説明

樹脂組成物及び樹脂組成物を使用して作製した半導体装置

【課題】特に弾性率が低く応力緩和特性に優れかつ粘度の低い半導体用ダイアタッチペースト又は放熱部材接着用材料であり、及び特に耐リフロー性等の信頼性に優れた半導体装置を提供することである。
【解決手段】1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール及び炭酸ジメチルを反応することにより得られるポリカーボネートジオール(A1)と(メタ)アクリル酸又はその誘導体(A2)とを反応することにより得られるポリカーボネートジ(メタ)アクリレート化合物(A)並びに充填材(B)を含むことを特徴とする樹脂組成物
である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物及び樹脂組成物を使用して作製した半導体装置に関するものである。
【背景技術】
【0002】
半導体製品の大容量、高速処理化及び微細配線化に伴い半導体製品作動中に発生する熱の問題が顕著になってきており、半導体製品から熱を逃がす、いわゆるサーマルマネージメントがますます重要な課題となってきている。このため半導体製品にヒートスプレッダー、ヒートシンク等の放熱部材を取り付ける方法等が一般的に採用されているが放熱部材を接着する材料自体の熱伝導率もより高いものが望まれてきている。一方半導体製品の形態によっては半導体素子そのものを金属製のヒートスプレッダーに接着したり、半導体素子を接着したリードフレームのダイパッド部にヒートスプレッダーを接着したり、ダイパッド部がパッケージ表面に露出しており放熱板をかねる場合もあり、さらにはサーマルビア等の放熱機構を有する有機基板等に接着したりする場合もある。この場合も同様に半導体素子を接着する材料に高熱伝導率が要求される。このようにダイアタッチペースト又は放熱部材接着用材料に高熱伝導率が要求されているが、同時に半導体製品の基板搭載時のリフロー処理に耐える必要があり、さらには大面積の接着が要求される場合も多く構成部材間の熱膨張係数の違いによる反り等の発生を抑制するため低応力性も併せ持つ必要がある。
【0003】
ここで通常高熱伝導性接着剤には、銀粉、銅粉といった金属フィラーや窒化アルミ、窒化ボロン等のセラミック系フィラー等を有機系のバインダーに高い含有率で添加するが、含有可能な量に限界があり高熱伝導率が得られない場合、多量の溶剤を含有し硬化物単体の熱伝導率は良好だが半導体製品中では硬化物中に溶剤が残存あるいは揮発した後がボイドになり熱伝導率が安定しない場合、高フィラー含有率に基づき低応力性が不十分でかつ粘度の低い場合等満足なものはなかった(例えば特許文献1参照)。
【特許文献1】特開平11−43587号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は、十分な低応力性を有しかつ粘度が低い樹脂組成物及び該樹脂組成物を半導体用ダイアタッチ材料又は放熱部材接着用材料として使用することで信頼性に優れた半導体装置を提供することである。
【課題を解決するための手段】
【0005】
このような目的は、下記[1]〜[6]に記載の本発明により達成される。
[1]1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール及び炭酸ジメチルを反応することにより得られるポリカーボネートジオール(A1)と、(メタ)アクリル酸又はその誘導体(A2)とを反応することにより得られるポリカーボネートジ(メタ)アクリレート化合物(A)、並びに充填材(B)を含むことを特徴とする樹脂組成物。
[2]前記ポリカーボネートジオール(A1)が1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールを重量比20/80〜80/20で炭酸ジメチルと反応したものである[1]項に記載の樹脂組成物。
[3]前記ポリカーボネートジオール(A1)の分子量が400〜2000である[1]又は[2]項に記載の樹脂組成物。
[4]前記充填材(B)が銀粉である[1]〜[3]項のいずれか1項に記載の樹脂組成物。
[5]さらに重合開始剤を含む[1]〜[4]項のいずれか1項に記載の樹脂組成物。
[6][1]〜[5]項のいずれか1項に記載の樹脂組成物をダイアタッチ材料又は放熱部材接続材料として使用し作製した半導体装置。
【発明の効果】
【0006】
本発明の樹脂組成物は、低弾性率で応力緩和特性に優れかつ低粘度であるため、ダイアタッチ材料又は放熱部材接着用材料として使用した場合に作業性(ディスペンス性、印刷性)が良好であり、これらの材料を用いて作製した半導体装置は耐リフロー性に優れており、その結果高信頼性の半導体装置を得ることができる。
【発明を実施するための最良の形態】
【0007】
本発明は、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール及び炭酸ジメチルを反応することにより得られるポリカーボネートジオールと(メタ)アクリル酸又はその誘導体とを反応することにより得られるポリカーボネートジ(メタ)アクリレート化合物並びに充填材を含むことを特徴とする樹脂組成物で、特に弾性率が低く応力緩和特性に優れかつ粘度の低い樹脂組成物を提供するものである。
以下、本発明について詳細に説明する。
【0008】
本発明では、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール及び炭酸ジメチルを反応することにより得られるポリカーボネートジオール(A1)と(メタ)アクリル酸又はその誘導体(A2)とを反応することにより得られるポリカーボネートジ(メタ)アクリレート化合物(A)を使用する。化合物(A)はカーボネート結合を有するがこれは硬化物に柔軟性を与えるために導入され、同様の目的で導入されるポリエーテルやポリエステルに比較して加水分解されにくいため特に高温高湿の条件に長時間曝された後でも劣化が少なく好適である。一般にビスフェノールAを原料としているものがポリカーボネートとして知られているが、ビスフェノール系ポリカーボネートを骨格に有する場合には芳香族環の存在により分子鎖の間の凝集力が高くなり硬化物の弾性率が高くなりすぎるという問題がある。一方脂肪族系のポリカーボネートの場合でも、例えば1,4−シクロヘキサンジメタノールのみを使用してポリカーボネートジ(メタ)アクリレートにした場合や1,6−ヘキサンジオールのみを使用してポリカーボネートジ(メタ)アクリレートにした場合には分子鎖の規則性が高くなりワックス状から固形になり樹脂組成物とした場合に粘度が高く作業性の悪いものとなる。そこで本発明では粘度が低い、すなわち樹脂組成物とした時に良好な作業性(ディスペンス性、印刷性)を示すポリカーボネートジ(メタ)アクリレート化合物を得るために1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールを予め混合した状態で炭酸ジメチルとエステル交換反応を行ったポリカーボネートジオール(A1)と(メタ)アクリル酸又はその誘導体(A2)と反応する。1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールの混合比は重量比20/80〜80/20が好ましい。これより1,6−ヘキサンジオールが多くても少なくても得られたポリカーボネートジ(メタ)アクリレートの粘度が高くなりすぎるためである。1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールと炭酸ジメチルとの反応はエステル交換触媒として一般的に使用される触媒を使用する。例えばジブチル錫オキサイド、ジオクチル錫オキサイド等の有機錫化合物、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のテトラアルキルチタネート、炭酸カリウム、炭酸カルシウム等の炭酸アルカリ金属塩又は炭酸アルカリ土類金属塩、カリウムメトキシド、ナトリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属のアルキルアルコキシド、ジメチルアニリン、1,4−ジアザビシクロ(2,2,2)オクタン等の3級アミン、アセチルアセトンハフニウム等のハフニウムの有機金属錯体などである。
【0009】
ポリカーボネートジオール(A1)の分子量としては400から2000が好ましい。より好ましい分子量は500から1500であり、さらに好ましいのは800から1200である。これよりも低いと(メタ)アクリレート化した後に樹脂組成物とした時硬化物の弾性率が高くなりすぎ、これより高いと(メタ)アクリレート化した状態での粘度が高くなりすぎるためである。
ポリカーボネートジオール(A1)は、(メタ)アクリル酸(A2)とエステル化反応によりポリカーボネートジ(メタ)アクリレートとすることも可能であるし、(メタ)アクリル酸アルキルエステル(A2)とエステル交換反応によりポリカーボネートジ(メタ)アクリレートとすることも可能である。
【0010】
本発明では充填材(B)を使用する。充填材(B)としては銀粉、金粉、銅粉、アルミニウム粉、ニッケル粉、パラジウム粉といった金属粉、アルミナ粉末、チタニア粉末、アルミニウムナイトライド粉末、ボロンナイトライド粉末といったセラミック粉末、ポリエチレン粉末、ポリアクリル酸エステル粉末、ポリテトラフルオロエチレン粉末、ポリアミド粉末、ポリウレタン粉末、ポリシロキサン粉末といった高分子粉末を使用可能である。樹脂組成物を使用する際にはノズルを使用して吐出する場合があるので、ノズル詰まりを防ぐために平均粒径は30μm以下が好ましく、ナトリウム、塩素といったイオン性の不純物が少ないことが好ましい。特に導電性、熱伝導性が要求される場合には銀粉を使用することが好ましい。
【0011】
通常電子材料用として市販されている銀粉であれば、還元粉、アトマイズ粉等が入手可能で、好ましい粒径としては平均粒径が1μm以上、30μm以下である。下限値以下では樹脂組成物の粘度が高くなりすぎ、上限値以上では上述のようにディスペンス時にノズル詰まりの原因となりうるからであり、電子材料用以外の銀粉ではイオン性不純物の量が多い場合があるので注意が必要である。形状はフレーク状、球状等特に限定されないが、好ましくはフレーク状のものを使用し、通常樹脂組成物中70重量%以上、95重量%以下含まれる。銀粉の割合が下限値より少ない場合には導電性が悪化し、上限値より多い場合には樹脂組成物の粘度が高くなりすぎるためである。
【0012】
本発明では希釈剤を使用することが可能である。なかでも以下に示すような化合物は良好な接着性を得るために好適に使用される。2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,2−シクロヘキサンジオールモノ(メタ)アクリレート、1,3−シクロヘキサンジオールモノ(メタ)アクリレート、1,4−シクロヘキサンジオールモノ(メタ)アクリレート、1,2−シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3−シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2−シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3−シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4−シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレートといった水酸基を有する(メタ)アクリレート化合物、及びこれら水酸基を有する(メタ)アクリレート化合物とジカルボン酸とを反応することで得られたカルボキシ基を有する(メタ)アクリレート化合物。ここで使用可能なジカルボン酸としては、例えばしゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸及びこれらの誘導体が挙げられ、なかでもこれらジカルボン酸を脱水した酸無水物は水酸基と容易に反応しハーフエステル化物を得ることができるので好適に用いられる。水酸基を有する(メタ)アクリレート化合物及びカルボキシ基を有する(メタ)アクリレート化合物はどちらか一方でも併用しても差し支えなく、それぞれ複数種を使用しても差し支えない。
【0013】
上記以外にも水酸基又はカルボキシ基を有しない(メタ)アクリレート化合物及びビニル基を有する化合物を使用することも可能である。例えば下記のような化合物が挙げられる。メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャルブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ターシャルブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3−テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4−ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリアルキレングリコールモノ(メタ)アクリレート、オクトキシポリアルキレングリコールモノ(メタ)アクリレート、ラウロキシポリアルキレングリコールモノ(メタ)アクリレート、ステアロキシポリアルキレングリコールモノ(メタ)アクリレート、アリロキシポリアルキレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリアルキレングリコールモノ(メタ)アクリレート、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド、1,2−ジ(メタ)アクリルアミドエチレングリコール、ジ(メタ)アクリロイロキシメチルトリシクロデカン、N−(メタ)アクリロイロキシエチルマレイミド、N−(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、N−(メタ)アクリロイロキシエチルフタルイミド、n−ビニル−2−ピロリドン、スチレン誘導体、α−メチルスチレン誘導体。
【0014】
本発明では、不飽和結合を反応させる目的で重合開始剤を使用することが好ましい。重合開始剤の種類については特に限定されないが本発明の樹脂組成物は、通常蛍光灯等の照明下で使用されるので光重合開始剤が含まれていると使用中の反応により粘度上昇が観察されるため実質的に光重合開始剤を含有することは好ましくない。実質的にとは、粘度上昇が観察されない程度で光重合開始剤が微量に存在してもよく、好ましくは、含有しないことである。
【0015】
このため熱ラジカル重合開始剤が好ましく用いられる。通常熱ラジカル重合開始剤として用いられるものであれば特に限定しないが、望ましいものとしては、急速加熱試験(試料1gを電熱板の上にのせ、4℃/分で昇温した時の分解開始温度)における分解温度が40〜140℃となるものが好ましい。分解温度が40℃未満だと、樹脂組成物の常温における保存性が悪くなり、140℃を越えると硬化時間が極端に長くなるため好ましくない。これを満たす熱ラジカル重合開始剤の具体例としては、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、n−ブチル4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルハイドロパーオキサイド、P−メンタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、α、α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、イソブチリルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、桂皮酸パーオキサイド、m−トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−3−メトキシブチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、α、α’−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチ−ルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルへキサノエート、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシ−m−トルオイルベンゾエート、t−ブチルパーオキシベンゾエート、ビス(t−ブチルパーオキシ)イソフタレート、t−ブチルパーオキシアリルモノカーボネート、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられるが、これらは単独又は硬化性を制御するため2種類以上を混合して用いることもできる。特に限定されるわけではないが樹脂組成物中0.001重量%以上、2重量%以下含有されるのが好ましい。
【0016】
本発明ではカップリング剤が使用可能である。一般的に使用されるシランカップリング剤、チタン系カップリング剤を使用することができるが、特にS−S結合を有するシランカップリング剤は充填材(B)として銀粉を用いた場合には銀粉表面との結合も生じるため、被着体表面との接着力向上のみならず硬化物の凝集力も向上するため好適に使用することが可能である。具体的には、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリブトキシシリルプロピル)テトラスルフィド、ビス(ジメトキシメチルシリルプロピル)テトラスルフィド、ビス(ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(ジブトキシメチルシリルプロピル)テトラスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリブトキシシリルプロピル)ジスルフィド、ビス(ジメトキシメチルシリルプロピル)ジスルフィド、ビス(ジエトキシメチルシリルプロピル)ジスルフィド、ビス(ジブトキシメチルシリルプロピル)ジスルフィドなどが挙げられる。S−S結合を有するシランカップリング剤以外との併用も好ましい。
【0017】
本発明の樹脂組成物には、必要により、消泡剤、界面活性剤、各種重合禁止剤、酸化防止剤等の添加剤を用いることができる。
本発明の樹脂組成物は、例えば各成分を予備混合した後、3本ロールを用いて混練した後真空下脱泡することにより製造することができる。
【0018】
本発明の樹脂組成物を用いて半導体装置を製作する方法は、公知の方法を用いることができる。例えば、市販のダイボンダーを用いて、リードフレームの所定の部位に樹脂組成物をディスペンス塗布した後、チップをマウントし、加熱硬化する。その後、ワイヤーボンディングして、エポキシ樹脂を用いてトランスファー成形することによって半導体装置を製作する。又はフリップチップ接合後アンダーフィル材で封止したフリップチップBGAなどのチップ裏面に樹脂組成物をディスペンスしヒートスプレッダー、リッドといった放熱部品を搭載し加熱硬化するなどといった使用方法も可能である。
以下実施例を用いて本発明を具体的に説明するが、これらに限定されるものではない。配合割合は重量部で示す。
【実施例】
【0019】
[実施例1]
化合物(A)として、1,4−ジメタノールシクロヘキサン/1,6−ヘキサンジオール(=3/1(重量比))と炭酸ジメチルから合成した分子量約900のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UM−90(3/1)DM、以下化合物A1)、充填材(B)として、平均粒径8μm、最大粒径30μmのフレーク状銀粉(以下銀粉)、重合開始剤としてジクミルパーオキサイド(日本油脂(株)製、パークミルD、急速加熱試験における分解温度:126℃、以下重合開始剤)、1,4−シクロヘキサンジメタノールモノアクリレート(日本化成(株)製、CHDMMA、水酸基を有するアクリレート化合物、以下化合物Y1)、2−メタクリロイルオキシエチルコハク酸(共栄社化学(株)製、ライトエステルHO−MS、カルボキシ基を有するメタクリレート化合物、以下化合物Y2)、1,6−ヘキサンジオールジメタクリレート(共栄社化学(株)製、ライトエステル1、6HX、水酸基もカルボキシ基も有しないメタクリレート化合物、以下化合物Y3)、テトラスルフィド結合を有するカップリング剤(日本ユニカー(株)製、A−1289、以下カップリング剤1)、グリシジル基を有するカップリング剤(信越化学工業(株)製、KBM−403E、以下カップリング剤2)を表1のように配合し、3本ロールを用いて混練し、脱泡することで樹脂組成物を得た。配合割合は重量部である。得られた樹脂組成物を以下の方法により評価した。評価結果を表1に示す。
【0020】
[実施例2〜4、及び比較例1〜4]
表1に示す割合で配合し実施例1と同様に樹脂組成物を得た。
なお、実施例2では1,4−ジメタノールシクロヘキサン/1,6−ヘキサンジオール(=1/3(重量比))と炭酸ジメチルから合成した分子量約900のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UM−90(1/3)DM、以下化合物A2)を、実施例3では、1,4−ジメタノールシクロヘキサン/1,6−ヘキサンジオール(=1/1(重量比))と炭酸ジメチルから合成した分子量約900のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UM−90(1/1)DM、以下化合物A3)を、実施例4では1,4−ジメタノールシクロヘキサン/1,6−ヘキサンジオール(=1/3(重量比))と炭酸ジメチルから合成した分子量約900のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UM−90(1/3)DM、以下化合物A2)と1,4−ジメタノールシクロヘキサン/1,6−ヘキサンジオール(=1/1(重量比))と炭酸ジメチルから合成した分子量約900のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UM−90(1/1)DM、以下化合物A3)を用いた。
【0021】
比較例1では1,6−ヘキサンジオールと炭酸ジメチルから合成した分子量約1000ポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UH−100DM、以下化合物X1)を、また比較例2では1,4−ジメタノールシクロヘキサンと炭酸ジメチルから合成した分子量約1000のポリカーボネートジオールにメタクリル酸メチルを反応することにより得られるポリカーボネートジメタクリレート化合物(宇部興産(株)製、UC−100DM、以下化合物X2)を、比較例3ではポリテトラメチレングリコールジメタクリレート(日本油脂(株)製、ブレンマーPDT−800、以下化合物X3)を、比較例4では、化合物X1と化合物X2を用いた。
得られた樹脂組成物を以下の方法により評価した。評価結果を表1に示す。
【0022】
評価方法
・粘度:E型粘度計(3°コーン)を用い25℃、2.5rpmで測定した。粘度が15〜25Pa・sの範囲内のものを合格とした。粘度の単位はPa・s。
・接着強度:表1に示す樹脂組成物を用いて、6×6mmのシリコンチップをNi−Pd/Auめっきした銅フレームにマウントし、150℃オーブン中30分硬化した。硬化後及び吸湿処理(85℃、85%、72時間)後に自動接着力測定装置を用い260℃での熱時ダイシェア強度を測定した。260℃熱時ダイシェア強度が30N/チップ以上の場合を合格とした。接着強度の単位はN/チップである。
・弾性率:表1に示す樹脂組成物を用いて、4×20×0.1mmのフィルム状の試験片を作製し(硬化条件150℃30分)、動的粘弾性測定機(DMA)にて引っ張りモードでの測定を行った。測定条件は以下の通りである。
測定温度:−100〜300℃
昇温速度:5℃/分
周波数:10Hz
荷重:100mN
25℃における貯蔵弾性率を弾性率とし3000MPa以下の場合を合格とした。弾性率の単位はMPaである。
・耐リフロー性:表1に示す樹脂組成物を用いて、下記のリードフレームとシリコンチップを150℃30分間硬化し接着した。封止材料(スミコンEME−7026、住友ベークライト(株)製)を用い封止し、パッケージを作製した。このパッケージを30℃、相対湿度60%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒、3回リフロー)を行った。処理後のパッケージを超音波探傷装置(透過型)により剥離の程度を測定した。ダイアタッチ部の剥離面積が10%未満の場合を合格とした。剥離面積の単位は%である。
パッケージ:QFP(14×20×2.0mm)
リードフレーム:Ni−Pd/Auめっきした銅フレーム
チップサイズ:6×6mm
樹脂組成物の硬化条件:オーブン中150℃、30分
【0023】
【表1】

【産業上の利用可能性】
【0024】
本発明の樹脂組成物は、特に弾性率が低く応力緩和特性に優れるため、半導体用ダイアタッチペースト又は放熱部材接着用材料として好適に用いることができる。

【特許請求の範囲】
【請求項1】
1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール及び炭酸ジメチルを反応することにより得られるポリカーボネートジオール(A1)と、(メタ)アクリル酸又はその誘導体(A2)とを反応することにより得られるポリカーボネートジ(メタ)アクリレート化合物(A)、並びに充填材(B)を含むことを特徴とする樹脂組成物。
【請求項2】
前記ポリカーボネートジオール(A1)が、1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールを重量比20/80〜80/20で炭酸ジメチルと反応したものである請求項1記載の樹脂組成物。
【請求項3】
前記ポリカーボネートジオール(A1)の分子量が、400〜2000である請求項1又は2に記載の樹脂組成物。
【請求項4】
前記充填材(B)が銀粉である請求項1〜3のいずれか1項に記載の樹脂組成物。
【請求項5】
さらに重合開始剤を含む請求項1〜4のいずれか1項に記載の樹脂組成物。
【請求項6】
請求項1〜5のいずれか1項に記載の樹脂組成物をダイアタッチ材料又は放熱部材接続材料として使用し作製した半導体装置。

【公開番号】特開2007−262244(P2007−262244A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−89498(P2006−89498)
【出願日】平成18年3月28日(2006.3.28)
【出願人】(000002141)住友ベークライト株式会社 (2,927)
【Fターム(参考)】