決定される。例えば、膜厚が100nmのゲート絶縁膜に印加する電界強度を2MV/cmとしたい場合は、電位差を20Vとすればよい。
【0059】
本実施の形態では、薄膜トランジスタ作製時におけるソースおよびドレイン形成前に行う熱処理を、窒素雰囲気中で250℃、350℃、450℃とした3種類の試料それぞれについてBT試験を行った結果を説明する。
【0060】
なお、一般的に電圧とは、2点間における電位差のことをいい、電位とは、ある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいうが、電子回路において、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを該ある一点における電位として示すことが多いため、本明細書では、ある一点における電位と基準となる電位(例えば接地電位)との差を該ある一点における電位として示した場合において、特に指定する場合を除き、該ある一点における電位を電圧ともいう。
【0061】
BT試験は、基板温度を150℃、ゲート絶縁膜に印加する電界強度を2MV/cm、印加時間を1時間とし、+BT試験および−BT試験それぞれについて行った。
【0062】
まず、+BT試験について説明する。BT試験対象となる薄膜トランジスタの初期特性を測定するため、基板温度を40℃とし、ソース−ドレイン間電圧(以下、ドレイン電圧という)を10Vとし、ソース−ゲート間電圧(以下、ゲート電圧という)を−20V〜+20Vまで変化させたときのソース−ドレイン電流(以下、ドレイン電流という)の変化特性、すなわちVg−Id特性を測定した。ここでは基板温度を試料表面への吸湿対策として40℃としているが、特に問題がなければ、室温(25℃)下で測定してもかまわない。
【0063】
次に、基板温度を150℃まで上昇させた後、薄膜トランジスタのソースおよびドレインの電位を0Vとした。続いて、ゲート絶縁膜へ印加される電界強度が2MV/cmとなるように、ゲートに電圧を印加した。ここでは、薄膜トランジスタのゲート絶縁膜の厚さが100nmであったため、ゲートに+20Vを印加し、そのまま1時間保持した。ここでは印加時間を1時間としたが、目的に応じて適宜時間を変更してもよい。
【0064】
次に、ソース、ドレインおよびゲートへ電圧を印加したまま、基板温度を40℃まで下げた。この時、基板温度が下がりきる前に電圧の印加をやめてしまうと、余熱の影響によりBT試験で薄膜トランジスタに与えられたダメージが回復されてしまうため、電圧は印加したままで基板温度を下げる必要がある。基板温度が40℃になった後、電圧の印加を終了させた。
【0065】
次に、初期特性の測定と同じ条件でVg−Id特性を測定し、+BT試験後のVg−Id特性を得た。
【0066】
続いて、―BT試験について説明する。―BT試験も+BT試験と同様の手順で行うが、基板温度を150℃まで上昇させた後にゲートに印加する電圧を−20Vとする点が異なる。
【0067】
なお、BT試験に際しては、まだ一度もBT試験を行っていない薄膜トランジスタを用いて試験を行うことが重要である。例えば、一度+BT試験を行った薄膜トランジスタを用いて―BT試験を行うと、先に行った+BT試験の影響により、―BT試験結果を正しく評価することができない。一度+BT試験を行った薄膜トランジスタを用いて、再度+BT試験を行った場合等も同様である。ただし、これらの影響を踏まえて、あえてBT試験を繰り返す場合はこの限りではない。
【0068】
図41(A)乃至図41(C)に、BT試験前後における薄膜トランジスタのVg−Id特性を示す。図41(A)は、ソースおよびドレイン形成前に行う熱処理を、窒素雰囲気中で250℃として作製した薄膜トランジスタのBT試験結果である。図41(B)はソースおよびドレイン形成前に行う熱処理を、窒素雰囲気中で350℃として作製した薄膜トランジスタのBT試験結果であり、図41(C)はソースおよびドレイン形成前に行う熱処理を、窒素雰囲気中で450℃として作製した薄膜トランジスタのBT試験結果である。
【0069】
各図とも、横軸はゲート電圧(Vg)で、縦軸はゲート電圧に対するドレイン電流(Id)を対数目盛で示している。また、初期特性711、721、731は+BT試験前の薄膜トランジスタのVg−Id特性を、+BT712、722、732は+BT試験後の薄膜トランジスタのVg−Id特性を、−BT713、723、733は−BT試験後の薄膜トランジスタのVg−Id特性を示している。なお、−BT試験前の薄膜トランジスタのVg−Id特性は、+BT試験前のVg−Id特性とほぼ同じであったため、図中には記載していない。
【0070】
図41(A)乃至図41(C)によると、初期特性711、721、731に比べて、+BT712、722、732はしきい値電圧がプラス方向へ、−BT713、723、733はしきい値電圧がマイナス方向へ変化していることがわかる。また、図41(A)より図41(B)、図41(B)より図41(C)という様に、ソースおよびドレイン形成前に行う熱処理の温度を250℃、350℃、450℃と上昇させるに伴い、+BT試験後のしきい値電圧の変化量が小さくなっていることがわかる。
【0071】
熱処理の温度を450℃以上とすることで、少なくとも+BT試験での信頼性を向上させることができる。In−Ga−Zn−O系非単結晶膜中から水分(HO)などの不純物が脱離することと、BTストレス試験の結果との間に関係があることがわかる。
【0072】
また、酸化物半導体層である半導体層403と接するソース電極層又はドレイン電極層405a、405bとして、チタン、アルミニウム、マンガン、マグネシウム、ジルコニウム、ベリリウムのいずれか一または複数から選択された材料とする。また、上述した元素を組み合わせた合金膜などを積層してもよい。
【0073】
チャネル形成領域を含む半導体層403としては、半導体特性を有する酸化物材料を用いればよく、代表的には、In−Ga−Zn−O系非単結晶膜を用いる。
【0074】
図6(A)乃至(D)に薄膜トランジスタ470の作製工程の断面図を示す。
【0075】
図6(A)において、絶縁表面を有する基板である基板400上にゲート電極層401を設ける。下地膜となる絶縁膜を基板400とゲート電極層401の間に設けてもよい。下地膜は、基板400からの不純物元素の拡散を防止する機能があり、窒化珪素膜、酸化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた一又は複数の膜による積層構造により形成することができる。ゲート電極層401の材料は、モリブデン、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とする合金材料を用いて、単層で又は積層して形成することができる。
【0076】
例えば、ゲート電極層401の2層の積層構造としては、アルミニウム層上にモリブデン層が積層された2層の積層構造、または銅層上にモリブデン層を積層した二層構造、または銅層上に窒化チタン層若しくは窒化タンタルを積層した二層構造、窒化チタン層とモリブデン層とを積層した二層構造とすることが好ましい。3層の積層構造としては、タングステン層または窒化タングステンと、アルミニウムと珪素の合金またはアルミニウムとチタンの合金と、窒化チタンまたはチタン層とを積層した積層とすることが好ましい。
【0077】
次いで、ゲート電極層401上にゲート絶縁層402を形成する。
【0078】
ゲート絶縁層402は、プラズマCVD法又はスパッタリング法等を用いて、酸化珪素層、窒化珪素層、酸化窒化珪素層又は窒化酸化珪素層を単層で又は積層して形成することができる。例えば、成膜ガスとして、SiH、酸素及び窒素を用いてプラズマCVD法により酸化窒化珪素層を形成すればよい。
【0079】
次いで、ゲート絶縁層402上に、酸化物半導体膜を形成する。
【0080】
なお、酸化物半導体膜をスパッタ法により成膜する前に、アルゴンガスを導入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層402の表面に付着しているゴミを除去することが好ましい。逆スパッタとは、ターゲット側に電圧を印加せずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなどを用いてもよい。また、アルゴン雰囲気に酸素、NOなどを加えた雰囲気で行ってもよい。また、アルゴン雰囲気にCl、CFなどを加えた雰囲気で行ってもよい。
【0081】
酸化物半導体膜は、In−Ga−Zn−O系酸化物半導体ターゲットを用いてスパッタ法により成膜する。また、酸化物半導体膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び酸素の混合雰囲気下においてスパッタ法により形成することができる。
【0082】
ゲート絶縁層402、及び酸化物半導体膜を大気に触れさせることなく連続的に形成してもよい。大気に触れさせることなく連続成膜することで、界面が、水やハイドロカーボンなどの、大気成分や大気中に浮遊する不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。
【0083】
酸化物半導体膜をフォトリソグラフィ工程により島状の酸化物半導体層である酸化物半導体層430(第1の酸化物半導体層)に加工する(図6(A)参照。)。
【0084】
酸化物半導体層に不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下或いは減圧下において加熱処理を行った後、不活性雰囲気下で徐冷を行う(図6(B)参照。)。酸化物半導体層430を上記雰囲気下で加熱処理することで、酸化物半導体層430に含まれる水素及び水などの不純物を除去することができる。
【0085】
なお、加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
【0086】
また、加熱処理は、電気炉を用いた加熱方法、加熱した気体を用いるGRTA(Gas Rapid Thermal Anneal)法またはランプ光を用いるLRTA(Lamp Rapid Thermal Anneal)法などの瞬間加熱方法などを用いることができる。
【0087】
ここで、酸化物半導体層430の加熱処理の一形態として、電気炉601を用いた加熱方法について、図14を用いて説明する。
【0088】
図14は、電気炉601の概略図である。チャンバー602の外側にはヒーター603が設けられており、チャンバー602を加熱する。また、チャンバー602内には、基板604を搭載するサセプター605が設けられており、チャンバー602内に基板604を搬入または搬出する。また、チャンバー602にはガス供給手段606及び排気手段607が設けられている。ガス供給手段606により、チャンバー602にガスを導入する。また、排気手段607により、チャンバー602内を排気する、またはチャンバー602内を減圧にする。なお、電気炉601の昇温特性を0.1℃/min以上20℃/min以下とすることが好ましい。また、電気炉601の降温特性を0.1℃/min以上15℃/min以下とすることが好ましい。
【0089】
ガス供給手段606は、ガス供給源611、圧力調整弁612、精製器613、マスフローコントローラ614、ストップバルブ615を有する。本実施の形態では、ガス供給源611とチャンバー602の間に精製器613を設けることが好ましい。精製器613を設けることで、ガス供給源611からチャンバー602内に導入されるガスの、水、水素などの不純物を、当該精製器613によって除去することが可能であり、チャンバー602内への水、水素などの侵入を低減することができる。
【0090】
本実施の形態では、ガス供給源611から、窒素または希ガスをチャンバー602に導入し、チャンバー内を窒素または希ガス雰囲気とし、200℃以上600℃以下、好ましくは400℃以上450℃以下に加熱されたチャンバー602において、基板604上に形成された酸化物半導体層430を加熱することで、酸化物半導体層430の脱水化または脱水素化を行うことができる。
【0091】
または、排気手段によって減圧下で、200℃以上600℃以下、好ましくは400℃以上450℃以下に加熱されたチャンバー602において、基板604上に形成された酸化物半導体層430を加熱することで、酸化物半導体層430の脱水化または脱水素化を行うことができる。
【0092】
次に、ヒーターをオフ状態にし、加熱装置のチャンバー602を徐々に冷却する。酸化物半導体層は不活性ガス雰囲気下或いは減圧下における加熱処理及び徐冷によって、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)し、低抵抗化した酸化物半導体層431(第2の酸化物半導体層)とすることができる。
【0093】
この結果、後に形成される薄膜トランジスタの信頼性を高めることができる。
【0094】
なお、減圧下で加熱処理を行った場合は、加熱後に不活性ガスを流して大気圧に戻して冷却すればよい。
【0095】
また、加熱装置のチャンバー602内の基板604を300℃まで冷却した後、基板604を室温の雰囲気に移動してもよい。この結果、基板604の冷却時間を短縮することができる。
【0096】
また、加熱装置がマルチチャンバーの場合、加熱処理と冷却処理を異なるチャンバーで行うことができる。代表的には、窒素または希ガスが充填され、且つ200℃以上600℃以下、好ましくは400℃以上450℃以下に加熱された第1のチャンバーにおいて、基板上の酸化物半導体層を加熱する。次に、窒素または希ガスが導入された搬送室を経て、窒素または希ガスが充填され、且つ100℃以下、好ましくは室温である第2のチャンバーに、上記加熱処理された基板を移動し、冷却処理を行う。以上の工程により、スループットを向上させることができる
【0097】
また、不活性ガス雰囲気下或いは減圧下における酸化物半導体層の加熱処理は、島状の酸化物半導体層に加工する前の酸化物半導体膜に行うこともできる。その場合には、不活性ガス雰囲気下或いは減圧下における酸化物半導体膜の加熱処理後に室温以上100℃未満まで徐冷を行い、加熱装置から基板を取り出し、フォトリソグラフィ工程を行う。
【0098】
また、不活性ガス雰囲気下或いは減圧下の加熱処理後の酸化物半導体膜の状態は、非晶質な状態であることが好ましいが、一部結晶化してもよい。
【0099】
次いで、ゲート絶縁層402、及び酸化物半導体層431上に導電膜を形成する。
【0100】
導電膜の材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等が挙げられる。
【0101】
また、導電膜の形成後に加熱処理を行う場合には、この加熱処理に耐える耐熱性を導電膜に持たせることが好ましい。Al単体では耐熱性が劣り、また腐蝕しやすい等の問題点があるので耐熱性導電性材料と組み合わせて形成する。Alと組み合わせる耐熱性導電性材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)、Sc(スカンジウム)から選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜、または上述した元素を成分とする窒化物で形成する。
【0102】
酸化物半導体層431、導電膜をエッチング工程によりエッチングし、酸化物半導体層432、及びソース電極層又はドレイン電極層405a、405bを形成する(図6(C)参照。)。なお、酸化物半導体層432は一部のみがエッチングされ、溝部(凹部)を有する酸化物半導体層432となる。
【0103】
酸化物半導体層432に接してスパッタ法による酸化物絶縁膜407を形成する。低抵抗化した酸化物半導体層に接して形成する酸化物絶縁膜407は、水分や、水素イオンや、OHなどの不純物を含まず、これらが外部から侵入することをブロックする無機絶縁膜を用い、具体的には酸化珪素膜、または窒化酸化珪素膜を用いる。
【0104】
本実施の形態では、酸化物絶縁膜407として膜厚300nmの酸化珪素膜を成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃とする。酸化珪素膜のスパッタ法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び酸素雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲットを用いても珪素ターゲットを用いてもよい。例えば珪素ターゲットを用いて、酸素、及び窒素雰囲気下でスパッタ法により酸化珪素を形成することができる。
【0105】
低抵抗化した酸化物半導体層432に接してスパッタ法またはPCVD法などにより酸化物絶縁膜407を形成すると、低抵抗化した酸化物半導体層432において少なくとも酸化物絶縁膜407と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満)し、高抵抗化酸化物半導体領域とすることができる。半導体装置の作製プロセス中、不活性気体雰囲気下(或いは減圧下)での加熱、徐冷及び酸化物絶縁膜の形成などによって酸化物半導体層のキャリア濃度を増減させることが重要である。酸化物半導体層432は、高抵抗化酸化物半導体領域を有する半導体層403(第3の酸化物半導体層)となり、薄膜トランジスタ470を作製することができる(図6(D)参照。)。
【0106】
上記脱水処理または脱水素処理のための加熱処理を行うことによって酸化物半導体層に含まれる不純物(HO、H、OHなど)を低減してキャリア濃度を増加させた後、徐冷を行う。徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減し、薄膜トランジスタ470の信頼性を向上することができる。
【0107】
また、酸化物絶縁膜407を形成後、窒素雰囲気下、又は大気雰囲気下(大気中)において薄膜トランジスタ470に加熱処理(好ましくは150℃以上350℃未満)を行ってもよい。例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。該加熱処理を行うと、酸化物半導体層432が酸化物絶縁膜407と接した状態で加熱されることになり、薄膜トランジスタ470の電気的特性のばらつきを軽減することができる。この加熱処理(好ましくは150℃以上350℃未満)は、酸化物絶縁膜407の形成後であれば特に限定されず、他の工程、例えば樹脂膜形成時の加熱処理や、透明導電膜を低抵抗化させるための加熱処理と兼ねることで、工程数を増やすことなく行うことができる。
【0108】
(実施の形態2)
半導体装置及び半導体装置の作製方法を図8及び図9を用いて説明する。実施の形態1と同一部分又は同様な機能を有する部分、及び工程は、実施の形態1と同様に行うことができ、繰り返しの説明は省略する。
【0109】
図9(A)は半導体装置の有する薄膜トランジスタ460の平面図であり、図9(B)は図9(A)の線D1−D2における断面図である。薄膜トランジスタ460はボトムゲート型の薄膜トランジスタであり、絶縁表面を有する基板である基板450上に、ゲート電極層451、ゲート絶縁層452、ソース電極層又はドレイン電極層455a、455b、及び半導体層453を含む。また、薄膜トランジスタ460を覆い、半導体層453に接する酸化物絶縁膜457が設けられている。半導体層453は、In−Ga−Zn−O系非単結晶膜を用いる。
【0110】
薄膜トランジスタ460は、薄膜トランジスタ460を含む領域全てにおいてゲート絶縁層452が存在し、ゲート絶縁層452と絶縁表面を有する基板である基板450の間にゲート電極層451が設けられている。ゲート絶縁層452上にはソース電極層又はドレイン電極層455a、455bが設けられている。そして、ゲート絶縁層452、及びソース電極層又はドレイン電極層455a、455b上に半導体層453が設けられている。また、図示しないが、ゲート絶縁層452上にはソース電極層又はドレイン電極層455a、455bに加えて配線層を有し、該配線層は半導体層453の外周部より外側に延在している。
【0111】
酸化物半導体からなる半導体層453は、少なくとも酸化物半導体膜の成膜後に不純物である水分などを低減する加熱処理(脱水化または脱水素化のための加熱処理)が行われ、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)させた後、酸化物絶縁膜457を接して形成することにより、高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満)させて酸化物半導体膜をチャネル形成領域として用いることができる。
【0112】
さらに、脱水化または脱水素化のための加熱処理によって水分(HO)などの不純物を脱離させる過程を経た後、不活性雰囲気下で徐冷を行うことが好ましい。脱水化または脱水素化のための加熱処理及び徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減することが、薄膜トランジスタ460の信頼性の向上に繋がる。
【0113】
また、酸化物半導体層である半導体層453と接するソース電極層又はドレイン電極層455a、455bとして、チタン、アルミニウム、マンガン、マグネシウム、ジルコニウム、ベリリウムのいずれか一または複数から選択された材料とする。
【0114】
図8(A)乃至(D)に薄膜トランジスタ460の作製工程の断面図を示す。
【0115】
絶縁表面を有する基板である基板450上にゲート電極層451を設ける。下地膜となる絶縁膜を基板450とゲート電極層451の間に設けてもよい。下地膜は、基板450からの不純物元素の拡散を防止する機能があり、窒化珪素膜、酸化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた一又は複数の膜による積層構造により形成することができる。ゲート電極層451の材料は、モリブデン、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とする合金材料を用いて、単層で又は積層して形成することができる。
【0116】
ゲート電極層451上にゲート絶縁層452を形成する。
【0117】
ゲート絶縁層452は、プラズマCVD法又はスパッタリング法等を用いて、酸化珪素層、窒化珪素層、酸化窒化珪素層又は窒化酸化珪素層を単層で又は積層して形成することができる。
【0118】
ゲート絶縁層452上に、導電膜を形成し、フォトリソグラフィ工程により島状のソース電極層又はドレイン電極層455a、455bに加工する(図8(A)参照。)。
【0119】
ソース電極層又はドレイン電極層455a、455bの材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等が挙げられる。また、上述した元素を組み合わせた合金膜などを積層してもよい。
【0120】
また、ソース電極層又はドレイン電極層455a、455bの材料としては、後に行われる脱水化または脱水素化のための加熱処理に耐えることのできる耐熱性の高いモリブデン膜を用いると好ましい。また、モリブデン膜上に上記Al、Cr、Ta、Ti、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜などを積層してもよい。
【0121】
次に、ゲート絶縁層452、及びソース電極層又はドレイン電極層455a、455b上に酸化物半導体膜を形成し、フォトリソグラフィ工程により島状の酸化物半導体層483(第1の酸化物半導体層)に加工する(図8(B)参照。)。
【0122】
酸化物半導体層483は、チャネル形成領域となるため、実施の形態1の酸化物半導体膜と同様に形成する。
【0123】
なお、酸化物半導体層483をスパッタ法により成膜する前に、アルゴンガスを導入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層452の表面に付着しているゴミを除去することが好ましい。
【0124】
酸化物半導体層483に脱水化または脱水素化のための加熱処理を行った後、不活性雰囲気下で徐冷を行う。脱水化または脱水素化のための加熱処理としては、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下或いは減圧下において、200℃以上600℃以下、好ましくは400℃以上450℃以下の加熱処理を行う。酸化物半導体層483は上記雰囲気下における加熱処理によって、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)し、低抵抗化した酸化物半導体層484(第2の酸化物半導体層)とすることができる(図8(C)参照。)。
【0125】
脱水化または脱水素化のための加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
【0126】
また、不活性ガス雰囲気下或いは減圧下における酸化物半導体層の加熱処理は、島状の酸化物半導体層に加工する前の酸化物半導体膜に行うこともできる。その場合には、不活性ガス雰囲気下或いは減圧下における酸化物半導体膜の加熱処理後に室温以上100℃未満まで徐冷を行い、加熱装置から基板を取り出し、フォトリソグラフィ工程を行う。
【0127】
次いで、酸化物半導体層484に接してスパッタ法またはPCVD法による酸化物絶縁膜457として形成する。本実施の形態では、酸化物絶縁膜457として膜厚300nmの酸化珪素膜を成膜する。成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃とする。低抵抗化した酸化物半導体層484に接してスパッタ法により酸化珪素膜である酸化物絶縁膜457を形成すると、低抵抗化した酸化物半導体層484において少なくとも酸化珪素膜である酸化物絶縁膜457と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満)し、高抵抗化酸化物半導体領域とすることができる。半導体装置の作製プロセス中、不活性気体雰囲気下(或いは減圧下)での加熱、徐冷及び酸化物絶縁膜の形成などによって酸化物半導体層のキャリア濃度を増減させることが重要である。酸化物半導体層484は、高抵抗化酸化物半導体領域を有する半導体層453(第3の酸化物半導体層)となり、薄膜トランジスタ460を作製することができる(図8(D)参照。)。
【0128】
脱水処理または脱水素処理のための加熱処理を行うことによって酸化物半導体層に含まれる不純物(HO、H、OHなど)を低減してキャリア濃度を増加させた後、徐冷を行う。徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減し、薄膜トランジスタ460の信頼性を向上することができる。
【0129】
また、酸化物絶縁膜457となる酸化珪素膜を形成後、窒素雰囲気下、又は大気雰囲気下(大気中)において薄膜トランジスタ460に加熱処理(好ましくは150℃以上350℃未満)を行ってもよい。例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。半導体層453が酸化物絶縁膜457と接した状態で加熱されることになり、該加熱処理を行うと薄膜トランジスタ460の電気的特性のばらつきを軽減することができる。この加熱処理(好ましくは150℃以上350℃未満)は、酸化物絶縁膜457の形成後であれば特に限定されず、他の工程、例えば樹脂膜形成時の加熱処理や、透明導電膜を低抵抗化させるための加熱処理と兼ねることで、工程数を増やすことなく行うことができる。
【0130】
また、本実施の形態は実施の形態1と自由に組み合わせることができる。
【0131】
(実施の形態3)
薄膜トランジスタを含む半導体装置の作製工程について、図10乃至図13を用いて説明する。
【0132】
図10(A)において、透光性を有する基板100にはバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。
【0133】
次いで、導電層を基板100全面に形成した後、第1のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電極層101を含むゲート配線、容量配線108、及び第1の端子121)を形成する。このとき少なくともゲート電極層101の端部にテーパー形状が形成されるようにエッチングする。
【0134】
ゲート電極層101を含むゲート配線と容量配線108、端子部の第1の端子121は、耐熱性導電性材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、Nd(ネオジム)、スカンジウム(Sc)から選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜、または上述した元素を成分とする窒化物で形成する。
【0135】
次いで、ゲート電極層101上にゲート絶縁層102を全面に成膜する。ゲート絶縁層102はスパッタ法、PCVD法などを用い、膜厚を50〜250nmとする。
【0136】
例えば、ゲート絶縁層102としてスパッタ法により酸化珪素膜を用い、100nmの厚さで形成する。勿論、ゲート絶縁層102はこのような酸化珪素膜に限定されるものでなく、酸化窒化珪素膜、窒化珪素膜、酸化アルミニウム、酸化タンタル膜などの他の絶縁膜を用い、これらの材料から成る単層または積層構造として形成しても良い。
【0137】
次に、ゲート絶縁層102上に、酸化物半導体膜(In−Ga−Zn−O系非単結晶膜)を成膜する。プラズマ処理後、大気に曝すことなくIn−Ga−Zn−O系非単結晶膜を成膜することは、ゲート絶縁層と半導体膜の界面にゴミや水分を付着させない点で有用である。ここでは、直径8インチのIn、Ga、及びZnを含む酸化物半導体ターゲット(In−Ga−Zn−O系酸化物半導体ターゲット(In:Ga:ZnO=1:1:1))を用いて、基板とターゲットの間との距離を170mm、圧力0.4Pa、直流(DC)電源0.5kW、酸素のみ、アルゴンのみ、又はアルゴン及び酸素雰囲気下で成膜する。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるために好ましい。In−Ga−Zn−O系非単結晶膜の膜厚は、5nm〜200nmとする。酸化物半導体膜として、In−Ga−Zn−O系酸化物半導体ターゲットを用いてスパッタ法により膜厚50nmのIn−Ga−Zn−O系非単結晶膜を成膜する。
【0138】
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜する場合に用いられる。
【0139】
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種類の材料を同時に放電させて成膜することもできる。
【0140】
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ法を用いるスパッタ装置がある。
【0141】
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に基板にも電圧をかけるバイアススパッタ法もある。
【0142】
次に、第2のフォトリソグラフィ工程を行い、レジストマスクを形成し、酸化物半導体膜をエッチングする。例えば燐酸と酢酸と硝酸を混ぜた溶液を用いたウェットエッチングにより、不要な部分を除去して酸化物半導体層133を形成する(図10(A)参照)。なお、ここでのエッチングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。
【0143】
ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例えば塩素(Cl)、塩化硼素(BCl)、塩化珪素(SiCl)、四塩化炭素(CCl)など)が好ましい。
【0144】
また、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF)、弗化硫黄(SF)、弗化窒素(NF)、トリフルオロメタン(CHF)など)、臭化水素(HBr)、酸素(O)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを添加したガス、などを用いることができる。
【0145】
ドライエッチング法としては、平行平板型RIE(Reactive Ion Etching)法や、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングできるように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節する。
【0146】
ウエットエッチングに用いるエッチング液としては、燐酸と酢酸と硝酸を混ぜた溶液などを用いることができる。また、ITO07N(関東化学社製)を用いてもよい。
【0147】
また、ウエットエッチング後のエッチング液はエッチングされた材料とともに洗浄によって除去される。その除去された材料を含むエッチング液の廃液を精製し、含まれる材料を再利用してもよい。当該エッチング後の廃液から酸化物半導体層に含まれるインジウム等の材料を回収して再利用することにより、資源を有効活用し低コスト化することができる。
【0148】
所望の加工形状にエッチングできるように、材料に合わせてエッチング条件(エッチング液、エッチング時間、温度等)を適宜調節する。
【0149】
次に、酸化物半導体層133に脱水化または脱水素化のための加熱処理を行う。酸化物半導体層133に不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下或いは減圧下において加熱処理を行った後、不活性雰囲気下で徐冷を行う。
【0150】
加熱処理は、200℃以上で行うと良い。例えば、窒素雰囲気下で450℃、1時間の加熱処理を行う。この窒素雰囲気下の加熱処理により、酸化物半導体層133は、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)し、導電率が高まる。よって低抵抗化した酸化物半導体層134が形成される(図10(B)参照。)。酸化物半導体層134の電気伝導率は1×10−1S/cm以上1×10S/cm以下が好ましい。
【0151】
次に、酸化物半導体層134上に金属材料からなる導電膜132をスパッタ法や真空蒸着法で形成する(図10(C)参照。)。
【0152】
導電膜132の材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等が挙げられる。
【0153】
導電膜132の形成後に加熱処理を行う場合には、この加熱処理に耐える耐熱性を導電膜に持たせることが好ましい。
【0154】
次に、第3のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してソース電極層又はドレイン電極層105a、105b、及び第2の端子122を形成する(図10(D)参照。)。この際のエッチング方法としてウェットエッチングまたはドライエッチングを用いる。例えば導電膜132としてアルミニウム膜、又はアルミニウム合金膜を用いる場合は、燐酸と酢酸と硝酸を混ぜた溶液を用いたウェットエッチングを行うことができる。また、アンモニア過水(過酸化水素:アンモニア:水=5:2:2)を用いたウェットエッチングにより、導電膜132をエッチングしてソース電極層又はドレイン電極層105a、105bを形成してもよい。このエッチング工程において、酸化物半導体層134の露出領域も一部エッチングされ、半導体層135となる。よってソース電極層又はドレイン電極層105a、105bの間の半導体層135は膜厚の薄い領域となる。図10(D)においては、ソース電極層又はドレイン電極層105a、105b、半導体層135のエッチングをドライエッチングによって一度に行うため、ソース電極層又はドレイン電極層105a、105b及び半導体層135の端部は一致し、連続的な構造となっている。
【0155】
また、この第3のフォトリソグラフィ工程において、ソース電極層又はドレイン電極層105a、105bと同じ材料である第2の端子122を端子部に残す。なお、第2の端子122はソース配線(ソース電極層又はドレイン電極層105a、105bを含むソース配線)と電気的に接続されている。
【0156】
また、多階調マスクにより形成した複数(代表的には二種類)の厚さの領域を有するレジストマスクを用いると、レジストマスクの数を減らすことができるため、工程簡略化、低コスト化が図れる。
【0157】
次に、レジストマスクを除去し、ゲート絶縁層102、酸化物半導体層135、ソース電極層又はドレイン電極層105a、105bを覆う保護絶縁層107を形成する。保護絶縁層107はPCVD法により形成する酸化窒化珪素膜を用いる。ソース電極層又はドレイン電極層105a、105bの間に設けられた酸化物半導体層135の露出領域と保護絶縁層107である酸化窒化珪素膜が接して設けられることによって、保護絶縁層107と接する酸化物半導体層135の領域が高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満)し、高抵抗化したチャネル形成領域を有する半導体層103を形成することができる(図11(A)参照。)。
【0158】
次いで、保護絶縁層107を形成する前に、酸素雰囲気下での加熱処理を行ってもよい。加熱処理は酸素を含む雰囲気下において、150℃以上350℃未満で行えばよい。
【0159】
次いで、保護絶縁層107を形成した後、加熱処理を行ってもよい。加熱処理は大気雰囲気下、又は窒素雰囲気下において、150℃以上350℃未満で行えばよい。該加熱処理を行うと、半導体層103が保護絶縁層107と接した状態で加熱されることになり、さらに半導体層103を高抵抗化させてトランジスタの電気特性の向上および、電気特性のばらつきを軽減することができる。この加熱処理(好ましくは150℃以上350℃未満)は、保護絶縁層107の形成後であれば特に限定されず、他の工程、例えば樹脂膜形成時の加熱処理や、透明導電膜を低抵抗化させるための加熱処理と兼ねることで、工程数を増やすことなく行うことができる。
【0160】
以上の工程で薄膜トランジスタ170が作製できる。
【0161】
次に、第4のフォトリソグラフィ工程を行い、レジストマスクを形成し、保護絶縁層107及びゲート絶縁層102のエッチングによりドレイン電極層105bに達するコンタクトホール125を形成する。また、ここでのエッチングにより第2の端子122に達するコンタクトホール127、第1の端子121に達するコンタクトホール126も形成する。この段階での断面図を図11(B)に示す。
【0162】
次いで、レジストマスクを除去した後、透明導電膜を成膜する。透明導電膜の材料としては、酸化インジウム(In)や酸化インジウム酸化スズ合金(In―SnO、ITOと略記する)などをスパッタ法や真空蒸着法などを用いて形成する。このような材料のエッチング処理は塩酸系の溶液により行う。しかし、特にITOのエッチングは残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合金(In―ZnO)を用いても良い。また、透明導電膜を低抵抗化させるための加熱処理を行う場合、半導体層103を高抵抗化させてトランジスタの電気特性の向上および、電気特性のばらつきを軽減する熱処理と兼ねることができる。
【0163】
次に、第5のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して画素電極層110を形成する。
【0164】
また、この第5のフォトリソグラフィ工程において、容量部におけるゲート絶縁層102及び保護絶縁層107を誘電体として、容量配線108と画素電極層110とで保持容量が形成される。
【0165】
また、この第5のフォトリソグラフィ工程において、第1の端子121及び第2の端子122をレジストマスクで覆い端子部に形成された透明導電膜128、129を残す。透明導電膜128、129はFPCとの接続に用いられる電極または配線となる。第1の端子121上に形成された透明導電膜128は、ゲート配線の入力端子として機能する接続用の端子電極となる。第2の端子122上に形成された透明導電膜129は、ソース配線の入力端子として機能する接続用の端子電極である。
【0166】
次いで、レジストマスクを除去し、この段階での断面図を図11(C)に示す。なお、この段階での平面図が図12に相当する。
【0167】
また、図13(A1)、図13(A2)は、この段階でのゲート配線端子部の平面図及び断面図をそれぞれ図示している。図13(A1)は図13(A2)中のC1−C2線に沿った断面図に相当する。図13(A1)において、保護絶縁層154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図13(A1)において、端子部では、ゲート配線と同じ材料で形成される第1の端子151と、ソース配線と同じ材料で形成される接続電極層153とがゲート絶縁層152を介して重なり、透明導電膜155で導通させている。なお、図11(C)に図示した透明導電膜128と第1の端子121とが接触している部分が、図13(A1)の透明導電膜155と第1の端子151が接触している部分に対応している。
【0168】
また、図13(B1)、及び図13(B2)は、図11(C)に示すソース配線端子部とは異なるソース配線端子部の平面図及び断面図をそれぞれ図示している。また、図13(B1)は図13(B2)中のF1−F2線に沿った断面図に相当する。図13(B1)において、保護絶縁層154上に形成される透明導電膜155は、入力端子として機能する接続用の端子電極である。また、図13(B1)において、端子部では、ゲート配線と同じ材料で形成される電極層156が、ソース配線と電気的に接続される第2の端子150の下方にゲート絶縁層152を介して重なる。電極層156は第2の端子150とは電気的に接続しておらず、電極層156を第2の端子150と異なる電位、例えばフローティング、GND、0Vなどに設定すれば、ノイズ対策のための容量または静電気対策のための容量を形成することができる。また、第2の端子150は、保護絶縁層154を介して透明導電膜155と電気的に接続している。
【0169】
ゲート配線、ソース配線、及び容量配線は画素密度に応じて複数本設けられるものである。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配線と同電位の第2の端子、容量配線と同電位の第3の端子などが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設ければ良いものとし、実施者が適宣決定すれば良い。
【0170】
こうして5回のフォトリソグラフィ工程により、5枚のフォトマスクを使用して、ボトムゲート型のスタガ構造の薄膜トランジスタである薄膜トランジスタ170を有する画素薄膜トランジスタ部、保持容量を完成させることができる。そして、これらを個々の画素に対応してマトリクス状に配置して画素部を構成することによりアクティブマトリクス型の表示装置を作製するための一方の基板とすることができる。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
【0171】
アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリクス基板と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス基板と対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する共通電極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子を端子部に設ける。この第4の端子は、共通電極を固定電位、例えばGND、0Vなどに設定するための端子である。
【0172】
また、容量配線を設けず、画素電極を隣り合う画素のゲート配線と保護絶縁層及びゲート絶縁層を介して重ねて保持容量を形成してもよい。
【0173】
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識される。
【0174】
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、または動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面黒表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
【0175】
また、通常の垂直同期周波数を1.5倍好ましくは2倍以上にすることで動画特性を改善する、所謂、倍速駆動と呼ばれる駆動技術を用いてもよい。
【0176】
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光ダイオード)光源または複数のEL光源などを用いて面光源を構成し、面光源を構成している各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源として、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して複数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLEDの発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯することができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合には、消費電力の低減効果が図れる。
【0177】
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性を従来よりも改善することができる。
【0178】
本明細書に開示するnチャネル型のトランジスタは、酸化物半導体膜をチャネル形成領域に用いており、良好な動特性を有するため、これらの駆動技術を組み合わせることができる。
【0179】
また、発光表示装置を作製する場合、有機発光素子の一方の電極(カソードとも呼ぶ)は、低電源電位、例えばGND、0Vなどに設定するため、端子部に、カソードを低電源電位、例えばGND、0Vなどに設定するための第4の端子が設けられる。また、発光表示装置を作製する場合には、ソース配線、及びゲート配線に加えて電源供給線を設ける。従って、端子部には、電源供給線と電気的に接続する第5の端子を設ける。
【0180】
また、発光表示装置を作製する際、各有機発光素子の間に有機樹脂層を用いた隔壁を設ける場合がある。その場合には、有機樹脂層を加熱処理するため、半導体層103を高抵抗化させてトランジスタの電気特性の向上および、電気特性のばらつきを軽減する熱処理と兼ねることができる。
【0181】
酸化物半導体を用いた薄膜トランジスタで形成することにより、製造コストを低減することができる。特に、脱水化または脱水素化のための加熱処理によって、不純物である水分などを低減して酸化物半導体膜の純度を高めるため、成膜チャンバー内の露点を下げた特殊なスパッタ装置や超高純度の酸化物半導体ターゲットを用いなくとも、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置を作製することができる。
【0182】
チャネル形成領域の半導体層は高抵抗化領域であるので、薄膜トランジスタの電気特性は安定化し、オフ電流の増加などを防止することができる。よって、電気特性が良好で信頼性のよい薄膜トランジスタを有する半導体装置とすることが可能となる。
【0183】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0184】
(実施の形態4)
半導体装置の一例である表示装置において、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜トランジスタを作製する例について以下に説明する。
【0185】
画素部に配置する薄膜トランジスタは、実施の形態1乃至3に従って形成する。また、実施の形態1乃至3に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成する。
【0186】
半導体装置の一例であるアクティブマトリクス型液晶表示装置のブロック図の一例を図20(A)に示す。図20(A)に示す表示装置は、基板5300上に表示素子を備えた画素を複数有する画素部5301と、各画素を選択する走査線駆動回路5302と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5303とを有する。
【0187】
画素部5301は、信号線駆動回路5303から列方向に伸張して配置された複数の信号線S1〜Sm(図示せず。)により信号線駆動回路5303と接続され、走査線駆動回路5302から行方向に伸張して配置された複数の走査線G1〜Gn(図示せず。)により走査線駆動回路5302と接続され、信号線S1〜Sm並びに走査線G1〜Gnに対応してマトリクス状に配置された複数の画素(図示せず。)を有する。そして、各画素は、信号線Sj(信号線S1〜Smのうちいずれか一)、走査線Gi(走査線G1〜Gnのうちいずれか一)と接続される。
【0188】
また、実施の形態1乃至3に示す薄膜トランジスタは、nチャネル型TFTであり、nチャネル型TFTで構成する信号線駆動回路について図21を用いて説明する。
【0189】
図21に示す信号線駆動回路は、ドライバIC5601、スイッチ群5602_1〜5602_M、第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mを有する。スイッチ群5602_1〜5602_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを有する。
【0190】
ドライバIC5601は第1の配線5611、第2の配線5612、第3の配線5613及び配線5621_1〜5621_Mに接続される。そして、スイッチ群5602_1〜5602_Mそれぞれは、第1の配線5611、第2の配線5612、第3の配線5613及びスイッチ群5602_1〜5602_Mそれぞれに対応した配線5621_1〜5621_Mに接続される。そして、配線5621_1〜5621_Mそれぞれは、第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、3つの信号線に接続される。例えば、J列目の配線5621_J(配線5621_1〜配線5621_Mのうちいずれか一)は、スイッチ群5602_Jが有する第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−1、信号線Sj、信号線Sj+1に接続される。
【0191】
なお、第1の配線5611、第2の配線5612、第3の配線5613には、それぞれ信号が入力される。
【0192】
なお、ドライバIC5601は、単結晶基板上に形成されていることが望ましい。さらに、スイッチ群5602_1〜5602_Mは、画素部と同一基板上に形成されていることが望ましい。したがって、ドライバIC5601とスイッチ群5602_1〜5602_MとはFPCなどを介して接続するとよい。
【0193】
次に、図21に示した信号線駆動回路の動作について、図22のタイミングチャートを参照して説明する。なお、図22のタイミングチャートは、i行目の走査線Giが選択されている場合のタイミングチャートを示している。さらに、i行目の走査線Giの選択期間は、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3に分割されている。さらに、図21の信号線駆動回路は、他の行の走査線が選択されている場合でも図22と同様の動作をする。
【0194】
なお、図22のタイミングチャートは、J列目の配線5621_Jが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介して、信号線Sj−1、信号線Sj、信号線Sj+1に接続される場合について示している。
【0195】
なお、図22のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5703a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5703b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5703c及びJ列目の配線5621_Jに入力される信号5721_Jを示している。
【0196】
なお、配線5621_1〜配線5621_Mには第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、それぞれ別のビデオ信号が入力される。例えば、第1のサブ選択期間T1において配線5621_Jに入力されるビデオ信号は信号線Sj−1に入力され、第2のサブ選択期間T2において配線5621_Jに入力されるビデオ信号は信号線Sjに入力され、第3のサブ選択期間T3において配線5621_Jに入力されるビデオ信号は信号線Sj+1に入力される。さらに、第1のサブ選択期間T1、第2のサブ選択期間T2及び第3のサブ選択期間T3において、配線5621_Jに入力されるビデオ信号をそれぞれData_j−1、Data_j、Data_j+1とする。
【0197】
図22に示すように、第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−1が、第1の薄膜トランジスタ5603aを介して信号線Sj−1に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_jが、第2の薄膜トランジスタ5603bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_j+1が、第3の薄膜トランジスタ5603cを介して信号線Sj+1に入力される。
【0198】
以上のことから、図21の信号線駆動回路は、1ゲート選択期間を3つに分割することで、1ゲート選択期間中に1つの配線5621から3つの信号線にビデオ信号を入力することができる。したがって、図21の信号線駆動回路は、ドライバIC5601が形成される基板と、画素部が形成されている基板との接続数を信号線の数に比べて約1/3にすることができる。接続数が約1/3になることによって、図21の信号線駆動回路は、信頼性、歩留まりなどを向上できる。
【0199】
なお、図21のように、1ゲート選択期間を複数のサブ選択期間に分割し、複数のサブ選択期間それぞれにおいて、ある1つの配線から複数の信号線それぞれにビデオ信号を入力することができれば、薄膜トランジスタの配置や数、駆動方法などは限定されない。
【0200】
例えば、3つ以上のサブ選択期間それぞれにおいて1つの配線から3つ以上の信号線それぞれにビデオ信号を入力する場合は、薄膜トランジスタ及び薄膜トランジスタを制御するための配線を追加すればよい。ただし、1ゲート選択期間を4つ以上のサブ選択期間に分割すると、1つのサブ選択期間が短くなる。したがって、1ゲート選択期間は、2つ又は3つのサブ選択期間に分割されることが望ましい。
【0201】
別の例として、図23のタイミングチャートに示すように、1つの選択期間をプリチャージ期間Tp、第1のサブ選択期間T1、第2のサブ選択期間T2、第3のサブ選択期間T3に分割してもよい。さらに、図23のタイミングチャートは、i行目の走査線Giが選択されるタイミング、第1の薄膜トランジスタ5603aのオン・オフのタイミング5803a、第2の薄膜トランジスタ5603bのオン・オフのタイミング5803b、第3の薄膜トランジスタ5603cのオン・オフのタイミング5803c及びJ列目の配線5621_Jに入力される信号5821_Jを示している。図23に示すように、プリチャージ期間Tpにおいて第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオンする。このとき、配線5621_Jに入力されるプリチャージ電圧Vpが第1の薄膜トランジスタ5603a、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cを介してそれぞれ信号線Sj−1、信号線Sj、信号線Sj+1に入力される。第1のサブ選択期間T1において第1の薄膜トランジスタ5603aがオンし、第2の薄膜トランジスタ5603b及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_j−1が、第1の薄膜トランジスタ5603aを介して信号線Sj−1に入力される。第2のサブ選択期間T2では、第2の薄膜トランジスタ5603bがオンし、第1の薄膜トランジスタ5603a及び第3の薄膜トランジスタ5603cがオフする。このとき、配線5621_Jに入力されるData_jが、第2の薄膜トランジスタ5603bを介して信号線Sjに入力される。第3のサブ選択期間T3では、第3の薄膜トランジスタ5603cがオンし、第1の薄膜トランジスタ5603a及び第2の薄膜トランジスタ5603bがオフする。このとき、配線5621_Jに入力されるData_j+1が、第3の薄膜トランジスタ5603cを介して信号線Sj+1に入力される。
【0202】
以上のことから、図23のタイミングチャートを適用した図21の信号線駆動回路は、サブ選択期間の前にプリチャージ期間を設けることによって、信号線をプリチャージできるため、画素へのビデオ信号の書き込みを高速に行うことができる。なお、図23において、図22と同様なものに関しては共通の符号を用いて示し、同一部分又は同様な機能を有する部分の詳細な説明は省略する。
【0203】
また、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有している。必要に応じて走査線駆動回路にレベルシフタ、バッファ、スイッチ等を有しても良いし、シフトレジスタのみの構成としても良い。走査線駆動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが用いられる。
【0204】
走査線駆動回路の一部に用いるシフトレジスタの一形態について図24及び図25を用いて説明する。
【0205】
図24にシフトレジスタの回路構成を示す。図24に示すシフトレジスタは、フリップフロップ5701_1〜5701_nという複数のフリップフロップで構成される。また、第1のクロック信号、第2のクロック信号、スタートパルス信号、リセット信号が入力されて動作する。
【0206】
図24のシフトレジスタの接続関係について説明する。図24のシフトレジスタは、i段目のフリップフロップ5701_i(フリップフロップ5701_1〜5701_nのうちいずれか一)は、図25に示した第1の配線5501が第7の配線5717_i−1に接続され、図25に示した第2の配線5502が第7の配線5717_i+1に接続され、図25に示した第3の配線5503が第7の配線5717_iに接続され、図25に示した第6の配線5506が第5の配線5715に接続される。
【0207】
また、図25に示した第4の配線5504が奇数段目のフリップフロップでは第2の配線5712に接続され、偶数段目のフリップフロップでは第3の配線5713に接続され、図25に示した第5の配線5505が第4の配線5714に接続される。
【0208】
ただし、1段目のフリップフロップ5701_1の図25に示す第1の配線5501は第1の配線5711に接続され、n段目のフリップフロップ5701_nの図25に示す第2の配線5502は第6の配線5716に接続される。
【0209】
なお、第1の配線5711、第2の配線5712、第3の配線5713、第6の配線5716を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第4の配線5714、第5の配線5715を、それぞれ第1の電源線、第2の電源線と呼んでもよい。
【0210】
次に、図24に示すフリップフロップの詳細について、図25に示す。図25に示すフリップフロップは、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578を有する。なお、第1の薄膜トランジスタ5571、第2の薄膜トランジスタ5572、第3の薄膜トランジスタ5573、第4の薄膜トランジスタ5574、第5の薄膜トランジスタ5575、第6の薄膜トランジスタ5576、第7の薄膜トランジスタ5577及び第8の薄膜トランジスタ5578は、nチャネル型トランジスタであり、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回ったとき導通状態になるものとする。
【0211】
次に、図24に示すフリップフロップの接続構成について、以下に示す。
【0212】
第1の薄膜トランジスタ5571の第1の電極(ソース電極またはドレイン電極の一方)が第4の配線5504に接続され、第1の薄膜トランジスタ5571の第2の電極(ソース電極またはドレイン電極の他方)が第3の配線5503に接続される。
【0213】
第2の薄膜トランジスタ5572の第1の電極が第6の配線5506に接続され、第2の薄膜トランジスタ5572第2の電極が第3の配線5503に接続される。
【0214】
第3の薄膜トランジスタ5573の第1の電極が第5の配線5505に接続され、第3の薄膜トランジスタ5573の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第3の薄膜トランジスタ5573のゲート電極が第5の配線5505に接続される。
【0215】
第4の薄膜トランジスタ5574の第1の電極が第6の配線5506に接続され、第4の薄膜トランジスタ5574の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第4の薄膜トランジスタ5574のゲート電極が第1の薄膜トランジスタ5571のゲート電極に接続される。
【0216】
第5の薄膜トランジスタ5575の第1の電極が第5の配線5505に接続され、第5の薄膜トランジスタ5575の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第5の薄膜トランジスタ5575のゲート電極が第1の配線5501に接続される。
【0217】
第6の薄膜トランジスタ5576の第1の電極が第6の配線5506に接続され、第6の薄膜トランジスタ5576の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第6の薄膜トランジスタ5576のゲート電極が第2の薄膜トランジスタ5572のゲート電極に接続される。
【0218】
第7の薄膜トランジスタ5577の第1の電極が第6の配線5506に接続され、第7の薄膜トランジスタ5577の第2の電極が第1の薄膜トランジスタ5571のゲート電極に接続され、第7の薄膜トランジスタ5577のゲート電極が第2の配線5502に接続される。第8の薄膜トランジスタ5578の第1の電極が第6の配線5506に接続され、第8の薄膜トランジスタ5578の第2の電極が第2の薄膜トランジスタ5572のゲート電極に接続され、第8の薄膜トランジスタ5578のゲート電極が第1の配線5501に接続される。
【0219】
なお、第1の薄膜トランジスタ5571のゲート電極、第4の薄膜トランジスタ5574のゲート電極、第5の薄膜トランジスタ5575の第2の電極、第6の薄膜トランジスタ5576の第2の電極及び第7の薄膜トランジスタ5577の第2の電極の接続箇所をノード5543とする。さらに、第2の薄膜トランジスタ5572のゲート電極、第3の薄膜トランジスタ5573の第2の電極、第4の薄膜トランジスタ5574の第2の電極、第6の薄膜トランジスタ5576のゲート電極及び第8の薄膜トランジスタ5578の第2の電極の接続箇所をノード5544とする。
【0220】
なお、第1の配線5501、第2の配線5502、第3の配線5503及び第4の配線5504を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第5の配線5505を第1の電源線、第6の配線5506を第2の電源線と呼んでもよい。
【0221】
また、信号線駆動回路及び走査線駆動回路を実施の形態1乃至3に示すnチャネル型TFTのみで作製することも可能である。実施の形態1乃至3に示すnチャネル型TFTはトランジスタの移動度が大きいため、駆動回路の駆動周波数を高くすることが可能となる。また、実施の形態1乃至3に示すnチャネル型TFTは寄生容量が低減されるため、周波数特性(f特性と呼ばれる)が高い。例えば、実施の形態1乃至3に示すnチャネル型TFTを用いた走査線駆動回路は、高速に動作させることができるため、フレーム周波数を高くすること、または、黒画面挿入を実現することなども実現することができる。
【0222】
さらに、走査線駆動回路のトランジスタのチャネル幅を大きくすることや、複数の走査線駆動回路を配置することなどによって、さらに高いフレーム周波数を実現することができる。複数の走査線駆動回路を配置する場合は、偶数行の走査線を駆動する為の走査線駆動回路を片側に配置し、奇数行の走査線を駆動するための走査線駆動回路をその反対側に配置することにより、フレーム周波数を高くすることを実現することができる。また、複数の走査線駆動回路により、同じ走査線に信号を出力すると、表示装置の大型化に有利である。
【0223】
また、半導体装置の一例であるアクティブマトリクス型発光表示装置を作製する場合、少なくとも一つの画素に複数の薄膜トランジスタを配置するため、走査線駆動回路を複数配置することが好ましい。アクティブマトリクス型発光表示装置のブロック図の一例を図20(B)に示す。
【0224】
図20(B)に示す発光表示装置は、基板5400上に表示素子を備えた画素を複数有する画素部5401と、各画素を選択する第1の走査線駆動回路5402及び第2の走査線駆動回路5404と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路5403とを有する。
【0225】
図20(B)に示す発光表示装置の画素に入力されるビデオ信号をデジタル形式とする場合、画素はトランジスタのオンとオフの切り替えによって、発光もしくは非発光の状態となる。よって、面積階調法または時間階調法を用いて階調の表示を行うことができる。面積階調法は、1画素を複数の副画素に分割し、各副画素を独立にビデオ信号に基づいて駆動させることによって、階調表示を行う駆動法である。また時間階調法は、画素が発光する期間を制御することによって、階調表示を行う駆動法である。
【0226】
発光素子は、液晶素子などに比べて応答速度が高いので、液晶素子よりも時間階調法に適している。具体的に時間階調法で表示を行なう場合、1フレーム期間を複数のサブフレーム期間に分割する。そしてビデオ信号に従い、各サブフレーム期間において画素の発光素子を発光または非発光の状態にする。複数のサブフレーム期間に分割することによって、1フレーム期間中に画素が実際に発光する期間のトータルの長さを、ビデオ信号により制御することができ、階調を表示することができる。
【0227】
なお、図20(B)に示す発光表示装置では、一つの画素に2つのスイッチング用TFTを配置する場合、一方のスイッチング用TFTのゲート配線である第1の走査線に入力される信号を第1の走査線駆動回路5402で生成し、他方のスイッチング用TFTのゲート配線である第2の走査線に入力される信号を第2の走査線駆動回路5404で生成している例を示しているが、第1の走査線に入力される信号と、第2の走査線に入力される信号とを、共に1つの走査線駆動回路で生成するようにしても良い。また、例えば、1つの画素が有するスイッチング用TFTの数によって、スイッチング素子の動作を制御するのに用いられる走査線が、各画素に複数設けられることもあり得る。この場合、複数の走査線に入力される信号を、全て1つの走査線駆動回路で生成しても良いし、複数の各走査線駆動回路で生成しても良い。
【0228】
また、発光表示装置においても、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一基板上に形成することができる。また、信号線駆動回路及び走査線駆動回路を実施の形態1乃至3に示すnチャネル型TFTのみで作製することも可能である。
【0229】
また、上述した駆動回路は、液晶表示装置や発光表示装置に限らず、スイッチング素子と電気的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)とも呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
【0230】
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
【0231】
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。電気泳動ディスプレイは、液晶表示装置には必要な偏光板は必要なく、重さが低減する。
【0232】
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
【0233】
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、実施の形態1乃至3の薄膜トランジスタによって得られるアクティブマトリクス基板を用いることができる。
【0234】
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
【0235】
以上の工程により、半導体装置として信頼性の高い表示装置を作製することができる。
【0236】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0237】
(実施の形態5)
薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらには駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製することができる。また、薄膜トランジスタを駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
【0238】
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
【0239】
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに、該表示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
【0240】
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
【0241】
半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図16を用いて説明する。図16(A1)(A2)は、第1の基板4001上に形成された実施の形態3で示した酸化物半導体層を含む信頼性の高い薄膜トランジスタ4010、4011、及び液晶素子4013を、第1の基板4001と第2の基板4006との間にシール材4005によって封止した、パネルの平面図であり、図16(B)は、図16(A1)(A2)のM−Nにおける断面図に相当する。
【0242】
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
【0243】
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。図16(A1)は、COG方法により信号線駆動回路4003を実装する例であり、図16(A2)は、TAB方法により信号線駆動回路4003を実装する例である。
【0244】
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図16(B)では、画素部4002に含まれる薄膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、4021が設けられている。
【0245】
薄膜トランジスタ4010、4011は、実施の形態3で示した酸化物半導体層を含む信頼性の高い薄膜トランジスタを適用することができる。また実施の形態1又は実施の形態2に示す薄膜トランジスタを適用してもよい。本実施の形態において、薄膜トランジスタ4010、4011はnチャネル型薄膜トランジスタである。
【0246】
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板4006上に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁層4032、4033を介して液晶層4008を挟持している。
【0247】
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
【0248】
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていても良い。また、対向電極層4031は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極層4031と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材4005に含有させる。
【0249】
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。
【0250】
なお透過型液晶表示装置の他に、反射型液晶表示装置でも半透過型液晶表示装置でも適用できる。
【0251】
また、液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスとして機能する遮光膜を設けてもよい。
【0252】
また、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トランジスタの信頼性を向上させるため、上記実施の形態で得られた薄膜トランジスタを保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積層で形成すればよい。保護膜をスパッタ法で形成する例を示すが、特に限定されず種々の方法で形成すればよい。
【0253】
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層4020の一層目として、スパッタ法を用いて酸化珪素膜を形成する。保護膜として酸化珪素膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒロック防止に効果がある。
【0254】
また、保護膜の二層目として絶縁層を形成する。ここでは、ここでは、絶縁層4020の二層目として、スパッタ法を用いて窒化珪素膜を形成する。保護膜として窒化珪素膜を用いると、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化させることを抑制することができる。
【0255】
また、保護膜を形成した後に、窒素雰囲気下、又は大気雰囲気下で加熱処理(300℃以下)を行ってもよい。
【0256】
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層4021を形成してもよい。
【0257】
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。
【0258】
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。絶縁層4021の焼成工程と半導体層のアニールを兼ねることで効率よく半導体装置を作製することが可能となる。
【0259】
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
【0260】
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
【0261】
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
【0262】
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
【0263】
接続端子電極4015が、液晶素子4013が有する画素電極層4030と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
【0264】
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
【0265】
また図16においては、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているがこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
【0266】
図26は、本明細書に開示する作製方法により作製されるTFT基板2600を用いて半導体装置として液晶表示モジュールを構成する一例を示している。
【0267】
図26は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む表示素子2604、着色層2605が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
【0268】
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
【0269】
以上の工程により、半導体装置として信頼性の高い液晶表示パネルを作製することができる。
【0270】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0271】
(実施の形態6)
半導体装置として電子ペーパーの例を示す。
【0272】
スイッチング素子と電気的に接続する素子を利用して電子インクを駆動させる電子ペーパーに用いてもよい。
【0273】
電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
【0274】
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
【0275】
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。
【0276】
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
【0277】
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、実施の形態1乃至3の薄膜トランジスタによって得られるアクティブマトリクス基板を用いることができる。
【0278】
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
【0279】
図15は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体装置に用いられる薄膜トランジスタ581としては、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導体層を含む信頼性の高い薄膜トランジスタである。また、実施の形態2又は実施の形態3で示す薄膜トランジスタも本実施の薄膜トランジスタ581として適用することもできる。
【0280】
図15の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
【0281】
薄膜トランジスタ581はボトムゲート構造の薄膜トランジスタであり、半導体層と接する絶縁膜583に覆われている。薄膜トランジスタ581のソース電極層又はドレイン電極層は、第1の電極層587と、絶縁膜583及び絶縁層585に形成する開口で接しており電気的に接続している。第1の電極層587と第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(図15参照。)。第1の電極層587が画素電極に相当し、第2の電極層588が共通電極に相当する。第2の電極層588は、薄膜トランジスタ581と同一の基板580上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、基板580と基板596の間に配置される導電性粒子を介して第2の電極層588と共通電位線とを電気的に接続することができる。
【0282】
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜200μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能であるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
【0283】
以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる。
【0284】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0285】
(実施の形態7)
半導体装置として発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクトロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
【0286】
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
【0287】
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明する。
【0288】
図18は、半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示す図である。
【0289】
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここでは酸化物半導体層をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素に2つ用いる例を示す。
【0290】
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ6401はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線6407に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一基板上に形成される共通電位線と電気的に接続される。
【0291】
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されている。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれぞれの電位を設定する。
【0292】
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略することも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域とゲート電極との間で容量が形成されていてもよい。
【0293】
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるようなビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
【0294】
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異ならせることで、図18と同じ画素構成を用いることができる。
【0295】
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子6404の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデオ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジスタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジスタ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
【0296】
なお、図18に示す画素構成は、これに限定されない。例えば、図18に示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
【0297】
次に、発光素子の構成について、図19を用いて説明する。ここでは、駆動用TFTがn型の場合を例に挙げて、画素の断面構造について説明する。図19(A)(B)(C)の半導体装置に用いられる駆動用TFTであるTFT7001、7011、7021は、実施の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導体層を含む信頼性の高い薄膜トランジスタである。また、実施の形態2又は実施の形態3で示す薄膜トランジスタをTFT7001、7011、7021として適用することもできる。
【0298】
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、画素構成はどの射出構造の発光素子にも適用することができる。
【0299】
上面射出構造の発光素子について図19(A)を用いて説明する。
【0300】
図19(A)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図19(A)では、発光素子7002の陰極7003と駆動用TFTであるTFT7001が電気的に接続されており、陰極7003上に発光層7004、陽極7005が順に積層されている。陰極7003は仕事関数が小さく、なおかつ光を反射する導電膜であれば様々の材料を用いることができる。例えば、Ca、Al、MgAg、AlLi等が望ましい。そして発光層7004は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いても良い。
【0301】
陰極7003及び陽極7005で発光層7004を挟んでいる領域が発光素子7002に相当する。図19(A)に示した画素の場合、発光素子7002から発せられる光は、矢印で示すように陽極7005側に射出する。
【0302】
次に、下面射出構造の発光素子について図19(B)を用いて説明する。駆動用TFT7011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の、画素の断面図を示す。図19(B)では、駆動用TFT7011と電気的に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が成膜されており、陰極7013上に発光層7014、陽極7015が順に積層されている。なお、陽極7015が透光性を有する場合、陽極上を覆うように、光を反射または遮蔽するための遮蔽膜7016が成膜されていてもよい。陰極7013は、図19(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜を、陰極7013として用いることができる。そして発光層7014は、図19(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7015は光を透過する必要はないが、図19(A)と同様に、透光性を有する導電性材料を用いて形成することができる。そして遮蔽膜7016は、例えば光を反射する金属等を用いることができるが、金属膜に限定されない。例えば黒の顔料を添加した樹脂等を用いることもできる。
【0303】
陰極7013及び陽極7015で、発光層7014を挟んでいる領域が発光素子7012に相当する。図19(B)に示した画素の場合、発光素子7012から発せられる光は、矢印で示すように陰極7013側に射出する。
【0304】
次に、両面射出構造の発光素子について、図19(C)を用いて説明する。図19(C)では、駆動用TFT7021と電気的に接続された透光性を有する導電膜7027上に、発光素子7022の陰極7023が成膜されており、陰極7023上に発光層7024、陽極7025が順に積層されている。陰極7023は、図19(A)の場合と同様に、仕事関数が小さい導電性材料であれば様々な材料を用いることができる。ただしその膜厚は、光を透過する程度とする。例えば20nmの膜厚を有するAlを、陰極7023として用いることができる。そして発光層7024は、図19(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7025は、図19(A)と同様に、光を透過する透光性を有する導電性材料を用いて形成することができる。
【0305】
陰極7023と、発光層7024と、陽極7025とが重なっている部分が発光素子7022に相当する。図19(C)に示した画素の場合、発光素子7022から発せられる光は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
【0306】
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機EL素子を設けることも可能である。
【0307】
なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
【0308】
なお半導体装置は、図19に示した構成に限定されるものではなく、本明細書に開示する技術的思想に基づく各種の変形が可能である。
【0309】
次に、半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び断面について、図17(A)を用いて説明する。図17は、第1の基板上に形成された薄膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネルの平面図であり、図17(B)は、図17(A)のH−Iにおける断面図に相当する。
【0310】
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よって画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、第1の基板4501とシール材4505と第2の基板4506とによって、充填材4507と共に密封されている。このように外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
【0311】
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有しており、図17(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
【0312】
薄膜トランジスタ4509、4510は、実施の形態3で示した酸化物半導体層を含む信頼性の高い薄膜トランジスタを適用することができる。また実施の形態1又は実施の形態2に示す薄膜トランジスタを適用してもよい。薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタである。
【0313】
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層4512、第2の電極層4513の積層構造であるが、示した構成に限定されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適宜変えることができる。
【0314】
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
【0315】
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
【0316】
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、窒化酸化珪素膜、DLC膜等を形成することができる。
【0317】
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518bから供給されている。
【0318】
接続端子電極4515が、発光素子4511が有する第1の電極層4517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
【0319】
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介して電気的に接続されている。
【0320】
発光素子4511からの光の取り出し方向に位置する第2の基板4506は透光性でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
【0321】
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いればよい。
【0322】
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
【0323】
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回路のみ、或いは一部のみを別途形成して実装しても良く、図17の構成に限定されない。
【0324】
以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製することができる。
【0325】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0326】
(実施の形態8)
本明細書に開示する半導体装置は、電子ペーパーとして適用することができる。電子ペーパーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。電子機器の一例を図27に示す。
【0327】
図27は、電子書籍2700の一例を示している。例えば、電子書籍2700は、筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
【0328】
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図27では表示部2705)に文章を表示し、左側の表示部(図27では表示部2707)に画像を表示することができる。
【0329】
また、図27では、筐体2701に操作部などを備えた例を示している。例えば、筐体2701において、電源2721、操作キー2723、スピーカ2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成としてもよい。
【0330】
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
【0331】
(実施の形態9)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
【0332】
図28(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置9600は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。
【0333】
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機9610により行うことができる。リモコン操作機9610が備える操作キー9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示される映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
【0334】
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0335】
図28(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジタルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
【0336】
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、USBケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像データを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
【0337】
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
【0338】
図29(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成されており、連結部9893により、開閉可能に連結されている。筐体9881には表示部9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図29(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部9886、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明細書に開示する半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。図29(A)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図29(A)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
【0339】
図29(B)は大型遊技機であるスロットマシン9900の一例を示している。スロットマシン9900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限定されず、少なくとも本明細書に開示する半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とすることができる。
【0340】
図30(A)は携帯型のコンピュータの一例を示す斜視図である。
【0341】
図30(A)の携帯型のコンピュータは、上部筐体9301と下部筐体9302とを接続するヒンジユニットを閉状態として表示部9303を有する上部筐体9301と、キーボード9304を有する下部筐体9302とを重ねた状態とすることができ、持ち運ぶことが便利であるとともに、使用者がキーボード入力する場合には、ヒンジユニットを開状態として、表示部9303を見て入力操作を行うことができる。
【0342】
また、下部筐体9302はキーボード9304の他に入力操作を行うポインティングデバイス9306を有する。また、表示部9303をタッチ入力パネルとすれば、表示部の一部に触れることで入力操作を行うこともできる。また、下部筐体9302はCPUやハードディスク等の演算機能部を有している。また、下部筐体9302は他の機器、例えばUSBの通信規格に準拠した通信ケーブルが差し込まれる外部接続ポート9305を有している。
【0343】
上部筐体9301には更に上部筐体9301内部にスライドさせて収納可能な表示部9307を有しており、広い表示画面を実現することができる。また、収納可能な表示部9307の画面の向きを使用者は調節できる。また、収納可能な表示部9307をタッチ入力パネルとすれば、収納可能な表示部の一部に触れることで入力操作を行うこともできる。
【0344】
表示部9303または収納可能な表示部9307は、液晶表示パネル、有機発光素子または無機発光素子などの発光表示パネルなどの映像表示装置を用いる。
【0345】
また、図30(A)の携帯型のコンピュータは、受信機などを備えた構成として、テレビ放送を受信して映像を表示部または表示部に表示することができる。また、上部筐体9301と下部筐体9302とを接続するヒンジユニットを閉状態としたまま、表示部9307をスライドさせて画面全面を露出させ、画面角度を調節して使用者がテレビ放送を見ることもできる。この場合には、ヒンジユニットを開状態として表示部9303を表示させず、さらにテレビ放送を表示するだけの回路の起動のみを行うため、最小限の消費電力とすることができ、バッテリー容量の限られている携帯型のコンピュータにおいて有用である。
【0346】
また、図30(B)は、腕時計のように使用者の腕に装着可能な形態を有している携帯電話の一例を示す斜視図である。
【0347】
この携帯電話は、少なくとも電話機能を有する通信装置及びバッテリーを有する本体、本体を腕に装着するためのバンド部、腕に対するバンド部の固定状態を調節する調節部9205、表示部9201、スピーカ9207、及びマイク9208から構成されている。
【0348】
また、本体は、操作スイッチ9203を有し、電源入力スイッチや、表示切り替えスイッチや、撮像開始指示スイッチの他、例えば押すとインタネット用のプログラムが起動されるスイッチなど、各ファンクションを対応づけることができる。
【0349】
この携帯電話の入力操作は、表示部9201に指や入力ペンなどで触れること、又は操作スイッチ9203の操作、またはマイク9208への音声入力により行われる。なお、図30(B)では、表示部9201に表示された表示ボタン9202を図示しており、指などで触れることにより入力を行うことができる。
【0350】
また、本体は、撮影レンズを通して結像される被写体像を電子画像信号に変換する撮像手段を有するカメラ部9206を有する。なお、特にカメラ部は設けなくともよい。
【0351】
また、図30(B)に示す携帯電話は、テレビ放送の受信機などを備えた構成として、テレビ放送を受信して映像を表示部9201に表示することができ、さらにメモリーなどの記憶装置などを備えた構成として、テレビ放送をメモリーに録画できる。また、図30(B)に示す携帯電話は、GPSなどの位置情報を収集できる機能を有していてもよい。
【0352】
表示部9201は、液晶表示パネル、有機発光素子または無機発光素子などの発光表示パネルなどの映像表示装置を用いる。図30(B)に示す携帯電話は、小型、且つ、軽量であるため、バッテリー容量の限られており、表示部9201に用いる表示装置は低消費電力で駆動できるパネルを用いることが好ましい。
【0353】
なお、図30(B)では”腕”に装着するタイプの電子機器を図示したが、特に限定されず、携行できる形状を有しているものであればよい。
【0354】
(実施の形態10)
本実施の形態では、実施の形態1と一部工程が異なる一例を示す。本実施の形態は、ソース電極層又はドレイン電極層405a、405bの形成後に脱水化または脱水素化の加熱処理を行う例を図31に示す。なお、図6と同一の部分には同じ符号を用いて説明する。
【0355】
実施の形態1と同様に、絶縁表面を有する基板400上にゲート電極層401、ゲート絶縁層402、酸化物半導体層430を形成する(図31(A)参照。)。
【0356】
酸化物半導体層430上にソース電極層又はドレイン電極層405a、405bを形成し、酸化物半導体層430の一部エッチングして酸化物半導体層441を形成する(図31(B)参照。)。
【0357】
次に酸化物半導体層441、及びソース電極層又はドレイン電極層405a、405bに対して不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下或いは減圧下において加熱処理及び徐冷を行う。この加熱処理によって酸化物半導体層441は脱水処理または脱水素処理が行われて低抵抗化され、低抵抗化した酸化物半導体層432とすることができる(図31(C)参照。)。なお、ソース電極層又はドレイン電極層405a、405bの材料は、ここでの加熱処理に耐える材料、例えばタングステン、モリブデンなどを用いることが好ましい。
【0358】
次いで、上記加熱処理及び徐冷後に大気に触れることなく、酸化物半導体層432に接してスパッタ法またはPCVD法による酸化物絶縁膜407として形成する。低抵抗化した酸化物半導体層432に接してスパッタ法またはPCVD法により酸化物絶縁膜407を形成すると、低抵抗化した酸化物半導体層432において少なくとも酸化物絶縁膜407と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満、さらに好ましくは1×1014/cm以下)し、高抵抗化酸化物半導体領域とすることができる。よって酸化物半導体層432は、高抵抗化酸化物半導体領域を有する半導体層403(第3の酸化物半導体層)となり、薄膜トランジスタ470を作製することができる(図31(D)参照。)。
【0359】
上記脱水処理または脱水素処理のための加熱処理を行うことによって酸化物半導体層に含まれる不純物(HO、H、OHなど)を低減してキャリア濃度を増加させた後、徐冷を行う。徐冷させた後、酸化物半導体層に接して酸化物絶縁膜の形成などを行って酸化物半導体層のキャリア濃度を低減し、薄膜トランジスタ470の信頼性を向上することができる。
【0360】
また、本実施の形態は、実施の形態1と自由に組み合わせることができる。
【0361】
(実施の形態11)
半導体装置及び半導体装置の作製方法を、図32を用いて説明する。実施の形態1と同一部分又は同様な機能を有する部分、及び工程は、実施の形態1と同様に行うことができ、繰り返しの説明は省略する。
【0362】
図32に示す薄膜トランジスタ471はゲート電極層401及び半導体層403のチャネル領域に重なるように絶縁膜を介して導電層409を設ける例である。
【0363】
図32は半導体装置の有する薄膜トランジスタ471の断面図である。薄膜トランジスタ471はボトムゲート型の薄膜トランジスタであり、絶縁表面を有する基板である基板400上に、ゲート電極層401、ゲート絶縁層402、半導体層403、及びソース電極層又はドレイン電極層405a、405b、導電層409を含む。導電層409は、ゲート電極層401と重なるように、酸化物絶縁膜407上に設けられている。
【0364】
導電層409は、ゲート電極層401、ソース電極層又はドレイン電極層405a、405bと同様な材料、方法を用いて形成することができる。画素電極層を設ける場合は、画素電極層と同様な材料、方法を用いて形成してもよい。本実施の形態では、導電層409としてチタン膜、アルミニウム膜、及びチタン膜の積層を用いる。
【0365】
導電層409は、電位がゲート電極層401と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層409がフローティング状態であってもよい。
【0366】
導電層409を半導体層403と重なる位置に設けることによって、薄膜トランジスタの信頼性を調べるためのバイアス−熱ストレス試験(以下、BT試験という)において、BT試験前後における薄膜トランジスタ471のしきい値電圧の変化量を低減することができる。特に、基板温度を150℃まで上昇させた後にゲートに印加する電圧を−20Vとする−BT試験においてしきい値電圧の変動を抑えることができる。
【0367】
本実施の形態は、実施の形態1と自由に組み合わせることができる。
【0368】
(実施の形態12)
半導体装置及び半導体装置の作製方法を、図33を用いて説明する。実施の形態1と同一部分又は同様な機能を有する部分、及び工程は、実施の形態1と同様に行うことができ、繰り返しの説明は省略する。
【0369】
図33に示す薄膜トランジスタ472はゲート電極層401及び半導体層403のチャネル領域に重なるように酸化物絶縁膜407及び絶縁層410を介して導電層419を設ける例である。
【0370】
図33は半導体装置の有する薄膜トランジスタ472の断面図である。薄膜トランジスタ472はボトムゲート型の薄膜トランジスタであり、絶縁表面を有する基板である基板400上に、ゲート電極層401、ゲート絶縁層402、半導体層403、ソース領域またはドレイン領域404a、404b、及びソース電極層又はドレイン電極層405a、405b、導電層419を含む。導電層419は、ゲート電極層401と重なるように、酸化物絶縁膜407及び絶縁層410上に設けられている。
【0371】
本実施の形態では、酸化物絶縁膜407上に平坦化膜として機能する絶縁層410を積層し、酸化物絶縁膜407及び絶縁層410にソース電極層又はドレイン電極層405bに達する開口を形成する。絶縁層410、酸化物絶縁膜407及び絶縁層410に形成された開口に導電膜を形成し、所望の形状にエッチングして導電層419及び画素電極層411を形成する。このように画素電極層411を形成する工程で、同様の材料及び方法を用いて導電層419を形成することができる。本実施の形態では、画素電極層411、導電層419として酸化珪素を含む酸化インジウム酸化スズ合金(酸化珪素を含むIn−Sn−O系酸化物)を用いる。
【0372】
また、導電層419は、ゲート電極層401、ソース電極層又はドレイン電極層405a、405bと同様な材料、方法を用いて形成してもよい。
【0373】
導電層419は、電位がゲート電極層401と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層419がフローティング状態であってもよい。
【0374】
導電層419を半導体層403と重なる位置に設けることによって、薄膜トランジスタの信頼性を調べるためのバイアス−熱ストレス試験(以下、BT試験という)において、BT試験前後における薄膜トランジスタ472のしきい値電圧の変化量を低減することができる。
【0375】
本実施の形態は、実施の形態1と自由に組み合わせることができる。
【0376】
(実施の形態13)
本実施の形態では、チャネルストップ型の薄膜トランジスタ1430の一例について図34(A)、図34(B)及び図34(C)に説明する。また、図34(C)は薄膜トランジスタの上面図の一例であり、図中Z1―Z2の鎖線で切断した断面図が図34(B)に相当する。また、薄膜トランジスタ1430の酸化物半導体層にガリウムを含まない酸化物半導体材料を用いる例を示す。
【0377】
図34(A)において、基板1400上にゲート電極層1401を設ける。次いで、ゲート電極層1401を覆うゲート絶縁層1402上には、酸化物半導体層を形成する。
【0378】
本実施の形態では、酸化物半導体層としてスパッタ法を用いたSn−Zn−O系の酸化物半導体を用いる。酸化物半導体層にガリウムを用いないことによって、価格の高いターゲットを用いずに済むためコストを低減できる。
【0379】
酸化物半導体膜の成膜直後、または酸化物半導体層のパターニング後に脱水化または脱水素化を行う。
【0380】
脱水化または脱水素化するため、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下、或いは減圧下において加熱処理を行った後、不活性雰囲気下で徐冷を行う。加熱処理は、200℃以上600℃以下、好ましくは400℃以上450℃以下とする。酸化物半導体層は不活性ガス雰囲気下或いは減圧下における加熱処理及び徐冷によって、低抵抗化(キャリア濃度が高まる、好ましくは1×1018/cm以上)し、低抵抗化した酸化物半導体層1403とすることができる(図34(A)参照)。
【0381】
次いで、酸化物半導体層1403上にはチャネル保護層1418を接して設ける。チャネル保護層1418を設けることによって、酸化物半導体層1403のチャネル形成領域に対する工程時におけるダメージ(エッチング時のプラズマやエッチング剤による膜減りなど)を防ぐことができる。従って薄膜トランジスタ1430の信頼性を向上させることができる。
【0382】
また、脱水化または脱水素化の後、大気に触れることなく連続的にチャネル保護層1418を形成することもできる。大気に触れさせることなく連続的に処理することで、界面が、水やハイドロカーボンなどの、大気成分や大気中に浮遊する不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。
【0383】
また、低抵抗化した酸化物半導体層1403に接してスパッタ法またはPCVD法などにより酸化物絶縁膜であるチャネル保護層1418を形成すると、低抵抗化した酸化物半導体層1403において少なくともチャネル保護層1418と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満、さらに好ましくは1×1014/cm以下)し、高抵抗化酸化物半導体領域とすることができる。半導体装置の作製プロセス中、不活性気体雰囲気下(或いは減圧下)での加熱、徐冷及び酸化物絶縁膜の形成などによって酸化物半導体層のキャリア濃度を増減させることが重要である。
【0384】
チャネル保護層1418としては、酸素を含む無機材料(酸化珪素、酸化窒化珪素、窒化酸化珪素など)を用いることができる。作製法としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることができる。チャネル保護層1418は成膜後にエッチングにより形状を加工してする。ここでは、スパッタ法により酸化珪素膜を形成し、フォトリソグラフィーによるマスクを用いてエッチング加工することでチャネル保護層1418を形成する。
【0385】
次いで、チャネル保護層1418及び酸化物半導体層1403上にn層1406a、1406bを形成する。本実施の形態では、ソース領域又はドレイン領域として機能するn層1406a、1406bは、Al−Zn−O系非単結晶膜であり、酸化物半導体層1403の成膜条件とは異なる成膜条件で形成され、より低抵抗な酸化物半導体層である。また、n層1406a、1406bは、窒素を含ませたAl−Zn−O系非単結晶膜、即ちAl−Zn−O−N系非単結晶膜(AZON膜とも呼ぶ)を用いてもよい。
【0386】
次いで、n層1406a上にソース電極層1405a、n層1406b上にドレイン電極層1405bをそれぞれ形成して薄膜トランジスタ1430を作製する(図34(B)参照)。ソース電極層1405a及びドレイン電極層1405bは、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か、上述した元素を組み合わせた合金膜等を用いる。また、ソース電極層1405a及びドレイン電極層1405bは、これらの積層を用いてもよい。
【0387】
層1406a、1406bを設けることにより、金属層であるソース電極層1405a、ドレイン電極層1405bと、酸化物半導体層1403との間を良好な接合としてショットキー接合に比べて熱的にも安定動作を有せしめる。また、チャネルのキャリアを供給する(ソース側)、またはチャネルのキャリアを安定して吸収する(ドレイン側)、または抵抗成分を配線との界面に作らないためにも積極的にn層を設けると効果的である。また低抵抗化により、高いドレイン電圧でも良好な移動度を保持することができる。
【0388】
また、上述したn層1406a、1406bを有する構造に限定されず、例えば、n層を設けない構造としてもよい。
【0389】
また、チャネル保護層1418を形成後、窒素雰囲気下、又は大気雰囲気下(大気中)において薄膜トランジスタ1430に加熱処理(好ましくは150℃以上350℃未満)を行う。例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。該加熱処理を行うと、酸化物半導体層1403がチャネル保護層1418と接した状態で加熱されることになり、薄膜トランジスタ1470の電気的特性のばらつきを軽減することができる。この加熱処理(好ましくは150℃以上350℃未満)は、チャネル保護層1418の形成後であれば特に限定されず、他の工程、例えば樹脂膜形成時の加熱処理や、透明導電膜を低抵抗化させるための加熱処理と兼ねることで、工程数を増やすことなく行うことができる。
【0390】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0391】
(実施の形態14)
半導体装置及び半導体装置の作製方法を、図35(A)及び図35(B)を用いて説明する。実施の形態13と同一部分又は同様な機能を有する部分、及び工程は、実施の形態13と同様に行うことができ、繰り返しの説明は省略する。
【0392】
図35(A)に示す薄膜トランジスタ1431はゲート電極層1401及び酸化物半導体層1403のチャネル領域に重なるようにチャネル保護層1418及び絶縁層1407を介して導電層1409を設ける例である。
【0393】
図35(A)は半導体装置の有する薄膜トランジスタ1431の断面図である。薄膜トランジスタ1431はボトムゲート型の薄膜トランジスタであり、絶縁表面を有する基板である基板1400上に、ゲート電極層1401、ゲート絶縁層1402、酸化物半導体層1403、ソース領域又はドレイン領域1404a、1404b、及びソース電極層又はドレイン電極層1405a、1405b、導電層1409を含む。導電層1409は、ゲート電極層1401と重なるように、絶縁層1407上に設けられている。
【0394】
導電層1409は、ゲート電極層1401、ソース電極層又はドレイン電極層1405a、1405bと同様な材料、方法を用いて形成することができる。画素電極層を設ける場合は、画素電極層と同様な材料、方法を用いて形成してもよい。本実施の形態では、導電層1409としてチタン膜、アルミニウム膜、及びチタン膜の積層を用いる。
【0395】
導電層1409は、電位がゲート電極層1401と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層1409がフローティング状態であってもよい。
【0396】
導電層1409を酸化物半導体層1403と重なる位置に設けることによって、薄膜トランジスタの信頼性を調べるためのバイアス−熱ストレス試験(以下、BT試験という)において、BT試験前後における薄膜トランジスタ1431のしきい値電圧の変化量を低減することができる。
【0397】
また、図35(B)に図35(A)と一部異なる例を示す。図35(A)と同一部分又は同様な機能を有する部分、及び工程は、図35(A)と同様に行うことができ、繰り返しの説明は省略する。
【0398】
図35(B)に示す薄膜トランジスタ1432はゲート電極層1401及び酸化物半導体層1403のチャネル領域に重なるようにチャネル保護層1418、絶縁層1407及び絶縁層1408を介して導電層1409を設ける例である。
【0399】
図35(B)では、絶縁層1407上に平坦化膜として機能する絶縁層1408を積層する。
【0400】
また、図35(B)では、ソース領域またはドレイン領域を設けず、酸化物半導体層1403とソース電極層又はドレイン電極層1405a、1405bが直接接する構造となっている。
【0401】
図35(B)の構造においても、導電層1409を酸化物半導体層1403と重なる位置に設けることによって、薄膜トランジスタの信頼性を調べるためのBT試験において、BT試験前後における薄膜トランジスタ1432のしきい値電圧の変化量を低減することができる。
【0402】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0403】
(実施の形態15)
本実施の形態では、実施の形態1と構造が一部異なる例を図36に示す。実施の形態1と同一部分又は同様な機能を有する部分、及び工程は、実施の形態1と同様に行うことができ、繰り返しの説明は省略する。
【0404】
本実施の形態では、第1の酸化物半導体層のパターニングの後に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、アルゴン等)下或いは減圧下において加熱処理を行った後、不活性雰囲気下で徐冷を行う。第1の酸化物半導体層を上記雰囲気下で加熱処理することで、酸化物半導体層403に含まれる水素及び水などの不純物を除去することができる。
【0405】
次いで、第1の酸化物半導体層上に、薄膜トランジスタのソース領域及びドレイン領域(n層、バッファ層ともいう)として用いる第2の酸化物半導体膜を形成した後、導電膜を形成する。
【0406】
次いで、第1の酸化物半導体層、及び第2の酸化物半導体膜、導電膜をエッチング工程により選択的にエッチングし、酸化物半導体層403、及びソース領域又はドレイン領域(n層、バッファ層ともいう)404a、404b、及びソース電極層又はドレイン電極層405a、405bを形成する。なお、酸化物半導体層403は一部のみがエッチングされ、溝部(凹部)を有する酸化物半導体層となる。
【0407】
次いで、酸化物半導体層403に接してスパッタ法またはPCVD法による酸化珪素膜を酸化物絶縁膜407として形成する。低抵抗化した酸化物半導体層に接して形成する酸化物絶縁膜407は、水分や、水素イオンや、OHなどの不純物を含まず、これらが外部から侵入することをブロックする無機絶縁膜を用い、具体的には酸化珪素膜、または窒化酸化珪素膜を用いる。
【0408】
低抵抗化した酸化物半導体層403に接してスパッタ法またはPCVD法などにより酸化物絶縁膜407を形成すると、低抵抗化した酸化物半導体層403において少なくとも酸化物絶縁膜407と接する領域を高抵抗化(キャリア濃度が低まる、好ましくは1×1018/cm未満、より好ましくは1×1014/cm以下)し、高抵抗化酸化物半導体領域とすることができる。酸化物絶縁膜407を接して形成することによって高抵抗化酸化物半導体領域を有する半導体層403となり、薄膜トランジスタ473を作製することができる(図36参照。)。
【0409】
図36における構造において、ソース領域又はドレイン領域(n層、バッファ層ともいう)404a、404bとしてIn−Ga−Zn−O系非単結晶膜を用いる。
【0410】
また、半導体層403とソース電極層の間にソース領域を、半導体層とドレイン電極層との間にドレイン領域を有する。ソース領域及びドレイン領域に、n型の導電型を示す酸化物半導体層を用いる。
【0411】
また、薄膜トランジスタ473のソース領域又はドレイン領域404a、404bとして用いる第2の酸化物半導体膜は、チャネル形成領域として用いる第1の酸化物半導体層の膜厚よりも薄く、且つ、より高い導電率(電気伝導度)を有するのが好ましい。
【0412】
またチャネル形成領域として用いる第1の酸化物半導層は非晶質構造を有し、ソース領域及びドレイン領域として用いる第2の酸化物半導体膜は非晶質構造の中に結晶粒(ナノクリスタル)を含む場合がある。このソース領域及びドレイン領域として用いる第2の酸化物半導体膜中の結晶粒(ナノクリスタル)は直径1nm〜10nm、代表的には2nm〜4nm程度である。
【0413】
また、酸化物絶縁膜407を形成後、窒素雰囲気下、又は大気雰囲気下(大気中)において薄膜トランジスタ473に加熱処理(好ましくは150℃以上350℃未満)を行ってもよい。例えば、窒素雰囲気下で250℃、1時間の加熱処理を行う。該加熱処理を行うと、酸化物半導体層403が酸化物絶縁膜407と接した状態で加熱されることになり、薄膜トランジスタ473の電気的特性のばらつきを軽減することができる。
【0414】
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
【0415】
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
【実施例1】
【0416】
ここで、酸素密度の高い領域及び酸素密度の低い領域を有する酸化物半導体層において、加熱処理前後における酸素密度の変化について計算した結果を、図42及び図43を用いて説明する。ここでは、計算用のソフトウェアとしては、富士通株式会社製のMaterials Explorer5.0を用いた。
【0417】
図42に、計算に用いた酸化物半導体層のモデルを示す。ここでは、酸化物半導体層1201を、酸素密度の低い層1203及び酸素密度の高い層1205が積層される構造とした。
【0418】
ここでは、酸素密度の低い層1203として、15個のIn原子、15個のGa原子、15個のZn原子、及び54個のO原子からなるアモルファス構造とした。
【0419】
また、酸素密度の高い層1205として、15個のIn原子、15個のGa原子、15個のZn原子、及び66個のO原子からなるアモルファス構造とした。
【0420】
また、酸化物半導体層1201の密度を5.9g/cmとした。
【0421】
次に、酸化物半導体層1201に対して、NVTアンサンブル、温度250℃の条件で、古典MD(分子動力学)計算を行った。時間刻み幅を0.2fsとし、総計算時間を200psと設定した。また。ポテンシャルは、金属−酸素結合、及び酸素−酸素結合にBorn−Mayer−Huggins型を適用した。また、酸化物半導体層1201の上端及び下端の原子の動きを固定した。
【0422】
次に、計算結果を図43に示す。z軸座標の0nmから1.15nmが酸素密素の低い層1203であり、z軸座標の1.15nmから2.3nmが酸素密度の高い層1205である。MD計算前の酸素の密度分布を実線1207で示し、MD計算後の酸素密度の分布を破線1209で示す。
【0423】
実線1207においては、酸素密素の低い層1203と酸素密度の高い層1205との界面より、酸素密度の高い層1205において、酸素の密度が高い。一方、破線1209においては、酸素密素の低い層1203及び酸素密度の高い層1205において、酸素密度が均質であることが分かる。
【0424】
以上のことから、酸素密素の低い層1203と酸素密度の高い層1205の積層状態のように、酸素密度の分布に偏りが有る場合、加熱処理により酸素密度が高い方から低い方へ拡散し、酸素密度が均質になることが分かる。
【0425】
即ち、実施の形態1に示すように、酸化物半導体層432上に酸化物絶縁膜407を形成することで、酸化物半導体層403及び酸化物絶縁膜407の界面において酸素密度が高まるため、当該酸素が酸化物半導体層403の酸素密度の低い方へ拡散し、酸化物半導体層403が高抵抗化する。以上のことから、薄膜トランジスタの信頼性を向上させることができる。
【符号の説明】
【0426】
10 点線
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 半導体層
105a ソース電極層
105b ドレイン電極層
107 保護絶縁層
108 容量配線
109 酸化物半導体膜
110 画素電極層
121 端子
122 端子
125 コンタクトホール
126 コンタクトホール
127 コンタクトホール
128 透明導電膜
129 透明導電膜
132 導電膜
133 酸化物半導体層
134 酸化物半導体層
135 半導体層
150 端子
151 端子
152 ゲート絶縁層
153 接続電極層
154 保護絶縁層
155 透明導電膜
156 電極層
170 薄膜トランジスタ
400 基板
401 ゲート電極層
402 ゲート絶縁層
403 半導体層
404a、404b ソース電極層またはドレイン電極層
405a、405b ソース電極層またはドレイン電極層
407 酸化物絶縁膜
409 導電層
410 絶縁層
411 画素電極層
419 導電層
430 酸化物半導体層
431 酸化物半導体層
432 酸化物半導体層
441 酸化物半導体層
450 基板
451 ゲート電極層
452 ゲート絶縁層
453 半導体層
455a ドレイン電極層
457 酸化物絶縁膜
460 薄膜トランジスタ
470 薄膜トランジスタ
471 薄膜トランジスタ
472 薄膜トランジスタ
473 薄膜トランジスタ
483 酸化物半導体層
484 酸化物半導体層
500 基板
501 絶縁膜
502 酸化物半導体膜
503 電極
510 物性評価用試料
580 基板
581 薄膜トランジスタ
583 絶縁膜
585 絶縁層
587 電極層
588 電極層
589 球形粒子
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
596 基板
601 電気炉
602 チャンバー
603 ヒーター
604 基板
605 サセプター
606 ガス供給手段
607 排気手段
611 ガス供給源
612 圧力調整弁
613 精製器
614 マスフローコントローラ
615 ストップバルブ
701 酸化物半導体層
711 初期特性
712 +BT
713 −BT
721 初期特性
722 +BT
723 −BT
731 初期特性
732 +BT
733 −BT
1201 酸化物半導体層
1203 酸素密度の低い層
1205 酸素密度の高い層
1207 実線
1209 破線
1400 基板
1401 ゲート電極層
1402 ゲート絶縁層
1403 酸化物半導体層
1404a、1404b ソース領域またはドレイン領域
1405a、1405b ソース電極層またはドレイン電極層
1406a、1406b n+層
1407 絶縁層
1408 絶縁層
1409 導電層
1418 チャネル保護層
1430 薄膜トランジスタ
1431 薄膜トランジスタ
1432 薄膜トランジスタ
1470 薄膜トランジスタ
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4501 基板
4502 画素部
4503a、4503b 信号線駆動回路
4504a、4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4518a、4518b FPC
4519 異方性導電膜
4520 隔壁
5300 基板
5301 画素部
5302 走査線駆動回路
5303 信号線駆動回路
5400 基板
5401 画素部
5402 走査線駆動回路
5403 信号線駆動回路
5404 走査線駆動回路
5501 配線
5502 配線
5503 配線
5504 配線
5505 配線
5506 配線
5543 ノード
5544 ノード
5571 薄膜トランジスタ
5572 薄膜トランジスタ
5573 薄膜トランジスタ
5574 薄膜トランジスタ
5575 薄膜トランジスタ
5576 薄膜トランジスタ
5577 薄膜トランジスタ
5578 薄膜トランジスタ
5601 ドライバIC
5602 スイッチ群
5603a 薄膜トランジスタ
5603b 薄膜トランジスタ
5603c 薄膜トランジスタ
5611 配線
5612 配線
5613 配線
5621 配線
5701 フリップフロップ
5711 配線
5712 配線
5713 配線
5714 配線
5715 配線
5716 配線
5717 配線
5721 信号
5821 信号
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 TFT
7002 発光素子
7003 陰極
7004 発光層
7005 陽極
7011 駆動用TFT
7012 発光素子
7013 陰極
7014 発光層
7015 陽極
7016 遮蔽膜
7017 導電膜
7021 駆動用TFT
7022 発光素子
7023 陰極
7024 発光層
7025 陽極
7027 導電膜
9201 表示部
9202 表示ボタン
9203 操作スイッチ
9205 調節部
9206 カメラ部
9207 スピーカ
9208 マイク
9301 上部筐体
9302 下部筐体
9303 表示部
9304 キーボード
9305 外部接続ポート
9306 ポインティングデバイス
9307 表示部
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 入力手段(操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部

【特許請求の範囲】
【請求項1】
ゲート電極層を形成し、
前記ゲート電極層上にゲート絶縁層を形成し、
前記ゲート絶縁層上に酸化物半導体層を形成し、
前記酸化物半導体層を脱水化または脱水素化し、
前記脱水化または脱水素化させた酸化物半導体層上にソース電極層及びドレイン電極層を形成し、
前記ゲート絶縁層、前記酸化物半導体層、前記ソース電極層、及び前記ドレイン電極層上に前記酸化物半導体層の一部と接する酸化物絶縁膜を形成することを特徴とする半導体装置の作製方法。
【請求項2】
請求項1において前記脱水化または脱水素化は窒素雰囲気、または希ガス雰囲気、或いは減圧下の加熱であることを特徴とする半導体装置の作製方法。
【請求項3】
ゲート電極層を形成し、
前記ゲート電極層上にゲート絶縁層を形成し、
前記ゲート絶縁層上に酸化物半導体層を形成し、
前記酸化物半導体層を不活性雰囲気下で加熱してキャリア濃度を増加させた後、
前記キャリア濃度を増加した酸化物半導体層上にソース電極層及びドレイン電極層を形成し、
前記ゲート絶縁層、前記加熱した酸化物半導体層、前記ソース電極層、及び前記ドレイン電極層上に前記加熱した酸化物半導体層の一部と接する酸化物絶縁膜を形成してキャリア濃度を低減することを特徴とする半導体装置の作製方法。
【請求項4】
請求項3において前記不活性雰囲気は窒素、または希ガスであることを特徴とする半導体装置の作製方法。
【請求項5】
請求項3または請求項4において、前記酸化物半導体層を不活性雰囲気下、かつ温度400℃以上で加熱することを特徴とする半導体装置の作製方法。
【請求項6】
請求項3または請求項4において、前記酸化物半導体層を不活性雰囲気下、かつ温度400℃以上で加熱した後、室温以上100℃未満まで徐冷を行うことを特徴とする半導体装置の作製方法。
【請求項7】
ゲート電極層を形成し、
前記ゲート電極層上にゲート絶縁層を形成し、
前記ゲート絶縁層上に酸化物半導体層を形成し、
前記酸化物半導体層を減圧下で加熱してキャリア濃度を増加させた後、
前記キャリア濃度を増加した酸化物半導体層上にソース電極層及びドレイン電極層を形成し、
前記ゲート絶縁層、前記加熱した酸化物半導体層、前記ソース電極層、及び前記ドレイン電極層上に前記加熱した酸化物半導体層の一部と接する酸化物絶縁膜を形成してキャリア濃度を低減することを特徴とする半導体装置の作製方法。
【請求項8】
請求項3乃至7のいずれか一において、前記キャリア濃度を増加した酸化物半導体層のキャリア濃度は、1×1018/cm以上であることを特徴とする半導体装置の作製方法。

【図1】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図39】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図2】
image rotate

【図38】
image rotate

【図40】
image rotate


【公開番号】特開2011−29630(P2011−29630A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2010−148185(P2010−148185)
【出願日】平成22年6月29日(2010.6.29)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】