説明

車両周囲監視装置及び車両周囲監視方法

【課題】運転者が車両周囲の立体物の配置関係をより正確に認識することができる車両周囲監視装置及び車両周囲監視方法を提供すること。
【解決手段】車両周囲監視装置100は、車両周囲に存在する立体物を検出する立体物検出部430と、複数のカメラ200の撮影画像を合成処理して、車両周囲の俯瞰画像を表す合成俯瞰画像を生成し、前記立体物検出部による検出結果に基づき、生成した合成俯瞰画像に映る立体物の方向を、前記合成処理の境界方向側に変更する合成俯瞰画像生成部440とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両周囲を撮影する複数のカメラの撮影画像から車両周囲を俯瞰可能な俯瞰画像を合成する車両周囲監視装置及び車両周囲監視方法に関する。
【背景技術】
【0002】
近年、車両の上方の仮想視点から車両の周囲を見下ろした俯瞰画像をモニタに表示する車両周囲監視装置の普及が進んでいる。多くの車両周囲監視装置は、車両周囲を広範囲に映し出せるように、複数のカメラを利用して俯瞰画像を生成する(例えば特許文献1,2参照)。
【0003】
図18は、特許文献1,2に記載の車両周囲監視装置(以下「従来装置」という)におけるカメラ配置及び各カメラの撮影画像から得られる俯瞰画像の一例を示す図である。
【0004】
図18に示すように、車両10には、第1〜第4のカメラ20−1〜20−4が取り付けられる。第1〜第4のカメラ20−1〜20−4は、車両10の前方、後方、左側方、及び右側方の路面を、斜めに見下ろす向きでそれぞれ撮影する。第1〜第4のカメラ20−1〜20−4の撮影画像からは、車両の上方の仮想視点から見下ろしたときの画像に近似した第1〜第4のカメラ俯瞰画像30−1〜30−4を得ることができる。
【0005】
表示される俯瞰画像は、できるだけ広い範囲で連続した画像であることが望ましい。そこで、従来装置は、複数のカメラの撮影画像から1つの俯瞰画像を合成するようにしている。以下、複数のカメラの撮影画像から合成された俯瞰画像を、「合成俯瞰画像」という。
【0006】
従来装置は、第1〜第4のカメラ20−1〜20−4の撮影画像を、路面を基準として合成し、車両10の全周で連続した合成俯瞰画像を生成する。また、従来装置では、合成俯瞰画像に抜けを生じさせないために、隣り合うカメラ20の撮影範囲が重複している。以下、撮影範囲が重複する領域を、「重複エリア」という。
【0007】
重複エリアの路面標示や木陰など、実質的に高さが無い物体(非立体物)の位置は、両方のカメラ20のカメラ俯瞰画像30において一致する。ところが、重複エリアに位置し高さがある立体物の位置は、カメラ俯瞰画像ごとに異なる。これは、カメラ20から見たときの立体物の射影方向が、カメラ20ごとに異なるためである。
【0008】
図19は、第2のカメラ20−2及び第3のカメラ20−3の重複エリアに、第1及び第2の立体物40−1及び40−2が位置するような状況における、第3のカメラ俯瞰画像30−3を例示する図である。また、図20は、上記と同じ状況における第2のカメラ俯瞰画像30−2の一例を示す図である。
【0009】
図19において、第1及び第2の立体物40−1、40−2は、基部41−1、41−2と、立体部分42−1、42−2とに分けられる。基部は、各立体物において、路面を基準とする高さが実質的に無い部分であり、立体部分は、各立体物において、路面を基準として高さ成分を有する部分である。第3のカメラ俯瞰画像30−3において、立体部分42−1、42−2が、基部41−1、41−2から、車両10に対し後方向に伸びた状態で運転者により視認される。すなわち、第3のカメラ俯瞰画像30−3では、第1及び第2の立体物40−1、40−2は、車両10の後方向に向けて倒れ込んだ状態となっている。一方、図20に示すように、第2のカメラ俯瞰画像30−2では、第1及び第2の立体物40−1、40−2は、車両10の左方向に向けて倒れ込んだ状態となっている。
【0010】
このように、重複エリアの立体物の倒れ込みの方向(射影方向)は、カメラ俯瞰画像ごとに異なる。重複エリアにおいて2つのカメラ俯瞰画像を単純に重ね合わせて合成俯瞰画像を作成すると、1つの立体物に対して2つの立体物が現れ、二重像となってしまう。したがって、重複エリアの立体物をどのように処理するかが問題となる。
【0011】
そこで、従来装置は、図21及び図22に示すように、境界60を境として一方のカメラ俯瞰画像の立体物40のみを採用して、合成俯瞰画像50を生成するようにしている。また、より具体的には、従来装置は、図23及び図24に示すように、重複エリアの内部に境界60を設定している。これにより、立体物が重複して表示されるのを防ぐことができる。
【特許文献1】特開2008−48317号公報
【特許文献2】特開2007−180720号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
しかしながら、従来装置では、例えば、図23及び図24に示すように、実際には平行な2つの立体物が、境界60の両側で大きく異なる向きで画像表示されることがある。また、図24に示すように、実際には重なっていない2つの立体物が、境界60において重なった状態で画像表示されることがある。すなわち、実際の複数の立体物の間の配置関係(以下単に「立体物の配置関係」という)とは大きく異なる配置関係で、立体物が表示される場合がある。したがって、従来装置には、運転者に対して、車両周囲の立体物の配置関係を誤って認識させてしまうという課題がある。
【0013】
なお、上記説明では課題を分かりやすくするために、2つの立体物の例を挙げて説明したが、これに限らず、1つの立体物の場合でも、同様の課題は起こる。
【0014】
本発明は、かかる点に鑑みてなされたものであり、運転者が車両周囲の立体物の配置関係を認識させ易くすることができる車両周囲監視装置及び車両周囲監視方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明の車両周囲監視装置は、車両周囲に存在する立体物を検出する立体物検出部と、複数のカメラの撮影画像を合成処理して、車両周囲の俯瞰画像を表す合成俯瞰画像を生成し、立体物検出部による検出結果に基づき、生成した合成俯瞰画像に映る立体物の方向を、合成処理の境界方向側に変更する第1の画像生成部とを備える。
【0016】
本発明の車両周囲監視方法は、車両周囲に存在する立体物を検出する第1のステップと、複数のカメラの撮影画像を合成処理して、車両周囲の俯瞰画像を表す合成俯瞰画像を生成し、第1のステップにおける検出結果に基づき、生成した合成俯瞰画像に映る立体物の方向を、合成処理の境界方向側に変更する第2のステップとを備える。
【発明の効果】
【0017】
本発明によれば、合成俯瞰画像における立体物の方向が合成境界側に変更されるので、運転者は車両周囲の立体物の配置関係をより正確に認識することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の一実施の形態について、図面を参照して詳細に説明する。
【0019】
図1は、本発明の一実施の形態に係る車両周囲監視装置のブロック図である。
【0020】
図1において、車両周囲監視装置100は、大別して、第1〜第4のカメラ200−1〜200−4、画像処理部400、及びモニタ500を備えている。第1〜第4のカメラ200−1〜200−4は、同一の構成を有しているため、適宜、カメラ200としてまとめて説明を行う。
【0021】
各カメラ200は、車両の周囲を撮影する。各カメラ200は、撮像部210と、一対のフレームメモリ220を有するフレーム切替部230とを含んでいる。
【0022】
撮像部210は、固体撮像素子であるCCD(Charge Coupled Device)と、CCDの撮像面に光学像を結像させる光学系とを有し(いずれも図示せず)、CCDで撮像した画像をフレームメモリ220に出力する。フレームメモリ220は、撮像部210で撮像された画像を一時的に格納する。フレーム切替部230は、撮像部210で撮像された画像の入力先と、画像処理部400による参照先とを、2つのフレームメモリ220の間で交互に切り替える。
【0023】
なお、カメラ200は、撮像素子として、CMOS(Complementary Metal Oxide)デバイスを採用してもよい。この場合には、CMOSデバイスにフレームメモリの機能を持たせて、フレームメモリ220を省略することができる。
【0024】
図2は、図1の車両周囲監視装置の第1〜第4のカメラ200−1〜200−4の取り付け位置の一例を示す斜視図である。
【0025】
図2に示すように、第1のカメラ200−1は、車両600の前方を撮影するために、車両600の正面中央に取り付けられている。第2のカメラ200−2は、車両600の後方を撮影するために、車両600の後部中央に取り付けられている。第3のカメラ200−3は、車両600の左側方を撮影するために、車両600の左サイドミラーに取り付けられている。第4のカメラ200−4は、車両600の右側方を撮像するために、車両600の右サイドミラーに取り付けられている。
【0026】
第1〜第4のカメラ200−1〜200−4の撮像範囲である第1〜第4のカメラ撮像範囲200a−1〜200a−4は、いずれも、車両600の周囲の地面を含む。また、隣り合うカメラ撮像範囲200a(例えば、第3のカメラ撮像範囲200a−3と第2のカメラ撮像範囲200a−2)は重なっている。すなわち、隣り合うカメラ撮像範囲200aには、重複エリアが存在する。これにより、第1〜第4のカメラ200−1〜200−4は、全体で、車両600の周囲360度を撮像することができる。
【0027】
図3は、第1〜第4のカメラ200−1〜200−4の撮影画像の一例を示す図である。
【0028】
図3に示すように、第1〜第4のカメラ200−1〜200−4により撮影される第1〜第4のカメラ撮影画像710−1〜710−4には、それぞれ、車両600の前方、後方、左側方、右側方の状況が映っている。第1〜第4のカメラ撮影画像710−1〜710−4は、画像処理部400から読み出し可能な状態で、第1〜第4のカメラ200−1〜200−4のフレームメモリに保持される。
【0029】
再度図1を参照する。画像処理部400は、マッピングテーブル参照部410、カメラ俯瞰画像生成部420、立体物検出部430、合成俯瞰画像生成部440、及びタイミング生成部450を含んでいる。
【0030】
マッピングテーブル参照部410は、2種類のマッピングテーブル(MPT:Mapping Table)を格納し、これらマッピングテーブルを参照して、2種類のマッピングデータを生成する。一方のマッピングテーブルは、各カメラ200のフレームメモリ220に格納された撮影画像の画素位置と、後で説明するカメラ俯瞰画像の画素とを対応付けたテーブルである。また、他方のマッピングテーブルは、各カメラ俯瞰画像の画素と、後で説明する合成俯瞰画像の画素とを対応付けたテーブルである。一方のマッピングデータは、各カメラ俯瞰画像の画素ごとに、どの撮影画像のどの画素の値を割り当てるかを指示するデータである。他方のマッピングデータは、合成俯瞰画像の画素ごとに、どのカメラ俯瞰画像におけるどの画素の値を割り当てるかを指示するデータである。マッピングテーブル参照部410は、一方のマッピングデータを、立体物検出部430及びカメラ俯瞰画像生成部420に出力し、また、他方のマッピングデータを、合成俯瞰画像生成部440に出力する。
【0031】
マッピングテーブル参照部410が格納するマッピングテーブルは、手作業で作成されてもよいし、車両周囲監視装置100が幾何変換等の計算を実行することにより作成されてもよい。また、マッピングテーブルが、ファームウェアとして提供される場合には、マッピングテーブル参照部410は、通信回線やディスクドライブなどのデータ転送手段を用いて、外部からマッピングテーブルを取得してもよい。
【0032】
カメラ俯瞰画像生成部420は、マッピングテーブル参照部410から出力される一方のマッピングデータに従って、各カメラ200のフレームメモリ220に格納された各撮影画像を読み出してマッピングを行うことにより、カメラ俯瞰画像を生成する。具体的には、カメラ俯瞰画像生成部420は、マッピングテーブル参照部410から出力された一方のマッピングデータに基づき、指定された撮影画像の画素を、カメラ俯瞰画像の画素の値として割り当てて、カメラ撮影画像毎にカメラ俯瞰画像が生成される。
【0033】
ここで、カメラ撮影画像には、カメラ視点、つまり、カメラの設置位置から見たときのカメラ撮像範囲の状況が映っている。それとは異なり、カメラ俯瞰画像は、カメラ撮影画像の視点を変換したものであって、カメラ俯瞰画像には、車両上方に設置された仮想的なカメラの視点(仮想視点)から見た場合におけるカメラ撮像範囲の全体または一部の状況が映っている。
【0034】
ここで、図4は、図3に示す第1〜第4のカメラ撮影画像710−1〜710−4から生成される第1〜第4のカメラ俯瞰画像724−1〜724−4の一例を示す図である。第1〜第4のカメラ俯瞰画像724−1〜724−4はそれぞれ、隣のカメラ俯瞰画像724との間の重複エリアを含む。
【0035】
図1に示す立体物検出部430は、詳細については後述するが、各カメラ200から得られたカメラ撮影画像に対し画像認識処理を行って、カメラ撮影画像から車両周囲に存在する立体物を検出する。また、立体物検出部430は、マッピングテーブル参照部410からの一方のマッピングデータを使うことで、各カメラ撮影画像のどの画素が、カメラ俯瞰画像におけるどの画素に対応するかが分かるので、このマッピングデータを用いて、検出した立体物が、カメラ俯瞰画像で映っているエリア(以下「立体物エリア」という)の座標値の集まりを特定する。立体物検出部430はさらに、検出した立体物エリアにおいて、車両に最も近い位置を、その立体物の基部位置として取得する。立体物エリアの座標値の集まりと、その立体物の基部位置とは、立体物位置情報として、合成俯瞰画像生成部440に送られる。
【0036】
合成俯瞰画像生成部440は、カメラ俯瞰画像生成部420からの各カメラ俯瞰画像を受け取り、マッピングテーブル参照部410より他方のマッピングデータを受け取る。合成俯瞰画像生成部440は、受け取ったマッピングデータに従って、受け取った各カメラ俯瞰画像に対しマッピングを行って、合成俯瞰画像を合成する。具体的には、合成俯瞰画像生成部440は、このマッピングデータに基づき、指定されたカメラ俯瞰画像の画素を、合成俯瞰画像の画素の値として割り当てて、これによって、合成俯瞰画像が生成される。
【0037】
ここで、合成俯瞰画像は、カメラ俯瞰画像と比較すると、仮想カメラ視点から見た場合における車両の全周囲を1フレームに収めている点で相違し、あたかも隣り合うカメラ200のカメラ俯瞰画像724を、合成境界を境につなぎ合わせたような画像になる。
【0038】
図5は、合成俯瞰画像生成部440によって生成される合成俯瞰画像の一例を示す図である。図5の例では、仮想視点の位置は車両の真上に設定されており、合成俯瞰画像720の中央には車両を示すアイコン721が配置される。また、車両の周囲に立体物が存在する場合には、合成俯瞰画像720において対応する位置に立体物723が描かれる。
【0039】
ここで、各カメラ俯瞰画像は各カメラ200の位置から撮影されているため、それぞれに映っている立体物の倒れこみの方向が異なる(図4参照)。したがって、このようなカメラ俯瞰画像を基礎として生成される合成俯瞰画像においても、立体物723は倒れこみの方向が相違する(図5参照)。もしこのような合成俯瞰画像がそのまま表示されると、この画像を見る運転者は違和を感じる。特に、重複エリアにおいては、「背景技術」の欄で説明したように、立体物の配置関係が運転者にとっては分かり難くなる。
【0040】
以上の観点から、合成俯瞰画像生成部440は、まず、立体物検出部430からの立体物位置情報に基づいて、この立体物位置情報に対応する立体物を、カメラ俯瞰画像生成部420から受け取ったカメラ俯瞰画像から切り出し、回転させる(画像回転処理)。その後、合成俯瞰画像生成部440は、自身が生成した合成俯瞰画像に、回転済みの立体物を合成する(立体物合成処理)。
【0041】
画像回転処理は、立体物位置情報を受け取った場合に行われ、カメラ俯瞰画像において、立体物位置情報で特定される立体物エリアから、立体物が抽出される。抽出された立体物は、立体物位置情報で特定される基部位置を中心として、それを撮影したカメラ200の視点から見た射影方向から、合成処理の境界方向側に回転させられる。
【0042】
また、立体物合成処理において、回転済みの立体物は、合成俯瞰画像上に合成される。ここで、合成俯瞰画像生成部440には、カメラ俯瞰画像と、合成俯瞰画像との対応関係が示される他方のマッピングデータが入力されているので、合成俯瞰画像生成部440は、回転済みの立体物を、合成俯瞰画像上のどの位置に合成するかを、このマッピングデータに基づき特定する。
【0043】
以上の画像回転処理及び立体物合成処理は、受け取った立体物位置情報毎に行われる。また、特に、重複エリアについては、同じ立体物が複数のカメラ俯瞰画像に映っているが、いずれのカメラ俯瞰画像から立体物を抽出するかについては、後述する。
【0044】
そして、合成俯瞰画像生成部440は、フレームごとの合成俯瞰画像から、動画系列を表示するための映像信号を生成し、生成した映像信号をモニタ500へ出力する。
【0045】
タイミング生成部450は、第1〜第4のカメラ200−1〜200−4のフレーム切り替えのタイミングと、マッピングテーブル参照部410の各マッピングデータ出力タイミングと、合成俯瞰画像生成部440の動作タイミングとを制御するタイミング信号を生成する。このタイミング信号により、車両600の周囲の画像をリアルタイムで映し出す合成俯瞰画像の映像信号が、モニタ500に出力される。
【0046】
モニタ500は、合成俯瞰画像生成部440から受け取った映像信号に従って、合成俯瞰画像を表示する。モニタ500は、例えば、液晶ディスプレイを有する表示装置であり、車両600の運転席から見える位置に取り付けられる。モニタ500は、車両搭載型のGPS(Global Positioning System)端末(いわゆるカーナビゲーションシステム)等の、他のシステムまたは装置との間で共有されてもよい。
【0047】
なお、車両周囲監視装置100は、図示しないが、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)及びマッピングテーブルを含む各種データを格納したEEPROM(Electrically Erasable and Programmable Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリなどを有する。上記各部の機能は、例えば、CPUが制御プログラムを実行することにより実現される。
【0048】
このような車両周囲監視装置100によれば、合成俯瞰画像を運転者に対して表示することができるとともに、合成俯瞰画像の立体物の射影方向を、所定の視点を基準とした方向に揃えることができる。また、マッピングテーブルを用いるので、合成俯瞰画像を高速に生成することができる。
【0049】
次に、上述の画像回転処理の詳細について説明する。
【0050】
図6は、画像回転処理を施す前の合成俯瞰画像の一例を示す図である。図6では、車両周囲の路面上の立体物(例えば人)が位置するときの合成俯瞰画像が模式的に示されている。なお、説明の簡便化のため、実際には合成俯瞰画像に描かれない部分についても、必要に応じて適宜、図6には図示される。
【0051】
ここで、カメラ200の視点の位置を、「カメラ視点」という。第2のカメラ俯瞰画像724−2と第3のカメラ俯瞰画像724−3との重複エリア725には、合成境界726が設定されており、合成境界726を境として一方のカメラ俯瞰画像724のみが合成俯瞰画像720に用いられる。また、重複エリア725の第3のカメラ俯瞰画像724−3の側に、立体物730が位置しているものとする。
【0052】
図6に示すように、画像回転処理を施す前の合成俯瞰画像720では、立体物730は、立体物の基部位置732を基点として、その画像を撮影したカメラ200のカメラ視点731から見た射影方向(以下「カメラ射影方向」という)733に倒れ込んだ状態となる。
【0053】
具体的には、第3のカメラ俯瞰画像724−3において、立体物730は、第1の立体物723−1のように映っており、カメラ視点731−3から立体物730を見た第1の射影方向733−1(後方向)に倒れ込んでいる。一方、第2のカメラ俯瞰画像724−2において、立体物730は、第2の立体物723−2のように映っており、カメラ視点731−2から立体物730を見た第2の射影方向733−2(左方向)に倒れ込んでいる。すなわち、第1の立体物723−1及び第2の立体物723−2は元々同一であるが、第3のカメラ俯瞰画像724−3及び第2のカメラ俯瞰画像724−2では大きく異なった方向に倒れ込んでいる。
【0054】
このように、画像回転処理を施さない場合、実際には近距離に位置する2つの立体物であるにもかかわらず、カメラ俯瞰画像724の境界線(合成境界)の付近においてその立体物730の射影方向が大きく異なる。このことは、実際には同一の立体物であるにもかかわらず、カメラ俯瞰画像724の合成境界の両側で、その立体物730の射影方向が大きく異なることを意味する。したがって、画像回転処理を施さない合成俯瞰画像720は、上述の通り、運転者の立体物の配置関係に対する認識誤りを引き起こす。また、画像回転処理を施さない合成俯瞰画像720では、立体物730は、車両の移動または立体物730の移動によって合成境界を越えるときに、不連続な動きで表示されることになる。
【0055】
そこで、本実施の形態の車両周囲監視装置100は、カメラ俯瞰画像724から抽出した立体物723を、画像回転処理により、合成境界側に傾けた後に、合成俯瞰画像720に合成する。これによって、上記認識誤り及び立体物の不連続な動きの低減を図る。以下、回転の基準となる単一の視点を、「合成視点」という。
【0056】
図7は、画像回転処理を施した後の合成俯瞰画像の一例を示す図であり、図6に対応するものである。
【0057】
図7に示すように、画像回転処理を施した後の合成俯瞰画像720では、第2の立体物723−2は、基部位置732を基点として、合成境界726と平行な方向735に倒れ込んだ状態となっている。合成俯瞰画像生成部440は、第2の立体物723−2を、基部位置732を中心として、合成境界726と平行な方向735へと回転させることにより、このような合成俯瞰画像720を生成する。
【0058】
例えば、第1の立体物723−1を同様に回転させた場合でも、第1の立体物723−1も同じ方向に倒れ込んだ状態となる。また、合成境界726を挟んで両側に位置する2つの立体物730が実際に位置するときに、このような画像回転処理により、それらの立体物723は同じ方向に倒れ込んだ状態となる。これは、実際の立体物730の配置関係に近似した配置関係である。したがって、上記回転処理を、例えば重複エリア725全体に対して行うことにより、合成境界726における立体物723の不連続な動きや、立体物730の配置関係に対する認識誤りを防ぐことができる。
【0059】
このように、画像回転処理を施すことにより、実際の立体物の配置関係により近い配置関係で立体物723を配置した合成俯瞰画像を、運転者に提供することができる。また、合成境界と平行な方向735は、多くの場合、運転席から重複エリア725を見たときの方向に近い方向に設定されるので、実際に運転者から立体物を見たときの方向に近い方向に立体物を倒し込むことができる。したがって、運転者に対して、実際の立体物の配置関係と、路面垂直方向に対する立体物の向きとを、より正確に認識させることができる。
【0060】
ここで、車両を基準とし高さ成分を除いた座標系において、カメラ200の設置位置の座標(カメラ視点の座標)をC(C,C)、立体物の基部位置732の座標をO(O,O)、合成境界と平行な方向のベクトルをBと置く。このとき、カメラ射影方向733から視点射影方向までの回転角θは、カメラ射影方向の方向ベクトルV(O−C,O−C)及び方向ベクトルBを用いて、以下の式(1)を用いて算出することができる。
θ = arccos{(V・B)/(|V|・|B|)} ・・・・・・(1)
【0061】
なお、回転角θは、合成俯瞰画像の座標ごとに一意に決まる。したがって、座標ごとに回転角θを予め算出して記憶しておくことにより、画像回転処理の高速化を図ることができる。
【0062】
以下、本実施の形態に係る車両周囲監視装置100の動作について説明する。
【0063】
図8は、車両周囲監視装置100の動作の一例を示すフローチャートである。
【0064】
まず、ステップS1100において、カメラ俯瞰画像生成部420及び立体物検出部430は、タイミング生成部450からのタイミング信号を受けて、第1〜第4のカメラ200−1〜200−4から、第1〜第4のカメラ撮影画像をそれぞれ取得する(図3参照)。
【0065】
次に、ステップS1200において、カメラ俯瞰画像生成部420は、マッピングテーブル参照部410から入力される一方のマッピングデータに基づいて、第1〜第4のカメラ撮影画像から、第1〜第4のカメラ俯瞰画像を生成する(図4参照)。そして、カメラ俯瞰画像生成部420は、生成した各カメラ俯瞰画像を、合成俯瞰画像生成部440に出力する。
【0066】
次に、ステップS1300において、合成俯瞰画像生成部440は、カメラ俯瞰画像生成部420からの各カメラ俯瞰画像を受け取り、マッピングテーブル参照部410より他方のマッピングデータを受け取る。合成俯瞰画像生成部440は、受け取ったマッピングデータに従って、受け取った各カメラ俯瞰画像に対しマッピングを行って、合成俯瞰画像を合成する。
【0067】
次に、ステップS1400において、立体物検出部430は、ステップS1100で取得された第1〜第4のカメラ撮影画像に対し、画像認識処理を行うことにより、立体物の検出処理を行う。
【0068】
画像認識処理としては、例えば、パターンマッチング処理またはエッジ抽出処理、またはステレオ処理を採用することができる。
【0069】
パターンマッチング処理の場合、立体物検出部430は、検出対象となる立体物(例えばパイロン、ポール)の外観の形状の特徴を予め記憶しておき、その形状と相関性の高い画像部分を、立体物として検出する。エッジ抽出処理の場合、立体物検出部430は、検出対象となる立体物を構成する線分に特徴的な特定の方向(例えば路面に対する垂直方向)に近い方向の線分のみを抽出し、抽出された線分が集中する画像部分を、立体物として検出する。例えば、人、ポール、箱等の立体物は、垂直方向に近い方向の線分を多く有することから、検出が容易である。ステレオ処理の場合、立体物検出部430は、車両の路面に対する移動と、この移動に伴う第1〜第4のカメラ撮影画像の変化とから、路面画像ではない部分、つまり立体物を抽出する。ステレオ処理の詳細については、後述する。
【0070】
なお、立体物検出部430は、重複エリアについては、複数のカメラ俯瞰画像の間で輝度あるいは色の差分が大きい部分を、立体部と判定し、この画像部分と輝度及び色が連続して整合する画像を立体物と判定する。
【0071】
また、立体物検出部430は、立体物が含まれる大まかな領域を、立体物と判定してもよい。これは、立体物の抽出を行うことができない場合に有効である。この場合には、立体物検出部430は、立体物を、矩形や楕円形等の単純な外形としてもよい。
【0072】
そして、ステップS1500において、立体物検出部430は、後のステップで画像処理の対象となる少なくとも1つの立体物をステップS1400で検出できたかを判断する。立体物検出部430は、処理対象となる立体物を検出できた場合には(S1500:YES)、ステップS1600へ進む。
【0073】
図8のステップS1600において、立体物検出部430は、一方のマッピングデータを参照して、第1〜第4のカメラ撮影画像における立体物の位置を、カメラ俯瞰画像における位置情報に変換する。これによって得られた立体物位置情報を、立体物検出部430は、合成俯瞰画像生成部440へ出力する。
【0074】
図9は、立体物位置情報を示す図である。立体物位置情報は、上述の通り、立体物エリアの座標の集まり及び基部位置を示す情報である。基部位置732は、立体物723が路面と接する位置である。また、立体物エリア736は、立体物723が描かれた座標の集合で特定される。
【0075】
立体物検出部430は、立体物エリア736のうちカメラ200のカメラ視点731に最も近い位置の座標を、基部位置732として採用する。
【0076】
一方、立体物検出部430は、処理対象となる立体物を検出できなかった場合には(ステップS1500:NO)、ステップS1700へ進む。
【0077】
ステップS1700において、立体物検出部430は、処理対象となる立体物を検出できなかった旨を示す情報を合成俯瞰画像生成部440に出力し、ステップS1800へ進む。
【0078】
図8のステップS1800において、合成俯瞰画像生成部440は、立体物位置情報を受け取ったか否かを判断する。立体物位置情報を受け取った場合(S1800:YES)には、ステップS1900に進む。
【0079】
次に、ステップS1900において、合成俯瞰画像生成部440は、立体物を回転させるために合成境界の平行方向を設定する。今回の説明で設定されるのは、処理対象となる立体物に最も近い合成境界の平行方向である(図7の方向735を参照)。
【0080】
そして、ステップS2000において、合成俯瞰画像生成部440は、立体物の基部を中心に、前式(1)で求まるθだけ立体物を回転させた後の、立体物エリアの座標の集まりを算出する。この回転は、図6及び図7で説明したように、基部位置を中心としたカメラ射影方向から、合成境界の平行方向への回転である。
【0081】
なお、重複エリアの立体物は、その生成に際してどちらのカメラ俯瞰画像を用いても、回転後の倒れ込みの方向は同一となる。しかし、立体物の大きさ、つまりカメラ射影方向の長さ(以下「射影長」という)は、どちらのカメラ俯瞰画像を用いたかによって異なる。
【0082】
図10は、カメラ200からの距離と射影長との関係を示す図である。図10に示すように、カメラ200から立体物737までの距離dと射影長Lとの比は、立体物737の高さhと、立体物737の上端からカメラ200の高さまでの距離hとの比に比例する。したがって、射影長Lは、カメラ200から立体物737までの距離dに比例する。このことは、カメラ200からの距離が長いほど、立体物737の射影長が長くなり、実際の立体物の外観に対する立体物737の歪みが大きくなり、表示範囲からはみ出して消失する部分が多くなることを意味する。
【0083】
したがって、合成俯瞰画像生成部440は、重複エリアの立体物については、カメラ200の位置までの長さがより短いほうのカメラ画像を用いることが望ましい。距離は、例えば、立体物の基部位置とカメラ200の位置とから求めることができる。
【0084】
そして、図8のステップS2100において、合成俯瞰画像生成部440は、ステップS2000で算出した回転後のエリアに立体物を合成俯瞰画像に描画する。
【0085】
そして、回転後のエリアに立体物を描画するだけでは、合成俯瞰画像には、同じ立体物であるが回転前のものが描かれたままであるため、ステップS2200において、合成俯瞰画像生成部440は、立体物の回転前のエリアに、路面を描画する。これにより、合成俯瞰画像において立体物は基部位置を中心としてカメラ射影方向から、合成境界と平行な方向へと回転した状態に補正される。
【0086】
ここで、ステップS2200の詳細な処理の一例について説明する。カメラ200から見て立体物の背後(カメラ射影方向側)は、そのカメラ200にとっては死角となる。したがって、そのカメラ200のカメラ撮影画像においては、回転前のエリアに描画すべき路面の色データが欠落している。一方で、回転前のエリア(以下「データ欠落エリア」という)は、カメラ200の視点の移動(車両の移動)や立体物の移動に伴って変化する。
【0087】
そこで、合成俯瞰画像生成部440は、過去に生成された合成俯瞰画像を所定数フレーム分記憶しておき、過去のフレームを用いて、現在のフレームのデータ欠落エリアを補完する。
【0088】
図11は、データ欠落エリアの補完の様子を示す図である。
【0089】
図11(A)に示す第nのフレームの合成俯瞰画像720が取得された後、車両が車庫入れ等のために後退し、図11(B)に示す第n+aのフレームの合成俯瞰画像720n+aが取得されたとする。
【0090】
第nのフレームの合成俯瞰画像720において、立体物723は、あるデータ欠落エリア738から、回転後の領域(以下「回転先領域」という)739へと回転する。回転先領域739の路面画像は、基の第nのフレームの合成俯瞰画像720に含まれている。
【0091】
そして、第n+aのフレームの合成俯瞰画像720n+aにおいて、立体物723は、さらに、データ欠落エリア738n+aから、別の回転先領域739n+aへと回転する。ここで、説明の簡便化のため、第n+aのフレームにおけるデータ欠落エリア738n+aが、第nのフレームにおける回転先領域739に一致しているものとする。この場合、第n+aのフレームにおけるデータ欠落エリア738n+aの路面画像は、第nのフレームの合成俯瞰画像720に、回転先領域739の路面画像として含まれている。
【0092】
したがって、合成俯瞰画像生成部440は、まず、車両の舵角量並びに車速等から得られる車両の移動量並びに移動方向、及び/またはオプティカルフロー等の画像処理に基づいて、フレーム間での合成俯瞰画像の座標の対応付けを行う。そして、合成俯瞰画像生成部440は、矢印740に示すように、第n+aのフレームの合成俯瞰画像720n+aにおけるデータ欠落エリア738n+aを、第nのフレームの合成俯瞰画像720における回転先領域739の路面画像で補完する。
【0093】
なお、車両または立体物の移動がなければ、データ欠落エリアを補完することはできない。したがって、合成俯瞰画像生成部440は、検出対象となる立体物が存在する状態で車両の移動が検出された時、及びカメラ撮影範囲へ立体物の進入が検出してきた時にのみ、データ欠落エリアの補完を行うようにしてもよい。
【0094】
また、合成俯瞰画像生成部440は、時間的に後のフレームの合成俯瞰画像を用いて、データ欠落エリアの補完を行うようにしてもよい。但し、数フレーム分の画像をバッファすることになり、モニタ500に表示される合成俯瞰画像に多少の遅れが生じる。
【0095】
以上のステップS2200の実行後、処理は図8に示すステップS2300に進む。ステップS2300において、合俯瞰画像生成部440は、補正後の合成俯瞰画像を示す映像信号をモニタ500に出力し、合成俯瞰画像を表示させる。表示される合成俯瞰画像は、処理対象となる立体物が存在する場合には、その立体物を回転させた画像となっている。
【0096】
そして、ステップS2400において、タイミング生成部450は、ユーザ操作等により合成俯瞰画像の表示の処理の終了を指示されたか否かを判断する。タイミング生成部450は、処理の終了を指示されていない場合は(S2400:NO)、タイミング信号を出力してステップS1100に戻り、処理の終了を指示された場合は(S2400:YES)、タイミング信号の出力を停止して一連の処理を終了させる。
【0097】
また、画像処理の対象となる立体物が存在しない場合には(S1800:NO)、合成俯瞰画像生成部440は、直接にステップS2300へ進み、画像回転処理を行うことなく、合成俯瞰画像をモニタ500に表示させる。
【0098】
このような動作により、車両周囲監視装置100は、車両周囲の立体物の射影方向が揃った合成俯瞰画像を、運転者に提供することができる。
【0099】
なお、以上の実施形態の説明では、立体物検出部430が受け取ったカメラ画像から立体物までの距離を検出していたが、これに限らず、例えば、アクティブセンサにより立体物までの距離を検出してもかまわない。
【0100】
なお、以上の実施形態の説明では、立体物検出部430が受け取ったカメラ画像から立体物及び立体物までの距離を検出していたが、これに限らず、例えば、アクティブセンサにより立体物及び立体物までの距離を検出してもかまわない。
【0101】
なお、複数のカメラ俯瞰画像から成る合成俯瞰画像が用いられる場合には(図4参照)、重複エリアに位置する立体物は、複数のカメラ俯瞰画像に異なる形で映る場合がある。したがって、合成俯瞰画像においては、これら異なる形のもの同士を合成して、1つの立体物が映るようにしてもよい。
【0102】
また、合成俯瞰画像に映る立体物の配置関係が実際の立体物の配置関係と大きく異なるのは、主に、重複エリアである。したがって、処理対象を重複エリアの付近に位置する立体物に絞ることにより、車両周囲監視装置100の処理負荷を軽減することが可能である。
【0103】
また、画像処理を重複エリアに限定して行う場合には、複数のカメラ俯瞰画像から成る合成俯瞰画像を用いることにより、より簡単にデータ欠落エリアの補完を行うことが可能となる。
【0104】
また、合成境界に平行な方向ではなく、2つのカメラによる2つの射影方向の間を二等分する方向に立体物を回転させることによっても、立体物の相対配置に対する認識誤り及び立体物の不連続な動きの低減を図ることが可能である。
【0105】
以下、これらの態様について順に説明する。
【0106】
まず、異なる形で映る立体物を合成する態様について詳細に説明する。
【0107】
図12は、第3のカメラ俯瞰画像から得られる回転後の立体物のみを採用した場合の合成俯瞰画像の一例を示す図である。図13は、第2のカメラ俯瞰画像から得られる回転後の立体物(図16の立体物と同一のもの)のみを採用した場合の合成俯瞰画像の一例を示す図である。図14は、図12に示す立体物と、図13に示す立体物とを合成した立体物を採用した場合の合成俯瞰画像の一例を示す図である。
【0108】
図12に示す立体物723−3と、図13に示す立体物723−2は、それぞれ単一の視点から見た画像である。したがって、ある方向からのみ観察したときには全体像を視認し難い立体物において、その方向とカメラの撮影方向とが一致した場合には、立体物723は、その立体物を把握し難い画像となる。例えば、板状の看板を真横から撮影した場合が、これに該当する。
【0109】
そこで、合成俯瞰画像生成部440は、例えば、立体物723−3と立体物723−2とを合成して、図14に示すような立体物723を描画する。これにより、運転者が立体物723をより把握し易くすることができる。なお、合成俯瞰画像生成部440は、回転後の立体物のみを合成してもよいし、立体物を回転させた後のカメラ俯瞰画像を合成してもよい。
【0110】
次に、異なるカメラ俯瞰画像に異なる形で映る同一立体物(以下、便宜上、「2つの立体物」という)の射影長を揃える態様について説明する。
【0111】
図10を参照して説明する。立体物検出により特定される立体物737の高さh及び立体物737までの距離dと、カメラ200(または合成視点734)の高さH=h+hとから、立体物737の射影長Lは、以下の式(2)を用いて算出することができる。
L = (h・d)/(H−h) ・・・・・・(2)
【0112】
合成俯瞰画像生成部440は、例えば、式(2)を用いて、合成する2つの立体物の射影長を算出し、短いほうの射影長Lを長いほうの射影長Lで除して得られる比率L/Lで、射影長が長いほうの立体物を、射影方向に縮小する。これにより、より短い方の射影長に、立体物の射影長を揃えることができる。
【0113】
次に、重複エリアのカメラ俯瞰画像を用いてデータ欠落エリアの補完を行う態様について説明する。
【0114】
図15は、重複エリアのカメラ俯瞰画像を用いてデータ欠落エリアの補完の様子を示す図である。図15に示すように、合成俯瞰画像生成部440は、例えば、第3のカメラ俯瞰画像724−3と第2のカメラ俯瞰画像724−2との重複エリア743において、第3のカメラ俯瞰画像724−3の立体物723を用いて回転させる。この場合、第3のカメラ俯瞰画像724−3には、データ欠落エリア738が生じる。ところが、第2のカメラ俯瞰画像724−2のデータ欠落エリア738に対応する領域744には、路面が映し出されている。これは、カメラ俯瞰画像724ごとにカメラ射影方向が異なるためである。
【0115】
したがって、合成俯瞰画像生成部440は、データ欠落エリア738を、第2のカメラ俯瞰画像724−2の対応する領域744の画像で補完する。1つのフレームの合成俯瞰画像からデータ欠落エリアの補完をすることができるので、図11で説明した補完の手法に比べて、処理負荷及びメモリ負荷を軽減することができる。
【0116】
次に、2つのカメラによる2つの射影方向の間を二等分する方向(以下「二等分方向」という)に立体物を回転させる態様について説明する。
【0117】
図16は、二等分方向に立体物を回転させる画像回転処理を施した後の合成俯瞰画像の一例を示す図である。
【0118】
図16に示すように、二等分方向に画像回転処理を施した後の合成俯瞰画像720では、第2の立体物723−2は、基部位置732を基点として、第1の射影方向733−1と第2の射影方向733−2との間の二等分方向745に倒れ込んだ状態となっている。合成俯瞰画像生成部440は、第2の立体物723−2を、基部位置732を中心として二等分方向745へと回転させることにより、このような合成俯瞰画像720を生成する。
【0119】
例えば、第1の立体物723−1を同様に回転させた場合でも、第1の立体物723−1も同じ方向に倒れ込んだ状態となる。また、立体物730が移動したとき、第1及び第2の射影方向733−1、733−2はいずれも連続的に変化するので、二等分方向745も連続的に変化する。また、平行であって近距離に位置する2つの立体物730が位置するときに、それらの立体物723はほぼ同じ方向に倒れ込んだ状態となる。これは、実際の立体物730の配置関係に近似した配置関係である。したがって、上記回転処理を、例えば重複エリア725全体に対して行うことにより、合成境界と平行な方向726における立体物723の不連続な動きや、立体物730の配置関係に対する認識誤りを防ぐことができる。
【0120】
次に、カメラ撮影画像に対する画像処理により立体物の検出を行う技術の詳細について説明する。
【0121】
画像処理による立体物の検出は、上述の通り、例えば、パターンマッチング処理及びステレオ処理により可能である。
【0122】
パターンマッチング処理の場合、立体物検出部430は、予め記憶された立体物の外観の形状と相関性の高い画像部分を立体物として検出し、検出した立体物の画像位置から、立体物の位置を検出する。
【0123】
ステレオ処理の場合、立体物検出部430は、異なる位置から撮影された2つの画像を用い、撮影位置の変異と2つの撮影画像の差異とから、立体物の位置を検出する。ステレオ処理には、2眼カメラを用いたステレオ処理と単眼カメラを用いたモーションステレオ処理がある。
【0124】
ここで、単眼カメラを用いたモーションステレオ処理として、カメラ200の撮影画像を用いて立体物の検出を行う手法について説明する。2眼カメラを用いる場合と異なり、単眼カメラを用いる場合は、ある時刻において、1つの撮影画像しか得られない。したがって、撮影時刻が異なる2つの撮影画像を用いて、同じパターンの特徴点の移動量を求め、車両600の移動量との比計算から、立体物までの距離を算出する。
【0125】
図17は、カメラ撮影画像を用いて立体物の検出を行う手法の概要を示す図である。図17に示すように、車両600が、立体物751を左に見ながら移動したとする。そして、立体物検出部430は、時刻tに第1の画像752−1を取得し、時刻tに第2の画像752−2を取得したとする。第1及び第2の画像752−1、752−2は、第3のカメラ撮影画像である。立体物検出部430は、コーナー検出フィルタ処理やエッジ検出フィルタ等を用いて、第1の画像752−1から、立体物の特徴となるような点(エッジ点やコーナー等)を、特徴点753として検出する。そして、検出した特徴点753を、第2の画像752−2で探索する。
【0126】
立体物検出部430は、第1の画像752−1における特徴点753の位置と、第2の画像752−2における特徴点753の位置との間の画素間距離D[mm]を、これらの画素間距離[pixel]と、第3のカメラ200−3のカメラパラメータとから算出する。カメラパラメータは、カメラ200のレンズ設計時に設定されるパラメータであって、ピクセル単位での画素間距離と長さ単位での画素間距離とを対応付けるパラメータである。そして、立体物検出部430は、第3のカメラ200−3の焦点距離をf、時刻tから時刻tまでの車両600の移動距離をXとすると、カメラ200から立体物751までの距離dを、以下の式(3)を用いて算出する。
d = f・X/D ・・・・・・(3)
【0127】
このように、立体物検出部430は、画像処理のみによって立体物を検出することができる。
【0128】
また、立体物検出部430は、上述のように立体物の特徴点検出を行う場合には、検出した複数の特徴点をグルーピングすることにより、グルーピングされた特徴点に囲まれた合成俯瞰画像の領域を、立体物の座標として検出してもよい。
【0129】
以上説明したように、本実施の形態によれば、所定の視点を基準として立体物の射影方向が揃うので、運転者は車両周囲の立体物の配置関係をより正確に認識することができる。なお、カメラの台数及び合成俯瞰画像の範囲は、以上説明した実施の形態の内容に限定されるものではない。
【産業上の利用可能性】
【0130】
本発明に係る車両周囲監視装置及び車両周囲監視方法は、運転者が車両周囲の立体物の配置関係をより正確に認識することができる車両周囲監視装置及び車両周囲監視方法として有用である。
【図面の簡単な説明】
【0131】
【図1】本発明の一実施の形態に係る車両周囲監視装置のブロック図
【図2】本実施の形態におけるカメラの取り付け位置の一例を示す斜視図
【図3】本実施の形態におけるカメラの撮影画像の一例を示す図
【図4】本実施の形態におけるカメラ俯瞰画像の一例を示す図
【図5】本実施の形態におけるカメラ俯瞰画像生成部によって生成される合成俯瞰画像の一例を示す図
【図6】本実施の形態における画像回転処理を施す前の合成俯瞰画像の一例を示す図
【図7】本実施の形態における画像回転処理を施した後の合成俯瞰画像の一例を示す図
【図8】本実施の形態に係る車両周囲監視装置の動作の一例を示すフローチャート
【図9】本実施の形態における立体物位置情報を示す図
【図10】本実施の形態におけるカメラからの距離と射影長との関係を示す図
【図11】本実施の形態におけるデータ欠落領域の補完の様子を示す図
【図12】本実施の形態における第3のカメラ俯瞰画像から得られる立体物のみを採用した場合の合成俯瞰画像の一例を示す図
【図13】本実施の形態における第2のカメラ俯瞰画像から得られる立体物のみを採用した場合の合成俯瞰画像の一例を示す図
【図14】本実施の形態における図12に示す立体物と図13に示す立体物を合成した立体物を採用した場合の合成俯瞰画像の一例を示す図
【図15】本実施の形態における重複エリアのカメラ俯瞰画像を用いてデータ欠落領域の補完の様子を示す図
【図16】本実施の形態における画像回転処理を施した後の合成俯瞰画像の一例を示す図
【図17】本実施の形態におけるカメラ撮影画像を用いて立体物の検出を行う手法の概要を示す図
【図18】従来の車両周囲監視装置におけるカメラ配置及びカメラ俯瞰画像の一例を示す図
【図19】従来の車両周囲監視装置における重複エリアに立体物が位置するときの、第3のカメラ俯瞰画像の一例を示す図
【図20】従来の車両周囲監視装置における重複エリアに立体物が位置するときの、第2のカメラ俯瞰画像の一例を示す図
【図21】従来の車両周囲監視装置における合成俯瞰画像の第1の例を示す図
【図22】従来の車両周囲監視装置における合成俯瞰画像の第2の例を示す図
【図23】従来の車両周囲監視装置における合成俯瞰画像の第3の例を示す図
【図24】従来の車両周囲監視装置における合成俯瞰画像の第4の例を示す図
【符号の説明】
【0132】
100 車両周囲監視装置
200 カメラ
210 撮像部
220 フレームメモリ
230 フレーム切替部
400 画像処理部
410 マッピングテーブル参照部
420 カメラ俯瞰画像生成部
430 立体物検出部
440 合成俯瞰画像生成部
450 タイミング生成部
500 モニタ


【特許請求の範囲】
【請求項1】
車両周囲に存在する立体物を検出する立体物検出部と、
複数のカメラの撮影画像を合成処理して、車両周囲の俯瞰画像を表す合成俯瞰画像を生成し、前記立体物検出部による検出結果に基づき、生成した合成俯瞰画像に映る立体物の方向を、前記合成処理の境界方向側に変更する第1の画像生成部と、
を備える車両周囲監視装置。
【請求項2】
前記複数のカメラの撮影範囲には互いに重複する重複エリアが存在し、
前記第1の画像生成部は、前記合成俯瞰画像において、少なくとも、前記重複エリアに存在する立体物の方向を、前記合成処理の境界の方向に変更する
請求項1記載の車両周囲監視装置。
【請求項3】
前記第1の画像生成部は、前記合成処理の境界に平行な方向に、前記重複エリアに存在する立体物の方向を変更する、
請求項2記載の車両周囲監視装置。
【請求項4】
前記重複エリアに存在する立体物は、少なくとも2個のカメラにより撮影され、
前記第1の画像生成部は、前記立体物を撮影した一方のカメラから見た射影方向と、他方のカメラから見た射影方向とを二等分する方向に、前記重複エリアに存在する立体物の方向を変更する、
請求項2記載の車両周囲監視装置。
【請求項5】
前記複数のカメラによる撮影画像毎に、前記車両周囲を俯瞰したカメラ俯瞰画像を生成する第2の画像生成部をさらに備え、
前記第1の画像生成部は、
前記第2の画像生成部により生成された複数のカメラ俯瞰画像に基づき合成俯瞰画像を生成し、さらに、
前記第2の画像生成部により生成された複数のカメラ俯瞰画像から、前記立体物検出部による検出結果に基づき立体物を抽出して、抽出した立体物を、前記合成処理の境界の方向に変更した状態で、生成した合成俯瞰画像に描画する、
請求項1記載の車両周囲監視装置。
【請求項6】
前記第1の画像生成部はさらに、生成した合成俯瞰画像に元々映っていた立体物の部分に、カメラ俯瞰画像を用いて路面を描画する、
請求項5記載の車両周囲監視装置。
【請求項7】
前記第1の画像生成部はさらに、現在生成した合成俯瞰画像に元々映っていた立体物の部分に、過去に生成した合成俯瞰画像を用いて路面を描画する、
請求項5記載の車両周囲監視装置。
【請求項8】
前記第1の画像生成部により生成された合成俯瞰画像を表示するモニタをさらに備える、
請求項1記載の車両周囲監視装置。
【請求項9】
車両周囲に存在する立体物を検出する第1のステップと、
複数のカメラの撮影画像を合成処理して、車両周囲の俯瞰画像を表す合成俯瞰画像を生成し、前記第1のステップにおける検出結果に基づき、生成した合成俯瞰画像に映る立体物の方向を、前記合成処理の境界方向側に変更する第2のステップと、
を備える車両周囲監視方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2010−109452(P2010−109452A)
【公開日】平成22年5月13日(2010.5.13)
【国際特許分類】
【出願番号】特願2008−276894(P2008−276894)
【出願日】平成20年10月28日(2008.10.28)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】