説明

油圧制御バルブ

【課題】入力ポートと進角ポートが連通した状態でスプールがロックしても、出力油圧を低下させることのできる油圧制御バルブを提供する。
【解決手段】電磁アクチュエータ3が作動する際は、第2スプール12がスプール8に対して前方に移動することにより、第2スプール12がパージ穴11を閉じる。電磁アクチュエータ3が停止する際は、第2スプリング13のバネ力によって、第2スプール12がスプール8に対して後方に移動することにより、第2スプール12がパージ穴11を開く。このため、入力ポート4と進角ポート5が連通した状態でスプール8がロックしても、電磁アクチュエータ3を停止することで、パージ穴11を介して進角ポート5を排圧して、出力油圧を低下させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リターンスプリングの付勢力に抗してスプール駆動手段がスプールを駆動した際に、スプールが入力ポートと出力ポートの連通を行うスプール弁を用いた油圧制御バルブ(ノーマルクローズタイプの三方弁、四方弁など)に関し、例えば、油圧式の可変バルブタイミング装置(バリアブル・バルブ・タイミング:以下、VVTと称す)に用いて好適な技術に関する。
【0002】
以下の明細書中では、説明の便宜上、
・スプールの移動方向(軸方向)を前後方向と称し、
・リターンスプリングの付勢力によりスプールが移動する方向(軸方向の一方側)を後(図1右側参照)、
・スプール駆動手段の駆動力(軸力)によりスプールが移動する方向(軸方向の他方側)を前(図1左側参照)、
と称する。
この前後方向は、説明のためのものであって、実際の搭載方向を限定するものではない。
【背景技術】
【0003】
背景技術の具体的な一例として、特許文献1を説明する。
特許文献1は、エンジン(内燃機関)によって駆動されるカムシャフトの進角量を可変するVVTに関する技術であり、
・進角室と遅角室の油圧差によってカムシャフトの進角量の可変を行なう可変カムシャフトタイミング機構(バリアブル・カムシャフト・タイミング:以下、VCTと称す)と、・進角室と遅角室の油圧差をコントロールするオイルフロー・コントロール・バルブ(以下、OCVと称す:油圧制御バルブの一例)と、
が用いられている。
【0004】
特許文献1に開示されるOCVを、図5を参照して説明する。なお、以下の符号は、後述する[発明を実施するための形態]および[実施例]と同一機能物に同一符号を付したものである。
OCV1は、四方弁構造を採用したスプール弁2と、このスプール弁2を駆動する電磁アクチュエータ(リニアソレノイド)3とを結合したものである。
【0005】
スプール弁2は、リターンスプリング9の付勢力に抗して電磁アクチュエータ3がスプール8を駆動した際に、スプール8が入力ポート4と進角ポート5(出力ポートの一例)を連通させて、進角ポート5を介して進角室の油圧を上昇させる。なお、このとき、スプール8がドレンポート6と遅角ポートを連通させて、遅角室の油圧を下降させる。
これにより、進角室の油圧が遅角室に対して相対的に高まり、カムシャフトの位相が進角側へ変化する。
【0006】
しかし、スプール8が進角側(前側)へ移動した状態で、異物等によりスプール8がスリーブ7(バルブハウジングの一例)にロックすると、電磁アクチュエータ3の通電を停止しても、VCTの進角室にポンプ油圧が供給され続け、カムシャフトの進角状態が保持される。
すると、アイドリングなど、本来はVCTを遅角側に制御したい時でも、カムシャフトが進角状態になってしまうため、エンジンの吸気バルブと排気バルブのオーバーラップが過大になり、エンスト、ラフアイドリングなど引き起こす問題が生じてしまう。
【0007】
なお、上記ではVVTに用いられるOCV1を用いて問題点を説明したが、VVT用のOCV1に特有の問題点ではなく、三方弁以上のスプール弁構造を採用する他の油圧制御バルブであっても、スプール8のロックによって出力ポートにポンプ油圧が供給され続ける同様の問題が生じてしまう。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−97756号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記問題点に鑑みてなされたものであり、その目的は、入力ポートと出力ポートが連通した状態でスプールがロックしても、スプール駆動手段を停止させることで、出力油圧を低下させることのできる油圧制御バルブの提供にある。
【課題を解決するための手段】
【0010】
[請求項1の手段]
請求項1の油圧制御バルブは、スプール駆動手段が停止している状態では、第2スプリングの付勢力により第2スプールが後方(軸方向の一方側)へ移動してパージ穴が開かれる。
この結果、スプールが出力ポートと入力ポートを連通する状態でロックしても、スプール駆動手段を停止することにより、パージ穴を介して出力ポートを排圧することができ、出力油圧を低下させることができる。
これにより、スプールのロックに対する油圧制御バルブの信頼性を高めることができる。
【0011】
[請求項2の手段]
請求項2の第2スプールは、スプールに対して軸方向の所定範囲で移動可能に設けられ、スプール駆動手段の発生する軸力をスプールに伝達するものである。
そして、スプール駆動手段の発生した軸力によって第2スプリングの付勢力に抗して第2スプールが前方(軸方向の他方側)へ駆動された際に、スプールの一部(後述する実施例では、環状フランジ部)と軸方向で当接することで、スプール駆動手段の発生した軸力をスプールに伝達するものである。
【0012】
[請求項3の手段]
請求項3の第2スプールは、スプールの内部に形成された第2摺動穴において軸方向へ摺動自在に支持される。
そして、パージ穴は、出力ポートと、常時ドレン空間と連通する第2摺動穴とを連通する径方向の穴である。
これにより、第2摺動穴を摺動する第2スプールによって、パージ穴が直接開閉される。
【0013】
[請求項4の手段]
請求項4の油圧制御バルブは、VVTに用いられるOCVであって、出力ポートは進角ポート、パージ穴の外径側の端部は進角ポートに連通するものである。
このため、スプールが進角位置(前側)でロックしても、スプール駆動手段を停止した際に、進角室の油圧をパージ穴を介して排圧することができる。すると、カムシャフトからVCTへ伝わる正トルク等によりVCTが遅角側に作動する。
このように、スプールが進角位置(前側)でロックしても、スプール駆動手段を停止することでVCTを遅角側に作動させることができ、進角異常によるエンジンの不具合を回避することができる。
【0014】
[請求項5の手段]
スプールの後方(軸方向の一方側)への移動を停止させるスプールストッパと、第2スプールの後方(軸方向の一方側)への移動を停止させる第2スプールストッパとは異なるものであり、スプールの軸方向の移動範囲より、第2スプールの軸方向の移動範囲が大きく設けられるものである。
【0015】
[請求項6の手段]
請求項6のスプール駆動手段は、電磁アクチュエータ(リニアソレノイド)である。
即ち、油圧制御バルブは、スプール弁と電磁アクチュエータを組み合わせた電磁スプール弁である。
【図面の簡単な説明】
【0016】
【図1】OCVの軸方向に沿う断面図である(実施例)。
【図2】OCVの作動説明図である(実施例)。
【図3】OCVの作動説明図である(実施例)。
【図4】VVTの概略図である。
【図5】OCVの軸方向に沿う断面図である(従来例)。
【発明を実施するための形態】
【0017】
図面を参照して[発明を実施するための形態]を説明する。
油圧制御バルブ1(後述する実施例ではOCV)は、
・スプール弁2と、
・このスプール弁2を駆動するスプール駆動手段3(後述する実施例では、電磁アクチュエータ)と、
を備える。
【0018】
スプール弁2は、
・入力油圧の供給を受ける入力ポート4、出力油圧の供給を行う出力ポート5(後述する実施例では進角ポート)、ドレン空間に通じるドレンポート6を有するバルブハウジング7(後述する実施例ではスリーブ)と、
・このバルブハウジング7の内部で軸方向へ摺動自在に支持され、各ポートの切替えを行うスプール8と、
・このスプール8を後方へ向けて付勢するリターンスプリング9と、
を備える。
そして、このスプール弁2は、バルブハウジング7に対してスプール8が前方(軸方向の他方側)へ移動した状態において入力ポート4と出力ポート5の連通がなされる。
【0019】
スプール8には、入力ポート4と出力ポート5とを連通するスプール8のスライド位置において、出力ポート5とオイル排出用のドレン空間との連通を行うパージ穴11が設けられる。
また、スプール8の内部には、スプール8に対して軸方向の所定範囲で移動可能に設けられ、スプール駆動手段3の発生する軸力をスプール8に伝達する第2スプール12が設けられる。
さらに、この第2スプール12は、リターンスプリング9よりバネ力の小さい第2スプリング13により、スプール8に対して後方(軸方向の一方側)へ向けて付勢されるとともに、スプール駆動手段3の発生する軸力によって前方(軸方向の他方側)へ駆動されるものである。
【0020】
そして、スプール駆動手段3が作動する際は、スプール駆動手段3の発生する軸力によって、第2スプール12がスプール8に対して前方(軸方向の一方側)に移動することにより、第2スプール12がパージ穴11を閉じる。
逆に、スプール駆動手段3が停止する際は、第2スプリング13のバネ力によって、第2スプール12がスプール8に対して後方(軸方向の他方側)に移動することにより、第2スプール12がパージ穴11を開く。
このため、スプール8が前方へ移動した状態(入力ポート4と出力ポート5が連通した状態)でロックしても、スプール駆動手段3を停止することで、パージ穴11を介して出力ポート5を排圧することができ、出力油圧を低下させることが可能になる。
【実施例】
【0021】
以下において本発明をVVTのOCV1に適用した具体的な一例(実施例)を図面を参照して説明する。以下の実施例は具体的な一例であって、本発明が実施例に限定されないことは言うまでもない。
なお、以下の実施例において、上記[発明を実施するための形態]と同一符号は、同一機能物を示すものである。
【0022】
(VVTの説明)
VVTは、車両走行用のエンジンに搭載されるものであり、
・カムシャフト(例えば、吸気バルブ用カムシャフト等)に取り付けられてカムシャフトの進角量を連続的に可変することでバルブ(例えば、吸気バルブ等)の開閉タイミングを連続的に可変可能なVCT21と、
・このVCT21の作動を油圧制御するOCV1を用いた油圧回路22と、
・OCV1を電気的に制御するECU23(エンジン・コントロール・ユニットの略)と、
から構成されている。
【0023】
VCT21は、エンジンのクランクシャフトに同期して回転駆動されるシューハウジング24と、このシューハウジング24に対して相対回転可能に設けられ、カムシャフトと一体に回転するベーンロータ25とを備えるものであり、シューハウジング24内に構成される油圧アクチュエータによってシューハウジング24に対してベーンロータ25を相対的に回転駆動して、カムシャフトを進角側あるいは遅角側へ変化させるものである。
【0024】
シューハウジング24は、エンジンのクランクシャフトにタイミングベルトやタイミングチェーン等を介して回転駆動されるスプロケットにボルト等によって結合されて、スプロケットと一体回転するものである。このシューハウジング24の内部には、図4に示すように、略扇状の凹部24aが複数(この実施例1では3つ)形成されている。なお、シューハウジング24は、図4において時計方向に回転するものであり、この回転方向が進角方向である。
一方、ベーンロータ25は、カムシャフトの端部に位置決めピン等で位置決めされて、ボルト等によってカムシャフトの端部に固定されるものであり、カムシャフトと一体に回転する。
【0025】
ベーンロータ25は、シューハウジング24の凹部24a内を進角室αと遅角室βに区画するベーン25aを備えるものであり、ベーンロータ25はシューハウジング24に対して所定角度内で回動可能に設けられている。
進角室αは、油圧によってベーン25aを進角側へ駆動するための油圧室であって、ベーン25aの反回転方向側の凹部24a内に形成されるものであり、逆に、遅角室βは油圧によってベーン25aを遅角側へ駆動するための油圧室である。なお、進角室αと遅角室βの液密性は、シール部材26等によって保たれる。
【0026】
油圧回路22は、進角室αおよび遅角室βのオイルを給排して、進角室αと遅角室βに油圧差を発生させてベーンロータ25をシューハウジング24に対して相対回転させるための手段であり、クランクシャフト等によって駆動されるオイルポンプ27から圧送されるポンプ油圧を進角室αまたは遅角室βの一方に調量供給するとともに、進角室αまたは遅角室βの油圧を調量排圧することが可能なOCV1を備える。
【0027】
OCV1は、四方弁構造を有するスプール弁2と、このスプール弁2を駆動する電磁アクチュエータ3(スプール駆動手段3の一例)とを結合した電磁スプール弁であり、スプール弁2がエンジン部品(シリンダヘッド等)に形成されたOCV装着穴(内周面が円筒形状を呈する穴)の内部に挿入されるとともに、電磁アクチュエータ3がエンジン部品に固定されるものである。
【0028】
スプール弁2は、
・エンジン部品に設けられたOCV装着穴に挿入配置されるスリーブ7と、
・このスリーブ7の内部において軸方向へ摺動自在に支持され、各ポートの連通状態を調整するスプール8と、
・このスプール8を後方へ付勢するリターンスプリング9と、
を備える。
【0029】
(スリーブ7の説明)
スリーブ7は、略円筒形状を呈し、外周面がOCV装着穴に対して微細なクリアランスを介して挿入配置される。
スリーブ7の内部には、スプール8を軸方向へ摺動自在に支持する摺動穴28が形成され、この摺動穴28の内周面においてスプール8を軸方向へ摺動自在に支持する。
【0030】
スリーブ7には、複数の入出力ポートが形成されている。
具体的に、スリーブ7の径方向には、オイルポンプ27のオイル吐出口に連通する入力ポート4、進角室αに通じる進角ポート5、遅角室βに通じる遅角ポート29が設けられている。
これらの径方向のポートは、スリーブ7の前側から後側に向かって、進角ポート5、入力ポート4、遅角ポート29の順に配置されている。
一方、スリーブ7の前端には、ドレン空間(ドレンパンに通じる空間)に通じるドレンポート6が設けられている。
【0031】
(スプール8の説明)
スプール8は、略円筒形状を呈し、外周面がスリーブ7の内周面に対して微細なクリアランスを介して挿入配置される。
スプール8の軸方向の移動範囲は、所定範囲内に規制されるものであり、
(i)スプール8の前方へのスライド位置が、スプール8の前端と、固定部材(この実施例ではドレンポート6の周囲の環状壁30)との当接で規制される。
(ii)スプール8の後方へのスライド位置が、スプール8の後端と、固定部材(この実施例では後述する磁気吸引補助部品45)との当接で規制される。
このスプール8の後端と固定部材(後述する磁気吸引補助部品45)との当接箇所が、スプールストッパXに相当するものである。
【0032】
そして、スプール8が後方から前方へスライド変位することで、各ポートの切替え状態が変化して、遅角状態(カムシャフトを遅角側へ駆動する状態)、保持状態(カムシャフトの進角量を保持する状態)および進角状態(カムシャフトを進角側へ駆動する状態)が達成される。
【0033】
スプール8の外周には、スリーブ7に対してスプール8が軸方向の中間位置に駆動された状態において、進角ポート5を閉塞する第1ランド31(進角ポート閉塞用の大径部)と、遅角ポート29を閉塞する第2ランド32(遅角ポート閉塞用の大径部)とが設けられている。
【0034】
スプール8の外周には、第1ランド31と第2ランド32の間に全周溝33(小径部)が設けられている。
この全周溝33は、入力ポート4と常に連通するものであり、
(i)スプール8が前方へ移動した際に入力ポート4と進角ポート5を連通して進角ポート5の油圧を上昇させ、
(ii)スプール8が後方へ移動した際に入力ポート4と遅角ポート29を連通して遅角ポート29の油圧を上昇させる分配室の機能を果たすものである。
【0035】
スプール8は、上述したように略円筒形状を呈するものであり、スプール8内において軸方向に延びる穴の前端がドレンポート6と常時連通するとともに、スプール8内において軸方向に延びる穴の後端が電磁アクチュエータ3の内部(具体的には、後述するカップガイド43の内部)と常時連通するものである。
【0036】
スプール8の内周面の前側には、内径方向に突出する環状フランジ部34がスプール8と一体に設けられている。
この環状フランジ部34の前面は、リターンスプリング9に当接してリターンスプリング9の付勢力を受けるように設けられている。
また、環状フランジ部34の後面は、第2スプール12の前方へ駆動された際に、第2スプール12の前端に当接し、第2スプール12に伝達された電磁アクチュエータ3の軸力を受けるように設けられている。
【0037】
スプール8の内周面のうち、環状フランジ部34の前側は、リターンスプリング9の後側の外周を覆うスプリング収容穴35として設けられている。
また、スプール8の内周面のうち、環状フランジ部34の後側は、第2スプール12を軸方向へ摺動自在に支持する第2摺動穴36として設けられている。
【0038】
スプール8における第1ランド31の前方には、径方向に貫通した進角用排出ポート37が設けられている。この進角用排出ポート37は、スプール8が後方へ移動した際に進角ポート5とスプール8内の穴(具体的には、スプリング収容穴35)とを連通し、進角ポート5の油圧を下降させるためのものである。
【0039】
スリーブ7における第2ランド32の後方には、径方向に貫通した遅角用排出ポート38が設けられている。この遅角用排出ポート38は、スプール8が前方へ移動した際に遅角ポート29とスプール8内の穴(具体的には第2摺動穴36)とを連通し、遅角ポート29の油圧を下降させるためのものである。
【0040】
(リターンスプリング9の説明)
リターンスプリング9は、スプール8を後方へ向けて付勢する圧縮コイルスプリングである。
ここで、スリーブ7の環状壁30と、スプール8に設けた環状フランジ部34との間には、バネ室Aが形成されている。
そして、リターンスプリング9は、このバネ室Aに配置されるものであり、環状壁30と環状フランジ部34の間で軸方向に圧縮された状態で組付けられるものである。
【0041】
(電磁アクチュエータ3の説明)
電磁アクチュエータ3は、コイル41、プランジャ42、カップガイド43、磁気吸引ステータ44、磁気吸引補助部品45、磁気受渡ステータ46、ヨーク47、ステー48およびコネクタ49を備える。
コイル41は、通電されるとプランジャ42を磁気吸引するための磁力を発生する磁力発生手段であり、樹脂製のコイルボビンの周囲に絶縁被覆された導線(エナメル線等)を多数巻回したものである。
【0042】
プランジャ42は、コイル41の発生する磁力によりリターンスプリング9の付勢力に打ち勝ってスプール8を前方へ駆動する磁性体金属(例えば、鉄:磁気回路を構成する強磁性材料)によって形成された円柱体であり、カップガイド43の内周面において軸方向へ摺動自在に支持される。
【0043】
磁気吸引ステータ44は、プランジャ42を前方へ磁気吸引するものであり、スリーブ7とコイル41との間に挟まれて配置される円盤部44aと、この円盤部44aの磁束をプランジャ42の近傍まで導く筒状部44bとからなる磁性体金属(例えば、鉄:磁気回路を構成する強磁性材料)であって、プランジャ42と筒状部44bとの軸方向間に磁気吸引ギャップ(メインギャップ)が形成される。
筒状部44bは、プランジャ42が前方へ移動した際、軸方向に交差可能に設けられている。また、筒状部44bの端部にはテーパが形成されており、このテーパによってプランジャ42のストローク量に対して磁気吸引力が変化しない特性に設けられている。
【0044】
磁気吸引補助部品45は、スプール8とプランジャ42との間に配置されて、プランジャ42の磁気吸引力を高めるものである。
この磁気吸引補助部品45は、例えば磁性体の金属板(例えば、鉄:磁気回路を構成する強磁性材料)をカップ形状に加工したものであり、スリーブ7の後端に形成された段差とカップガイド43との間に挟まれて固定される。
【0045】
なお、磁気吸引補助部品45は、後述する容積変動室Cの前後空間を区画するものであり、この磁気吸引補助部品45の中心部には、後述するシャフト53を挿通するための軸方向の貫通穴が形成されている。そして、磁気吸引補助部品45と後述するシャフト53の間には、オイルが軸方向へ移動可能なクリアランス(後述する容積変動室Cの前後空間を連通させる隙間)が形成されている。
【0046】
磁気受渡ステータ46は、カップガイド43を介してプランジャ42の周囲と径方向の磁気の受け渡しを行なうものであり、カップガイド43を介してプランジャ42の外周を覆うとともに、コイルボビンの内周に挿入配置される円筒部46a、およびこの円筒部46aから外径方向に向かって形成され、外周縁においてヨーク47と磁気結合されるフランジ部46bからなる磁性体金属(例えば、鉄:磁気回路を構成する強磁性材料)であり、円筒部46aとプランジャ42の径方向間に磁束受渡ギャップ(サイドギャップ)が形成される。
【0047】
ヨーク47は、コイル41の周囲を覆う円筒形状を呈した磁性体金属(例えば、鉄:磁気回路を構成する強磁性材料)であり、前端に形成された爪部をカシメることでスリーブ7と結合される。
【0048】
カップガイド43は、電磁アクチュエータ3の内部のオイルが外部に漏れないように、電磁アクチュエータ3の内部においてオイルが導かれる範囲を区画する手段であり、筒形カップ形状を呈する非磁性体材料(例えば、ステンレス等)によって設けられる。
カップガイド43の前端には径方向に広がる拡径フランジ部が設けられており、この拡径フランジ部がスリーブ7(具体的には、スリーブ7の後端に配置されたOリング51)と磁気吸引ステータ44との間に挟まれることで、カップガイド43の内外のシールが成される。
なお、スリーブ7の後部外周に配置されたOリング52は、OCV装着穴からオイルが漏れるのを防ぐためのものである。
【0049】
ステー48は、OCV1をエンジン部品に結合するための手段であり、ヨーク47の前端に形成された段差部と磁気吸引ステータ44との間に挟まれて固定されている。なお、ステー48は、ヨーク47に溶接結合されるなど、他の技術で電磁アクチュエータ3に結合されるものであっても良い。
そして、上述したように、スプール弁2をバルブOCV装着穴の内部に挿入し、電磁アクチュエータ3のステー48をエンジン部品に締結することで、OCV1がエンジンに組付けられる。
【0050】
コネクタ49は、コイル41等を樹脂モールドする2次成形樹脂の一部によって形成された結合手段であり、その内部には、コイル41の導線端部とそれぞれ接続されるターミナル端子49aが配置されている。このターミナル端子49aは、一端がコイルボビンに差し込まれた状態で2次成形樹脂に樹脂モールドされたものであり、ターミナル端子49aの他端がコネクタ49内において露出配置されている。
【0051】
(ECU23の説明)
ECU23は、エンジン運転状態に応じた「目標の位相角」を算出する機能を備えるとともに、シューハウジング24に対するベーンロータ25の「実際の位相角」を検出する手段を備え、「実際の位相角」が「目標の位相角」となるようにコイル41の通電制御を実施するように設けられている。
具体的な一例として、ECU23は、デューティ比制御によりコイル41へ供給する電流量を制御するものであり、コイル41の供給電流量を制御することで、スプール8の軸方向の位置をリニアにスライド制御し、エンジン運転状態に応じた作動油圧を進角室αおよび遅角室βに発生させてカムシャフトの進角量を可変制御する。
【0052】
(スプールロック対処手段の説明)
この実施例のOCV1には、スプール8が前方位置(進角側)でロックした際の不具合を回避するスプールロック対処手段が設けられている。
このスプールロック対処手段は、
(a)スプール8に設けられるパージ穴11と、
(b)電磁アクチュエータ3の出力により前方へ駆動されてパージ穴11を閉じる第2スプール12と、
(c)電磁アクチュエータ3が停止した際に、第2スプール12を後方へ移動させてパージ穴11を開かせる第2スプリング13と、
を用いて構成される。
【0053】
パージ穴11は、少なくとも進角ポート5と入力ポート4とを連通するスプール8のスライド位置において、進角ポート5と第2摺動穴36(ドレンポート6を介して常にドレン空間に通じる空間)とを連通する径方向の穴(第1ランド31に形成された径方向の貫通穴)である。
そして、このパージ穴11の内側は、第2スプール12によって開閉が可能となるように、スプール8に対する第2スプール12の前端のスライド範囲内に開口するものである。
【0054】
第2スプール12は、スプール8に対して軸方向の所定範囲で移動可能に設けられ、電磁アクチュエータ3の発生する軸力をスプール8に伝達するものである。
この第2スプール12は、略円筒形状を呈し、外周面が第2摺動穴36の内周面に対して微細なクリアランスを介して挿入配置されている。
【0055】
第2スプール12のスライド範囲は、スプール8とは独立してスライドする第1スライド範囲と、スプール8と軸方向に当接してスプール8と一体にスライドする第2スライド範囲とを備える。
具体的に、第2スプール12の後方での停止位置は、プランジャ42の後端と、カップガイド43の底部との当接で規制される。
このプランジャ42の後端とカップガイド43との当接箇所が、第2スプールストッパYに相当するものである。
第2スプール12の後方での停止位置から、第2スプール12を前方に押すと、第2スプリング13が圧縮されて、第2スプール12の前端と環状フランジ部34の後面とが当接し、第2スプール12の軸力がスプール8に付与されるように設けられている。
【0056】
そして、「第2スプールストッパYで第2スプール12が停止する位置」から「スプール8の前端が環状フランジ部34の後面に当接する」までの第2スプール12のスライド範囲が第1スライド範囲である。
また、「スプール8の前端が環状フランジ部34に当接を開始した位置」から「スプール8の前端がドレンポート6の周囲の環状壁30に当接する」までの第2スプール12のスライド範囲が第2スライド範囲である。
【0057】
以上により、
(i)電磁アクチュエータ3の通電が停止された状態では、第2スプリング13の付勢力により第2スプール12が後方へ移動することで第2スプール12がパージ穴11を開き、
(ii)電磁アクチュエータ3が通電されて前方への軸力を発生した状態では第2スプリング13が圧縮されて第2スプール12が前方へ移動することで第2スプール12がパージ穴11を閉じることができる。
【0058】
一方、第2スプール12の後端には、プランジャ42の軸力を第2スプール12に伝えるシャフト53が第2スプール12と一体に設けられている。
なお、シャフト53は、第2スプール12と一体に設けられることに限定されるものではなく、別体に設けて、第2スプール12とプランジャ42との間に介在させても良いし、プランジャ42に結合するものであっても良い。
【0059】
この実施例におけるシャフト53は、小径筒状を呈するものであり、シャフト53の中心には軸方向に貫通した小径のシャフト呼吸孔54が形成されている。
このシャフト呼吸孔54は、プランジャ42の前後の空間の容積変動を可能にする呼吸通路である。
【0060】
具体的に、シャフト呼吸孔54の前端は、第2スプール12の中心部において軸方向に貫通形成された第2スプール12内通路を介してドレンポート6と常時連通する。
また、シャフト呼吸孔54の後端は、プランジャ42の中心部において軸方向に貫通形成されたプランジャ呼吸孔55を介して、プランジャ42の後端とカップガイド43の底部との間の容積変動室B(プランジャ後室)と常時連通する。
さらに、シャフト呼吸孔54は、シャフト53の径方向に形成された呼吸ポート56を介して、シャフト53の周囲の容積変動室C(スプール8とプランジャ42の間の空間)と常時連通する。
【0061】
なお、第2スプール12の後部(シャフト53の前部)には、径方向に貫通した第2遅角用排出ポート57が設けられている。
この第2遅角用排出ポート57は、第2スプール12が環状フランジ部34に当接した状態において、スプール8に設けた遅角用排出ポート38に連通するものであり、スプール8と第2スプール12が前方へ移動した際に遅角ポート29と第2摺動穴36とを連通し、遅角ポート29の油圧を下降させるためのものである。
【0062】
第2スプリング13は、第2スプール12を後方へ向けて付勢するバネ力の弱い圧縮コイルスプリングである。
この第2スプリング13は、第2スプール12の穴の内部に形成された段差58(具体的には、前側で大径になる部位の段差)と、環状フランジ部34との間に組付けられるものである。
そして、第2スプリング13の使用最大荷重は、リターンスプリング9の使用最小荷重より小さいものであり、電磁アクチュエータ3に低電流が印加された状態(電磁アクチュエータ3の発生する軸力が小さい状態)で圧縮され、第2スプール12の前端が環状フランジ部34に当接し、電磁アクチュエータ3の軸力がスプール8に与えられるように設けられている。
【0063】
(実施例の具体的な作動)
次に、図2、図3を参照して実施例の作動を説明する。
なお、図2、図3において矢印Pはポンプ油圧の供給路を示すものであり、矢印Dはドレン油圧の排出路を示すものである。
【0064】
(正常時における通電停止時)
コイル41の通電停止状態(例えば、エンジン停止時等)では、図2(a)に示すように、
・第2スプール12が第2スプリング13の付勢力で後方位置(初期位置)で停止するとともに、
・スプール8がリターンスプリング9の付勢力で後方位置(遅角位置)で停止する。
【0065】
(遅角作動の説明)
車両の運転状態に応じてECU23がカムシャフトを遅角させる際、ECU23はコイル41に低電流を印加させる。
すると、電磁アクチュエータ3は小さな軸力(弱の軸力)を発生する。
その結果、図2(b)に示すように、
・電磁アクチュエータ3の軸力により第2スプリング13が圧縮され、第2スプール12が環状フランジ部34に当接するとともに、
・スプール8がリターンスプリング9の付勢力で後方位置(遅角位置)で停止する。
【0066】
これにより、
・入力ポート4と遅角ポート29が全周溝33を介して連通するとともに、
・進角ポート5とドレンポート6が進角用排出ポート37を介して連通する。
この連通が達成されることにより、遅角室βの油圧が高まるとともに、進角室αの油圧が低下して、シューハウジング24に対してベーンロータ25が相対的に遅角側へ変位し、カムシャフトが遅角側へ変位する。
【0067】
(進角量保持の説明)
車両の運転状態に応じてECU23がカムシャフトの進角量を保持する際、ECU23はコイル41に中電流(高電流と低電流の間で設定された電流)を印加させる。
すると、電磁アクチュエータ3は、中電流に応じた中度の軸力(中の軸力)を発生する。
その結果、
・電磁アクチュエータ3の軸力により第2スプリング13が圧縮され、第2スプール12が環状フランジ部34に当接した状態が維持されるとともに、
・第2スプール12を介してスプール8に中度の軸力が付与され、スプール8が軸方向の中間位置(進角保持位置)で停止する。
【0068】
これにより、
・第1ランド31が進角ポート5を閉塞するとともに、
・第2ランド32が遅角ポート29を閉塞する。
このように、進角ポート5と遅角ポート29が閉塞されることで、進角室αの油圧と遅角室βの油圧が一定に保たれ、カムシャフトの進角量が保持される。
【0069】
(進角作動の説明)
車両の運転状態に応じてECU23がカムシャフトを進角させる際、ECU23はコイル41に高電流を印加させる。
すると、電磁アクチュエータ3は、大きな軸力(大の軸力)を発生する。
その結果、図3(c)に示すように、
・電磁アクチュエータ3の軸力により第2スプリング13が圧縮され、第2スプール12が環状フランジ部34に当接した状態が維持されるとともに、
・第2スプール12を介してスプール8に大きな軸力が付与され、スプール8が前方位置(進角位置)で停止する。
【0070】
これにより、
・入力ポート4と進角ポート5が全周溝33を介して連通するとともに、
・遅角ポート29とドレンポート6が遅角用排出ポート38および第2遅角用排出ポート57を介して連通する。
この連通が達成されることにより、進角室αの油圧が高まるとともに、遅角室βの油圧が低下して、シューハウジング24に対してベーンロータ25が相対的に進角側へ変位し、カムシャフトが進角側へ変位する。
【0071】
(実施例の作動および効果)
上述した「進角作動」により、スプール8が進角側(前側)へ移動した状態で、異物等によりスプール8がスリーブ7にロックすると、電磁アクチュエータ3の通電を停止しても、VCT21の進角室αにポンプ油圧が供給され続け、カムシャフトの進角状態が保持される不具合が発生する。
【0072】
これに対し、ECU23は、「実際の位相角」が「目標の位相角」が大きい状態(実際の位相角>目標の位相角)が所定時間経過した時、「OCV1が進角側でロックした」と判定するように設けられてる。
そして、ECU23は、進角ロック判定手段が「OCV1が進角側でロックした」と判定すると、視覚表示装置(警告ランプ等)で故障の発生をドライバーに知らせるとともに、コイル41の通電を停止するように設けられている。
【0073】
このように、スプール8が進角位置でロックすると、上述したECU23の機能により、コイル41の通電が停止される。
すると、電磁アクチュエータ3は、軸力の発生を停止する。
その結果、図3(d)に示すように、
・スプール8が前方位置(進角位置)で停止する状態であっても、
・第2スプール12が第2スプリング13の付勢力で後方位置(初期位置)で停止する。
【0074】
これにより、パージ穴11が第2スプール12の移動により開かれ、進角ポート5とドレンポート6が、パージ穴11および第2摺動穴36を介して連通する。
この連通が達成されることにより、入力ポート4から進角ポート5にポンプ油圧が供給される状態であっても、進角ポート5に供給されたポンプ油圧を、パージ穴11を介して排圧することができる。
そして、カムシャフトからVCT21へ伝わる正トルク等により、VCT21は遅角側に作動する。
【0075】
このように、スプール8が進角位置でロックしても、コイル41の通電を停止することで、VCT21を遅角側に作動させることができるため、進角異常によるエンジンの不具合(本来はVCT21を遅角側に制御したい時でも、カムシャフトが進角状態になって、エンジンの吸気バルブと排気バルブのオーバーラップが過大になり、エンスト、ラフアイドリングなど引き起こす問題)を回避することができ、VVTの信頼性を高めることができる。
【産業上の利用可能性】
【0076】
上記の実施例では、バルブハウジングの一例としてスリーブ7(筒状の部材)を用いる例を示したが、バルブハウジングはスリーブ7に限定されるものではなく、内部に油路が形成される部材にスプール8を挿入する摺動穴28を直接形成したバルブハウジング(スリーブ7を用いないもの)であっても良い。
【0077】
上記の実施例では、スプール駆動手段の一例として電磁アクチュエータ3を用いる例を示したが、スプール8を駆動する手段は限定されるものではなく、他の駆動手段(例えば、電動モータと減速機を組み合わせた電動アクチュエータ、ピエゾアクチュエータ、油圧等の流体圧を利用した流体アクチュエータ等)を用いても良い。
【0078】
上記の実施例では、VVTに用いられるOCV1に本発明を適用する例を示したが、用途は限定されるものではなく、他の四方弁構造のスプール弁2を搭載した油圧制御バルブに本発明を適用しても良い。
また、本発明は、四方弁構造のスプール弁2を搭載する油圧制御バルブに限定される発明ではなく、三方弁構造のスプール弁2を搭載する油圧制御バルブ(ノーマルクローズ型スプール弁:例えば、自動変速機の油圧制御装置に搭載される電磁弁等)に本発明を適用しても良い。あるいは、五方弁以上の切替数を有するスプール弁2を搭載する油圧制御バルブに本発明を適用しても良い。
即ち、三方弁以上のスプール弁2を搭載する油圧制御バルブに本発明を適用しても良い。
【符号の説明】
【0079】
1 OCV(油圧制御バルブ)
2 スプール弁
3 電磁アクチュエータ(スプール駆動手段)
4 入力ポート
5 進角ポート(出力ポート)
6 ドレンポート
7 スリーブ(バルブハウジング)
8 スプール
9 リターンスプリング
11 パージ穴
12 第2スプール
13 第2スプリング
21 VCT(可変カムシャフトタイミング機構)
29 遅角ポート
34 環状フランジ部(第2スプールの端部と軸方向に当接するスプールの一部)
36 第2摺動穴
α 進角室
β 遅角室
X スプールストッパ
Y 第2スプールストッパ

【特許請求の範囲】
【請求項1】
入力ポート(4)、出力ポート(5)、ドレンポート(6)を備えるバルブハウジング(7)、このバルブハウジング(7)の内部において軸方向へ摺動自在に支持されるスプール(8)、このスプール(8)を軸方向の一方側へ付勢するリターンスプリング(9)を備えたスプール弁(2)と、
前記スプール(8)を軸方向の他方側へ向けて駆動するスプール駆動手段(3)とを具備し、
前記バルブハウジング(7)に対して前記スプール(8)が軸方向の他方側へ移動した状態において前記入力ポート(4)と前記出力ポート(5)の連通がなされる油圧制御バルブ(1)において、
この油圧制御バルブ(1)は、
前記スプール(8)に設けられ、前記出力ポート(5)と前記入力ポート(4)を連通する前記スプール(8)のスライド位置において、前記出力ポート(5)とオイル排出用のドレン空間との連通を行うパージ穴(11)と、
前記スプール駆動手段(3)によって軸方向の他方側へ駆動されることにより前記パージ穴(11)を閉じる第2スプール(12)と、
前記スプール駆動手段(3)が停止した際に、前記第2スプール(12)を軸方向の一方へ移動させて前記パージ穴(11)を開かせる第2スプリング(13)と、
を具備するスプールロック対処手段を備えることを特徴とする油圧制御バルブ。
【請求項2】
請求項1に記載の油圧制御バルブ(1)において、
前記第2スプール(12)は、前記スプール(8)に対して軸方向の所定範囲で移動可能に設けられ、前記スプール駆動手段(3)の発生する軸力を前記スプール(8)に伝達するものであり、
前記スプール駆動手段(3)の発生した軸力によって前記第2スプリング(13)の付勢力に抗して軸方向の他方側へ駆動された際に、前記スプール(8)の一部(34)と軸方向で当接することで、前記スプール駆動手段(3)の発生した軸力を前記スプール(8)に伝達することを特徴とする油圧制御バルブ。
【請求項3】
請求項2に記載の油圧制御バルブ(1)において、
前記第2スプール(12)は、前記スプール(8)の内部に形成された第2摺動穴(36)において軸方向へ摺動自在に支持されるものであり、
前記第2摺動穴(36)は、常時ドレン空間と連通するものであり、
前記パージ穴(11)は、前記出力ポート(5)と前記第2摺動穴(36)を連通する径方向の穴であることを特徴とする油圧制御バルブ。
【請求項4】
請求項1〜請求項3のいずれかに記載の油圧制御バルブ(1)において、
この油圧制御バルブ(1)は、可変カムシャフトタイミング機構における進角室(α)に通じる進角ポート(5)と、前記可変カムシャフトタイミング機構における遅角室(β)に通じる遅角ポート(29)とを備え、前記進角室(α)と前記遅角室(β)の油圧差をコントロールするものであり、
前記出力ポート(5)は、前記進角ポート(5)であり、
前記パージ穴(11)の外径側の端部は、前記進角ポート(5)に連通することを特徴とする油圧制御バルブ。
【請求項5】
請求項1〜請求項4のいずれかに記載の油圧制御バルブ(1)において、
前記スプール(8)の軸方向の一方側への移動を停止させるスプールストッパ(X)と、前記第2スプール(12)の軸方向の一方側への移動を停止させる第2スプールストッパ(Y)とは異なって設けられ、
前記スプール(8)の軸方向の移動範囲より、前記第2スプール(12)の軸方向の移動範囲が大きく設けられることを特徴とする油圧制御バルブ。
【請求項6】
請求項1〜請求項5のいずれかに記載の油圧制御バルブ(1)において、
前記スプール駆動手段(3)は、通電量に応じた起磁力を生じさせ、その起磁力により軸方向の他方へ向かう軸力を生じさせる電磁アクチュエータであることを特徴とする油圧制御バルブ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−57338(P2013−57338A)
【公開日】平成25年3月28日(2013.3.28)
【国際特許分類】
【出願番号】特願2011−194899(P2011−194899)
【出願日】平成23年9月7日(2011.9.7)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】