説明

カソード電極の製造方法及び薄膜固体リチウムイオン2次電池の製造方法

【課題】成膜速度が向上し、プラズマのエネルギよるダメージがないカソード電極の製造方法、及び薄膜固体リチウムイオン2次電池の製造方法の提供。
【解決手段】スパッタリング法により、コバルト酸リチウム焼結体からなるターゲットを用い、このターゲットに高周波電力及びDC電力を重畳印加させながら、希ガスを供給して、0.1〜1.0Paの圧力下、薄膜固体リチウムイオン2次電池用の負極活物質層として機能するコバルト酸リチウム薄膜からなるカソード電極を形成する。このカソード電極を備えた薄膜固体リチウムイオン2次電池を製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カソード電極の製造方法及び薄膜固体リチウムイオン2次電池の製造方法に関する。
【背景技術】
【0002】
近年、携帯機器等の電子機器を中心にモバイル機器や光MEMSデバイス等の様々な分野で、機器の小型化、薄型化、軽量化の要望から、機器に搭載される電子部品の小型化に伴い、駆動源であるバッテリーとしての電池も小型化、薄型化、軽量化が要求されてきている。そして、このような小型化、薄型化、軽量化の電池として、従来のニッカド電池等と比べて、高い電圧を有し、充放電容量が大きく、メモリ効果等の弊害がないリチウムイオン2次電池が広く用いられている。この場合、モバイル機器や光MEMSデバイス等の駆動電圧の低電圧化から、電源を、従来のように外部に設ける方式では、ノイズの影響が無視できなくなるので、電源を超小型バッテリーとして内部に設けるという新たな要求も出てきている。
【0003】
リチウムイオン2次電池用電極としてのLi−Co−O層を含む活物質層をスパッタリング法で製造することが知られている(例えば、特許文献1参照)。また、薄膜固体リチウムイオン2次電池は、通常、基板上にカソード引き出し電極層(負極集電体層)、カソード電極層(負極活物質層)、固体電解質薄膜層、アノード電極層(正極活物質層)、アノード引き出し電極層が形成されたものであり、カソード電極層としてのコバルト酸リチウム(LiCoO2)膜をスパッタリング法により形成することが知られている(例えば、特許文献2参照)。
【0004】
また、リチウムイオン2次電池には、通常、その構造体内に液体の電解質が設けられている。そのため、この液体の漏れによる弊害が生じており、リチウムイオンのデンドライト形成による素子短絡による電池の爆発や発火等の問題が指摘されている。この液体電解質を設けたリチウムイオン電池に代わる技術として、スパッタリング等の技術を利用することにより作製するリチウムイオン含有固体電解質膜を設けた薄膜固体2次電池及びその製造方法が提案されている(例えば、特許文献2参照。)。
【0005】
しかしながら、スパッタリングプロセスにより薄膜固体リチウムイオン2次電池、特にこの2次電池用の、リチウムイオンを含むカソード電極層や固体電解質膜を製造する場合、成膜速度が遅いため、スループットが悪く、また、高揮発性材料のリチウムを含有する膜がプラズマのエネルギによるダメージを受けて、歩留まりが低いという問題がある。この成膜速度の向上には、スパッタパワー(RF電力)を高くするのが一般的であるが、φ120mm(113cm2)を超える大型ターゲットへ無制限にRF電力を導入することは、電源技術のみならず設備が大規模なものとなり、デバイス作製費用が高くなってしまうため、不都合である。
【0006】
【特許文献1】特開2003−288894号公報(特許請求の範囲等)
【特許文献2】特開2007−103129号公報(特許請求の範囲、段落0029等)
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明者らは、薄膜固体リチウムイオン2次電池を作製する上で問題となる、成膜速度が遅いことや、成膜に当たりスパッタパワーを高くすることによるプラズマのエネルギによる膜へのダメージの発生等を回避する方法を種々検討した結果、本発明を完成させるに至った。
【0008】
本発明の課題は、上述の従来技術の問題点を解決することにあり、低いスパッタパワーで、成膜速度を向上させて、プラズマのエネルギによるダメージがないコバルト酸リチウム薄膜からなるカソード電極を製造する方法、及びこのようにして得られたカソード電極を備えた薄膜固体リチウムイオン2次電池を製造する方法を提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明者らは、スパッタパワーを高パワー化せずに成膜速度を向上させることに成功した。通常、一般的なスパッタリングにおいて、スパッタパワーを高パワーにしていくと、プラズマ中の電子密度が向上する。本発明者らは、これまでの実験から、電子密度が向上すると、プラズマ中の電子が基板へと向かって流入し、基板上の膜がダメージを受けるという知見を得ていた。そのため、成膜速度を向上させるために高パワーを印加してスパッタリングを行うと、印加パワーが高くなるに伴い、膜へのダメージが増加する。従って、一般的な手法では、高速成膜と膜の低ダメージ化とは両立しない。
【0010】
本発明は、上記知見に基づいてなされたものであり、スパッタリング法によりリチウム(Li)系酸化物膜からなるカソード電極を形成する際に、ターゲットに高周波(RF)電力及びDC電力を重畳印加させながら、成膜圧力を所定の圧力にして成膜する方法に関する。
【0011】
本発明の薄膜固体リチウムイオン2次電池用のカソード電極の製造方法は、スパッタリング法により、コバルト酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力及びDC電力を重畳印加させながら、希ガスを供給して、0.1〜1.0Paの圧力下、薄膜固体リチウムイオン2次電池用の負極活物質層として機能するコバルト酸リチウム薄膜からなるカソード電極を形成することを特徴とする。
【0012】
前記したように、ターゲットにRF電力及びDC電力を所定の割合で重畳印加させながら成膜することにより、高速成膜と膜の低ダメージ化とが達成される。そのためスループットが改良され、歩留まりが高くなる。スパッタ圧力が、0.1Pa未満であると得られたコバルト酸リチウム薄膜の表面が荒れて、不均一となり、また、1.0Paを超えると成膜速度が遅く、その結果、スループットが悪くなり、また、高揮発性材料のリチウム(Li)を含有する膜がプラズマのエネルギによるダメージを受けて、歩留まりが低いという問題がある。
【0013】
本発明の薄膜固体リチウムイオン2次電池の製造方法は、基板上に、正極集電体層、正極活物質層、固体電解質薄膜層、負極活物質層、及び負極集電体層を、この順序で又は逆の順序で積層する薄膜固体リチウムイオン2次電池の製造方法において、負極活物質層を形成する際に、スパッタリング法により、コバルト酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力及びDC電力を重畳印加させながら、希ガスを供給して、0.1〜1.0Paの圧力下、負極活物質層として機能するコバルト酸リチウム薄膜からなるカソード電極を形成することを特徴とする。
【0014】
スパッタ圧力が、0.1Pa未満であると得られた電解質薄膜の表面が荒れて、不均一となり、また、1.0Paを超えると成膜速度が遅く、その結果、スループットが悪くなり、また、高揮発性材料のリチウム(Li)を含有する膜がプラズマのエネルギによるダメージを受けて、歩留まりが低いという問題がある。
【0015】
上記薄膜固体リチウムイオン2次電池の製造方法において、さらに固体電解質薄膜層を形成する際に、RFスパッタリング法により、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成することを特徴とする。
【0016】
スパッタ圧力が、上記範囲内にあれば、高速成膜と膜の低ダメージ化とが達成される。そのためスループットが改良され、歩留まりが高くなる。その範囲を外れると、上記のような問題が生じる。
【0017】
上記薄膜固体リチウムイオン2次電池の製造方法において、さらに固体電解質薄膜層を形成する際に、真空槽の天井部に設置されているターゲット及びバッキングプレートと、このバッキングプレートの背面に設けられているカソードと、このカソード中に配置されているマグネットと、真空槽内の下方に該ターゲットに対向して設置されている基板載置用ステージと、該バッキングプレートの側面の下方部分、該ターゲットの厚み方向の周囲部、及び該バッキングプレートの底面の周縁部に対向して設けられているアースシールド及びこのアースシールドに対向し、離間して設けられた上部防着板からなる第1防着板と、該第1防着板の下方に、成膜空間を囲繞するように設置されている、該バッキングプレートの底面の直径より大きな直径を有する昇降自在な第2防着板とを有する平行平板型マグネトロンスパッタ装置であって、該第2防着板は、その上端部が、成膜時に、該アースシールド及び該上部防着板とで形成されている開口部内に突出し得るように構成され、該第2防着板の上端部と上部防着板との間に1〜3mmの隙間が設けられ、そして、該第2防着板の上端部とアースシールドとの間に、該上端部と上部防着板との間の隙間よりも大きい隙間が設けられるように構成されている平行平板型マグネトロンスパッタ装置を用い、スパッタリング法により、リン酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力を印加しながら、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成することを特徴とする。
【0018】
上記第2防着板の上端部と上部防着板との間に設けられた隙間が、1mm未満であると、第2防着板と上部防着板との間で異常放電する虞がある。3mmを超えるとスパッタ時にプラズマが隙間から外にもれる虞がある。また、第2防着板の上端部とアースシールドとの間の隙間が、上記1〜3mmの隙間と同等か又はそれより小さいと、プロセスガスがターゲット近傍まで供給されず、プラズマを形成できない虞がある。そのため、所望の固体電解質薄膜層を形成することが出来ない。また、スパッタ圧力が、0.1Pa未満であると得られた電解質薄膜の表面が荒れて、不均一となり、また、1.0Paを超えると成膜速度が遅く、その結果、スループットが悪くなり、また、高揮発性材料のリチウム(Li)を含有する膜がプラズマのエネルギによるダメージを受けて、歩留まりが低いという問題がある。
【0019】
本発明の薄膜固体リチウムイオン2次電池の製造方法はまた、基板上に、DCスパッタリング法によりPt及びTiからなる負極集電体層を形成し、この負極集電体層上に、コバルト酸リチウムターゲットにRF電力及びDC電力を重畳印加させながら、スパッタリング法により、希ガスを供給して、0.1〜1.0Paの圧力下、コバルト酸リチウム薄膜からなるカソード電極である負極活物質層を形成し、この負極活物質層上に、RFスパッタリング法により、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成し、この固体電解質薄膜層上に、真空蒸着法によりLiからなる正極活物質層を形成し、又は反応性スパッタリング法により、V若しくはV及びLiからなる合金と酸素とから得られる酸化物膜からなる正極活物質層を形成し、次いでDCスパッタリング法によりNi又はCuからなる正極集電体層を形成することを特徴とする。
【0020】
本発明の薄膜固体リチウムイオン2次電池の製造方法はまた、基板上に、DCスパッタリング法によりPt及びTiからなる負極集電体層を形成し、この負極集電体層上に、コバルト酸リチウムターゲットにRF電力及びDC電力を重畳印加させながら、スパッタリング法により、希ガスを供給して、0.1〜1.0Paの圧力下、コバルト酸リチウム薄膜からなるカソード電極である負極活物質層を形成し、この負極活物質上に固体電解質薄膜層を形成する際に、真空槽の天井部に設置されているターゲット及びバッキングプレートと、このバッキングプレートの背面に設けられているカソードと、このカソード中に配置されているマグネットと、真空槽内の下方に該ターゲットに対向して設置されている基板載置用ステージと、該バッキングプレートの側面の下方部分、該ターゲットの厚み方向の周囲部、及び該バッキングプレートの底面の周縁部に対向して設けられているアースシールド及びこのアースシールドに対向し、離間して設けられた上部防着板からなる第1防着板と、該第1防着板の下方に、成膜空間を囲繞するように設置されている、該バッキングプレートの底面の直径より大きな直径を有する昇降自在な第2防着板とを有する平行平板型マグネトロンスパッタ装置であって、該第2防着板は、その上端部が、成膜時に、該アースシールド及び該上部防着板とで形成されている開口部内に突出し得るように構成され、該第2防着板の上端部と上部防着板との間に1〜3mmの隙間が設けられ、そして、該第2防着板の上端部とアースシールドとの間に、該上端部と上部防着板との間の隙間よりも大きい隙間が設けられるように構成されている平行平板型マグネトロンスパッタ装置を用い、スパッタリング法により、リン酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力を印加しながら、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成し、この固体電解質薄膜層上に、真空蒸着法によりLiからなる正極活物質層を形成し、又は反応性スパッタリング法により、V若しくはV及びLiからなる合金と酸素とから得られる酸化物膜からなる正極活物質層を形成し、次いでDCスパッタリング法によりNi又はCuからなる正極集電体層を形成することを特徴とする。
【発明の効果】
【0021】
本発明のカソード電極の製造方法によれば、低いスパッタパワーで成膜速度が向上し、プラズマのエネルギによるダメージがないカソード電極を形成することができるという効果を奏する。
【0022】
また、本発明の薄膜固体リチウムイオン2次電池の製造方法によれば、小型化、薄型化、軽量化された、液漏れのない2次電池を製造できるという効果を奏する。
【発明を実施するための最良の形態】
【0023】
本発明によれば、カソード電極層は、例えば、図1に示すような平行平板型のマグネトロンスパッタ装置を用いて製造することが出来る。
【0024】
このマグネトロンスパッタ装置1は、円筒状の真空槽11を有している。真空槽11には、排気口12が設けられており、排気口12は図示しないTMP真空排気系に接続され、この真空排気系を駆動すると、真空槽11の内部を高真空に排気することが出来るように構成されている。また、真空槽11には、ガス導入口13が設けられており、ガス導入口13は図示しないガス導入系に接続されており、真空槽11内に希ガス(例えば、Ar等)からなるプロセスガスを導入することが出来るように構成されている。この真空槽11の天井部には、真空槽と絶縁された状態で円筒状のバッキングプレート14が設置されており、バッキングプレートの真空槽11内部側の面には、LiCoO2焼結体からなる所望の円筒状のターゲット15が設けられている。さらに、真空槽11の側壁には、図示していないが、真空計(イオンゲージ)が設けられている。
【0025】
真空槽11内部には、バッキングプレート14の側面の下方部分の周囲部、ターゲット15の厚み方向の周囲部、及びバッキングプレート14の底面の周縁部に対向するように、アースシールド16aが配置され、また、アースシールド16aに対向し、所定の距離だけ離間して上部シールド(上部防着板)16bが配置されている。この上部防着板16bには、上記ガス導入口13からの導入ガスを真空槽11内の成膜空間へ供給するための開口が設けられている。アースシールド16aと上部防着板16bとからなる第1防着板16は、真空槽11の上方に配置され、真空槽11の上部壁面に固定されている。アースシールド16aは、スパッタが開口内で行われるように調整するための治具として機能し、また、上部防着板16bは、ガス及びプラズマが第1防着板16の外へもれるのを防止するための治具として機能する。
【0026】
真空槽11内部にはまた、バッキングプレート14の底面の直径より大きな直径を有する、円筒状の下部シールド(第2防着板)17が、成膜空間を囲繞するように、第1防着板16の下に配置されている。この第2防着板(下部防着板)17は、その上端部17aが、上記アースシールド16a及び上部防着板16bとで形成されている開口部内に成膜時に突出できるよう構成されている。第2防着板17の上端部17aと上部防着板16bとの間の隙間Aは、所定の距離(例えば、1〜3mm)となるように構成されている。このような間隔とすることにより、第2防着板17と上部防着板16bとの間で異常放電がなく、プラズマが隙間Aから外にもれることがなくなる。また、上端部17aとアースシールド16aとの間の隙間は、上端部17aと上部防着板16bとの間の隙間Aよりも大きくなるように(例えば、8〜10mm)構成されている。このような間隔とすることにより、プロセスガスが直接排気されず、第1防着板内に効果的に導入される。
【0027】
真空槽11内部の下方には、ターゲット15の表面に対向して、基板Sを載置するためのステージ18が設置されている。ステージ18は、絶縁体19を介して接地されている。これにより、ステージ18のインピーダンスを高め、プラズマからの電子の流入による膜へのダメージを抑制できる。ステージ18の側面には石英等からなる防着カバー20が設けられている。防着カバー20の外周面に対向してアースブロック21が設けられていてもよく、このアースブロックは真空槽11の底面に設置されている。
【0028】
ターゲット15には、バッキングプレート14を介して、接地部との間に高周波電源(RF電源)22(図示していないマッチングボックスも接続されている)及びDC電源23がそれぞれ接続されている。これにより、ターゲット15に高周波電力(RF電力)及びDC電力を重畳印加して、ターゲット15と第1防着板16との間でプラズマを発生させ、ターゲット15のスパッタが行われるように構成されている。
【0029】
ターゲット15の背面、すなわちバッキングプレート14の背面である、真空槽11内部と反対側の大気側の面には、カソード24が設けられており、カソード24中には磁力線を形成するためのローテーションマグネット等のようなマグネット25が配置されている。このマグネット25は、図示しないモータ等の駆動源で回転できるように構成されている。
【0030】
第2防着板17は、ガイドリング26に固定され、このガイドリングは昇降自在の支持部材27により支持されており、基板Sの搬送時及び成膜時に第2防着板17が昇降できるように構成されている。支持部材27は、図示しない防着カバーにより囲繞されていてもよく、ガイドリング26の下面とこの防着カバーの上面との間は、成膜時に1〜3mmの隙間が形成されるように構成される。これにより、異常放電及び放電もれが抑制される。図1中の28はマスクである。なお、図1に示すマグネトロンスパッタ装置1は、特に説明していない構成要素について、適宜、その目的に沿って、以下の図2に示す装置と同様な構成要素を備えていてもよい。
【0031】
上記のように構成された平行平板型のマグネトロンスパッタ装置1では、ガス導入口13から、上部防着板16bの開口を経て、真空槽11内の成膜空間に導入されたAr等の希ガスの正イオンは、ターゲット15に印加した負電位により引き込まれ、ターゲット15の表面に衝突する。この衝突によりターゲット15を構成する材料の原子がスパッタされて真空槽11内の成膜空間に飛散する。原子状態で飛散する粒子は、コサイン則に従って移動し、その飛散する粒子の一部は、電子等の衝突によりイオン化する。マグネトロンスパッタ装置1では、このようなイオン化したスパッタ粒子の方向を制御して基板上に均一に入射させ、均一な薄膜を形成することが出来る。
【0032】
本発明の実施の形態によれば、図1に示す平行平板型のマグネトロンスパッタ装置1を用いて、カソード電極層として、例えば、コバルト酸リチウム薄膜を以下のようにして製造することが出来る。
【0033】
本発明では、ターゲット15にRF電力及びDC電力を重畳印加して、コバルト酸リチウム薄膜からなるカソード電極を製造する。例えば、2.5kWという低いRF電力では、成膜速度が低く、成膜されたコバルト酸リチウム薄膜の均一性も劣る。しかし、トータル電力を2.5kWとし、RF電力にDC電力を重畳し、DC電力の比率(DC電力/(RF電力+DC電力))を8%か95%まで高めていくにつれて、成膜速度が向上し、膜厚均一性が改良され、膜厚分布をコントロールすることが出来る。この場合、DC電力100%とすると、スパッタ放電は起こらない。
【0034】
また、一般的に、成膜圧力を高めていくとスパッタ粒子とプロセスガスの分子とが衝突する確率が高まり、その結果、スパッタ粒子が基板へ入射しづらくなることが分かっている。しかしながら、形成中のコバルト酸リチウム薄膜は、プラズマ中の電子の流入により容易にダメージを受けて再蒸発して、膜厚が薄くなり、結果的に、成膜速度が遅くなることに繋がる。このことから、プラズマの密度を下げることが成膜速度を向上させる上で必要であると考え、上記したようなRF電力とDC電力の重畳印加と共に、最も効果的な手法として低い成膜圧力(例えば、0.1〜1.0Pa程度)によりコバルト酸リチウム薄膜を製造する。
【0035】
本発明によれば、マグネトロンスパッタ法により、例えば、公知のプロセス条件で、Arガスを供給し、RF電力及びDC電力を重畳印加しながら、所定の膜厚のコバルト酸リチウム薄膜を製造することが出来る。例えば、Arガス(例えば、0〜100sccm)、所定のRF電力(13.56MHz)及びDC電力の条件で行うことができる。すなわち、上記装置1内のステージ18上にSi基板等からなる基板Sを載置し、RF(13.56MHz)電力を、例えば、0.5〜2.3kW、DC電力を2.0〜0.2kWとし、RF電力とDC電力とのトータル電力が2.5kWと一定になるようにして行う。プロセスガスとしてのArの流量を0〜100sccmの範囲で供給して、マスフローコントローラを用いてガス流量を制御し、真空計で測定した第2防着板17の外側の圧力を0.1〜1.0Pa(本発明の成膜圧力)の範囲とし、そして所定の時間の間(例えば、20分)スパッタし、基板S上にコバルト酸リチウム(LiCoO2)薄膜を形成せしめる。このコバルト酸リチウム薄膜は、以下に説明する固体電解質薄膜層の上、又は固体電解質薄膜層の下に形成する。
【0036】
本発明の薄膜固体リチウムイオン2次電池の製造方法において、固体電解質薄膜を形成する方法は、例えば、図2に示す平行平板型のマグネトロンスパッタ装置3を用いて行うことが出来る。
【0037】
このマグネトロンスパッタ装置3は、円筒状の真空槽31を有している。真空槽31には、排気口32が設けられており、排気口32は図示しないTMP真空排気系に接続され、この真空排気系を駆動すると、真空槽31の内部を高真空に排気することが出来るように構成されている。また、真空槽31には、ガス導入口33が設けられており、ガス導入口33は図示しないガス導入系に接続されており、真空槽31内に希ガス(例えば、Ar等)及びN2ガスからなるプロセスガスを導入することが出来るように構成されている。この真空槽31の天井部には、真空槽31と絶縁された状態で円筒状のバッキングプレート34が設置されており、バッキングプレートの真空槽31内部側の面には、Li3PO4等の焼結体からなる所望の円筒状のターゲット35が設けられている。
【0038】
真空槽31内部には、バッキングプレート34の側面の下方部分の周囲部、ターゲット35の厚み方向の周囲部、及びバッキングプレート34の底面の周縁部に対向するように、アースシールド37aが配置され、また、アースシールド37aに対向し、所定の距離だけ離間して上部シールド(上部防着板)37bが配置されている。この上部防着板37bには、上記ガス導入口33からの導入ガスを真空槽31内の成膜空間へ供給するための開口が設けられている。アースシールド37aと上部防着板37bとからなる第1防着板37は、真空槽31の上方に配置され、治具(リング)37cにより真空槽31の上部壁面に固定されている。アースシールド37aは、スパッタが開口内で行われるように調整するための治具として機能し、また、上部防着板37bは、ガス及びプラズマが第1防着板37の外へもれるのを防止するための治具として機能する。
【0039】
真空槽31内部にはまた、バッキングプレート34の底面の直径より大きな直径を有する、円筒状の下部シールド(第2防着板)38が、成膜空間を囲繞するように、第1防着板37の下に配置されている。この第2防着板(下部防着板)38は、その上端部38aが、上記アースシールド37a及び上部防着板37bとで形成されている開口部内に成膜時に突出できるように構成されている。第2防着板38の上端部38aと上部防着板37bとの間の隙間Aは、所定の距離(例えば、1〜3mm)となるように構成されている。このような間隔とすることにより、第2防着板38と上部防着板37bとの間で異常放電がなく、プラズマが隙間Aから外にもれることがなくなる。また、上端部38aとアースシールド37aとの間の隙間は、上端部38aと上部防着板37bとの間の隙間Aよりも大きくなるように(例えば、8〜10mm)構成されている。このような間隔とすることにより、プロセスガスが直接排気されず第1防着板37内に効果的に導入される。
【0040】
また、真空槽31内部の下方には、ターゲット35の表面に対向して、基板Sを載置するためのステージ39が設置されている。ステージ39は、絶縁体40を介して接地されている。これにより、ステージ39のインピーダンスを高め、プラズマからの電子の流入による膜へのダメージを抑制できる。また、ターゲット35には、図示しないが、接地部との間に高周波電源及びマッチングボックスが接続されている。これにより、ターゲット35と第1防着板37との間でプラズマを発生させ、ターゲットのスパッタを行う。
【0041】
ターゲット35の背面、すなわちバッキングプレート34の背面である、真空槽31内部と反対側の大気側の面には、カソード41が設けられており、カソード41中には磁力線を形成するためのローテーションマグネット等のようなマグネット42が配置されている。このマグネット42は、図示しないモータ等の駆動源で回転できるように構成されている。
【0042】
第2防着板38は、ガイドリング43に固定され、このガイドリングは昇降自在の支持部材44により支持されており、基板Sの搬送時及び成膜時に第2防着板38が昇降できるように構成されている。支持部材44は、防着カバー45により囲繞されている。ガイドリング43の下面と防着カバー45の上面との間は、成膜時に1〜3mmの隙間Bが形成されるように構成される。これにより、異常放電及び放電もれを抑制する。
【0043】
上記のように構成された平行平板型マグネトロンスパッタ装置では、ガス導入口33から、上部防着板37bの開口を経て、真空槽31内の成膜空間に導入されたAr等の希ガスの正イオンは、ターゲット35に印加した負電位により引き込まれ、ターゲット35の表面に衝突する。この衝突によりターゲット35を構成する材料の原子がスパッタされて真空槽31内の成膜空間に飛散する。原子状態で飛散する粒子は、コサイン則に従って移動し、その飛散する粒子の一部は、電子等の衝突によりイオン化する。マグネトロンスパッタ装置では、このようなイオン化したスパッタ粒子の方向を制御して基板上に均一に入射させ、均一な薄膜を形成することが出来る。
【0044】
本発明によれば、図2に示す平行平板型マグネトロンスパッタ装置3を用いて、薄膜固体リチウムイオン2次電池用の固体電解質薄膜として、例えば、窒素置換リン酸リチウム薄膜を以下のようにして製造することが出来る。
【0045】
上記したコバルト酸リチウム薄膜形成の場合と同様に、成膜圧力が高いと、形成中の窒素置換リン酸リチウム薄膜は、プラズマ中の電子の流入により容易にダメージを受けて再蒸発して、膜厚が薄くなり、結果的に、成膜速度が遅くなる。このことから、低い成膜圧力により窒素置換リン酸リチウム薄膜を製造する。
【0046】
本発明によれば、マグネトロンスパッタ法により、例えば、公知のプロセス条件で、ArガスとN2ガスとを供給しながら所定の膜厚の窒素置換リン酸リチウム薄膜を製造することが出来る。例えば、Arガス(例えば、0〜100sccm)及びN2ガス(例えば、0〜100sccm)、所定のカソードパワー(例えば、2.5kW、13.56MHz)の条件で行うことができる。すなわち、上記装置3内のステージ39上にSi基板等からなる基板Sを載置し、RF(13.56MHz)電力を2.5kWに設定し、プロセスガスとしてのAr及びN2の流量を0〜100sccmの範囲で供給して、マスフローコントローラを用いてガス流量を制御し、真空計36で測定した第2防着板38の外側の圧力を0.1〜1.0Pa(本発明の成膜圧力)の範囲とし、そして所定の時間の間(例えば、60分)スパッタし、基板S上に窒素置換リン酸リチウム(LiPON)薄膜を形成せしめる。このLiPON薄膜は、上記したカソード電極の下に、又はその上に形成する。
【0047】
上記したようにして成膜されるコバルト酸リチウム薄膜及び窒素置換リン酸リチウム薄膜を設けた薄膜固体リチウムイオン2次電池は、基板上にカソード引き出し電極層(負極集電体層)、カソード電極層(負極活物質層、例えば、コバルト酸リチウム薄膜)、固体電解質薄膜層(例えば、窒素置換リン酸リチウム薄膜)、アノード電極層(正極活物質層)、アノード引き出し電極層が、この順序で又は逆の順序で形成されたものであり、例えば、所定形状のステンレス製マスクを用いて、以下のようにして作製される。
【0048】
例えば、ガラス等からなる基板上に、DCスパッタリング法により、公知のプロセス条件で、Pt(100nm)及びTi(20nm)からなるカソード引き出し電極を形成し、この上に、上記したRF電力及びDC電力を重畳印加して行うスパッタリング法により、LiCoO2(2.0μm)膜を形成し、この膜に対してその結晶性を良くするために熱処理による加熱成膜(300〜600℃)を行って、この熱処理された膜からなるカソード電極を形成し、このカソード電極上に、上記したRFスパッタリング法により、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層(1.0μm)を形成した後、固体電解質薄膜層上に、DCスパッタリング法により、公知のプロセス条件で、Ni又はCu(250〜300nm)からなるアノード引き出し電極及びアノード電極を形成する。
【0049】
以下、実施例に基づいて本発明を詳細に説明する。
【実施例1】
【0050】
図1に示す平行平板型マグネトロンスパッタ装置1であって、φ300mmで厚み5mmのLiCoO2焼結体からなるターゲット15を設置し、そしてターゲット15と基板S(φ=200mm)との間の距離を60mmに設定した装置を用いて、コバルト酸リチウム薄膜の成膜プロセスを実施した。
【0051】
上記装置内に□200mmのSi基板をステージ18(水冷)上に載置し、RF(13.56MHz)電力とDC電力との合計が2.5kWとなるように、FR電力を2.5〜0.5kWの範囲内で、また、DC電力を0〜2.0kWの範囲内で変動させ、プロセスガスとしてのArの流量を49sccmに設定し、成膜圧力を0.8Paに設定し、そして成膜時間を20分とする条件で、スパッタし、基板S上に、コバルト酸リチウム(LiCoO2)薄膜を形成せしめた。
【0052】
図3に、上記成膜プロセスに従って基板S上に形成されたコバルト酸リチウム薄膜の膜厚(nm)の分布を示す。図3において、各曲線はそれぞれ、(a)RF2.5kW(DC電力比=0%)、(b)RF2.3kW+DC0.2kW(DC電力比=8%)、(c)RF2.0kW+DC0.5kW(DC電力比=20%)、(d)RF1.7kW+DC0.8kW(DC電力比=32%)、(e)RF1.5kW+DC1.0kW(DC電力比=40%)、(f)RF1.25kW+DC1.25kW(DC電力比=50%)、(g)RF1.1kW+DC1.4kW(DC比=56%)、(h)RF1.0kW+DC1.5kW(60%)、(i)RF0.5kW+DC2.0kW(DC電力比=80%)の電力を印加した場合の結果を示す。また、図4に、DC電力比(%)が薄膜の堆積速度(nm/min)及び膜厚均一性(%)に及ぼす影響を示す。
【0053】
図3及び4から明らかなように、DC電力比が、0%から80%まで増加するに伴って、成膜速度が向上し、また、膜厚分布を制御することが可能となることが分かる。
【0054】
さらに、DC電力比が95%まで放電し、堆積速度は、80%以下の場合と同様な傾向を示し、DC電力比に比例していること、及び膜厚均一性も80%以下の場合と同様に良好であることが確認できたが、100%の場合にはスパッタ放電は起こらなかった。どの程度の堆積速度を目的にするかにもよるが、膜厚分布を考慮して、DC電力比を適宜選定すればよい。
【実施例2】
【0055】
本実施例では、RF電力を一定(2.0kW)にし、これに重畳するDC電力を変動させて(0.2〜0.8kW)、実施例1の成膜プロセスを繰り返した。
【0056】
かくして基板S上に形成されたコバルト酸リチウム薄膜の膜厚(nm)の分布を図5に示す。図5において、各曲線はそれぞれ、(a)RF2.0kW(DC電力比=0%)、(b)RF2.0kW+DC0.2kW(DC電力比=9.1%)、(c)RF2.0kW+DC0.5kW(DC電力比=20%)、(d)RF2.0kW+DC0.8kW(DC電力比=28.6%)の電力を印加した場合の結果を示す。また、図6に、RF電力とDC電力とのトータル電力(kW)が薄膜の堆積速度(nm/min)及び膜厚均一性(%)に及ぼす影響を示す。
【0057】
図5及び6から明らかなように、DC電力比及びトータル電力が増加するに伴って、成膜速度が向上し、膜厚分布を制御することが可能となることが分かる。
(比較例1)
【0058】
本比較例では、RF電力を2.0kW、2.2kW、及び2.5kWとし、これにDC電力を重畳せずに、実施例1の成膜プロセスを繰り返した。
【0059】
かくして基板S上に形成されたコバルト酸リチウム薄膜の堆積速度(nm/min)及び膜厚均一性(%)の分布を、実施例2で得られた結果(RF2.0kW+DC0.2kW、RF2.0kW+DC0.5kW、RF2.0kW+DC0.8kW)と比較して図7に示す。図7において、各曲線はそれぞれ、(a)実施例2におけるRF電力+DC電力の重畳印加した場合の堆積速度(nm/min)、(b)本比較例におけるRF電力を印加した場合の堆積速度(nm/min)、(c)実施例2におけるRF電力+DC電力の重畳印加した場合の膜厚均一性(%)、(d)本比較例におけるRF電力を印加した場合の膜厚均一性(%)を示す。
【0060】
図7から明らかなように、RF電力+DC電力を重畳印加した場合とそのトータル電力と同じRF電力を印加した場合との堆積速度及び膜厚均一性を比較すると、重畳印加した場合の方が堆積速度は高く、かつ膜厚均一性は良好であることが分かる。しかし、単にトータル電力を増加しただけでは、必ずしも膜厚均一性が良くなる訳ではない。
【実施例3】
【0061】
図2に示す平行平板型マグネトロンスパッタ装置3であって、第2防着板38の上端部38aと上部防着板37bとの間の隙間が、ほぼ2mmとなるように、また、第2防着板38の上端部38aとアースシールド37aとの間の隙間が、上端部38aと上部防着板37bとの間の隙間よりも大きくなるように(8〜10mm)構成した装置を用いた。この装置にφ300mmで厚み5mmのLi3PO4焼結体からなるターゲット35を設置し、そしてターゲット35と基板S(φ=200mm)との間の距離を150mmに設定したものを用いて、LiPON薄膜の成膜プロセスを実施した。
【0062】
上記装置内に、実施例1に従ってカソード電極を作製したSi基板をステージ39(水冷)上に載置し、RF(13.56MHz)電力を2.5kWに設定し、プロセスガスとしてのAr及びN2の流量を0〜100sccmの範囲で変動せしめ、マスフローコントローラを用いてプロセスガスの流量を制御することにより、成膜圧力を0.1〜2.0Paの範囲内で変動せしめ、そして成膜時間を60分とする条件で、スパッタし、基板S上に、窒素置換リン酸リチウム(LiPON)薄膜を形成せしめた。このLiPON薄膜は、固体電解質薄膜としての機能を有するアモルファス膜であることが、インピーダンスの測定及びSEMにより確認できた。
【0063】
図8に、上記成膜プロセスにおける、成膜圧力(Pa)と成膜速度(nm/min)との関係を示す。この成膜速度は、基板に堆積した単位時間当たりのLiPON膜の厚さであり、図8から明らかなように、成膜圧力と強い依存性をもっており、低圧力になるに従い、成膜速度が向上することが分かる。
【0064】
第2防着板38の上端部38aと上部防着板37bとの間に2mmの隙間Aを設け、また、上端部38aとアースシールド37aとの間に、上端部38aと上部防着板37bとの間の隙間よりも大きな隙間(8〜10mm)を設けることにより、所期の目的が達成できた。隙間Aが1mm未満であると、第2防着板38と上部防着板37bとの間で異常放電が発生する虞がある。3mmを超えると、スパッタ時にプラズマが隙間から外にもれる虞がある。
【0065】
また、成膜圧力が0.07Paである場合について、上記と同様にして成膜プロセスを実施したところ、成膜速度は向上したが、図9(a)及び(b)に示す基板断面のSEM写真から明らかなように、堆積したLiPON薄膜の表面が荒れた状態で形成されていることが分かる。図9(a)は基板断面を手前に20度傾けた状態のSEM写真であり、図9(b)は断面のSEM写真である。このように表面が荒れた状態で成膜されたのは、低圧力によって、基板への電子の流入は抑制されたものの、単位数量当たりのイオンの入射エネルギが増加し、その結果として、入射イオンや、スパッタ粒子のエネルギが増加したことにより、膜に対するダメージが発生したものであると考えられる。
【0066】
図10(a)及び図10(b)に、成膜圧力0.1Paの場合に得られたLiPON薄膜の表面状態を観察するため、基板断面のSEM写真を示す。図10(a)は基板断面を手前に20度傾けた状態のSEM写真であり、図10(b)は断面のSEM写真である。これらの図から、堆積したLiPON薄膜の表面が平坦で均一であることが分かる。
【0067】
かくして、実用的な成膜速度(好ましくは、8nm/min以上)を考慮し、表面にダメージを発生せしめることなくLiPON膜を形成するための最適圧力は0.1〜1.0Paの範囲であることが分かる。
【実施例4】
【0068】
本実施例では、薄膜固体リチウムイオン2次電池を製造した。全ての成膜は、所定形状のステンレス製のマスクを用いるin−situのマスク成膜(パターニング成膜)により実施した。
【0069】
基板(SiO2/Si)上に、DCスパッタリング法により、公知のプロセス条件下、Pt(膜厚:100nm)及びTi(膜厚:20nm)からなる負極集電体層を形成した。この負極集電体層上に、実施例1記載のプロセス条件に従って、コバルト酸リチウムターゲットにRF電力及びDC電力を重畳印加させながら、スパッタリング法により、希ガスを供給して、0.8Paの圧力下、300〜600℃の加熱雰囲気でコバルト酸リチウム薄膜からなるカソード電極である負極活物質層(2.0μm)を形成した。この負極活物質上に、実施例3記載のプロセス条件に従って、スパッタリング法により、リン酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力を印加しながら、希ガス及び窒素ガスを供給して、0.1Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層(膜厚:1.0μm)を形成した。この固体電解質薄膜層上に、公知のプロセス条件下、真空蒸着法によりLiからなる正極活物質層を形成し、又は反応性スパッタリング法により、V若しくはV及びLiからなる合金と酸素とから得られる酸化物膜からなる正極活物質層を形成した。次いで、DCスパッタリング法により、公知のプロセス条件下、Ni又はCuからなる正極集電体層(膜厚:250〜300nm)を形成した。かくして、高揮発性材料のリチウムを含有するコバルト酸リチウム薄膜及び窒素置換リン酸リチウム薄膜がプラズマのエネルギによるダメージを受けず、歩留まり良く、高い成膜速度で形成されたため、スループットの良い薄膜固体リチウムイオン2次電池が得られた。
【産業上の利用可能性】
【0070】
本発明によれば、プラズマのエネルギによるダメージのないカソード電極薄膜及び固体電解質薄膜を、特定のスパッタ電力で、かつ高い成膜速度で、低い成膜圧力下で形成できるので、薄膜固体リチウムイオン2次電池の分野等で利用可能である。
【図面の簡単な説明】
【0071】
【図1】本発明のカソード電極薄膜製造方法に使用する平行平板型マグネトロンスパッタ装置の一構成例を示す模式的構成図。
【図2】本発明において固体電解質薄膜の製造方法に使用する平行平板型マグネトロンスパッタ装置の一構成例を示す模式的構成図。
【図3】実施例1で形成されたコバルト酸リチウム薄膜の膜厚(nm)の分布を示すグラフ。
【図4】実施例1で形成されたコバルト酸リチウム薄膜について、DC電力比が薄膜の堆積速度(nm/min)及び膜厚均一性(%)に及ぼす影響を示すグラフ。
【図5】実施例2で形成されたコバルト酸リチウム薄膜の膜厚(nm)の分布を示すグラフ。
【図6】実施例2で形成されたコバルト酸リチウム薄膜について、RF電力とDC電力とのトータル電力(kW)が薄膜の堆積速度(nm/min)及び膜厚均一性(%)に及ぼす影響を示すグラフ。
【図7】比較例1で形成されたコバルト酸リチウム薄膜の堆積速度(nm/min)及び膜厚均一性(%)の分布を、実施例2で得られた結果と比較して示すグラフ。
【図8】実施例3で形成された窒素置換リン酸リチウム薄膜について、成膜圧力(Pa)と成膜速度(nm/min)との関係を示すグラフ。
【図9】実施例3において、成膜圧力0.07Paの場合に得られた膜の表面状態を示すSEM写真であり、(a)は基板を手前に20度傾けた状態のSEM写真、(b)は断面のSEM写真。
【図10】実施例3において、成膜圧力0.1Paの場合に得られた膜の表面状態を示すSEM写真であり、(a)は基板を手前に20度傾けた状態のSEM写真、(b)は断面のSEM写真。
【符号の説明】
【0072】
1 マグネトロンスパッタ装置 11 真空槽
12 排気口 13 ガス導入口
14 バッキングプレート 15 ターゲット
16 第1防着板 16a アースシールド
16b 上部防着板 17 第2防着板
17a 上端部 18 ステージ
19 絶縁体 20 防着カバー
21 アースブロック 22 高周波電源
23 DC電源 24 カソード
25 マグネット 26 ガイドリング
27 支持部材 28 マスク
3 マグネトロンスパッタ装置 31 真空槽
32 排気口 33 ガス導入口
34 バッキングプレート 35 ターゲット
36 真空計 37 第1防着板
37a アースシールド 37b 上部防着板
37c 治具 38 第2防着板
38a 上端部 39 ステージ
40 絶縁体 41 カソード
42 マグネット 43 ガイドリング
44 支持部材 45 防着カバー
S 基板
A 上部防着板と第2防着板の上端部との間の隙間
B ガイドリングと防着カバーとの間の隙間

【特許請求の範囲】
【請求項1】
スパッタリング法により、コバルト酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力及びDC電力を重畳印加させながら、希ガスを供給して、0.1〜1.0Paの圧力下、薄膜固体リチウムイオン2次電池用の負極活物質層として機能するコバルト酸リチウム薄膜からなるカソード電極を形成することを特徴とするカソード電極の製造方法。
【請求項2】
基板上に、正極集電体層、正極活物質層、固体電解質薄膜層、負極活物質層、及び負極集電体層を、この順序で又は逆の順序で積層する薄膜固体リチウムイオン2次電池の製造方法において、負極活物質層を形成する際に、スパッタリング法により、コバルト酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力及びDC電力を重畳印加させながら、希ガスを供給して、0.1〜1.0Paの圧力下、負極活物質層として機能するコバルト酸リチウム薄膜からなるカソード電極を形成することを特徴とする薄膜固体リチウムイオン2次電池の製造方法。
【請求項3】
請求項2記載の薄膜固体リチウムイオン2次電池の製造方法において、さらに固体電解質薄膜層を形成する際に、RFスパッタリング法により、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成することを特徴とする薄膜固体リチウムイオン2次電池の製造方法。
【請求項4】
請求項2記載の薄膜固体リチウムイオン2次電池の製造方法において、さらに固体電解質薄膜層を形成する際に、真空槽の天井部に設置されているターゲット及びバッキングプレートと、このバッキングプレートの背面に設けられているカソードと、このカソード中に配置されているマグネットと、真空槽内の下方に該ターゲットに対向して設置されている基板載置用ステージと、該バッキングプレートの側面の下方部分、該ターゲットの厚み方向の周囲部、及び該バッキングプレートの底面の周縁部に対向して設けられているアースシールド及びこのアースシールドに対向し、離間して設けられた上部防着板からなる第1防着板と、該第1防着板の下方に、成膜空間を囲繞するように設置されている、該バッキングプレートの底面の直径より大きな直径を有する昇降自在な第2防着板とを有する平行平板型マグネトロンスパッタ装置であって、該第2防着板は、その上端部が、成膜時に、該アースシールド及び該上部防着板とで形成されている開口部内に突出し得るように構成され、該第2防着板の上端部と上部防着板との間に1〜3mmの隙間が設けられ、そして、該第2防着板の上端部とアースシールドとの間に、該上端部と上部防着板との間の隙間よりも大きい隙間が設けられるように構成されている平行平板型マグネトロンスパッタ装置を用い、スパッタリング法により、リン酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力を印加しながら、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成することを特徴とする薄膜固体リチウムイオン2次電池の製造方法。
【請求項5】
基板上に、DCスパッタリング法によりPt及びTiからなる負極集電体層を形成し、この負極集電体層上に、コバルト酸リチウムターゲットにRF電力及びDC電力を重畳印加させながら、スパッタリング法により、希ガスを供給して、0.1〜1.0Paの圧力下、コバルト酸リチウム薄膜からなるカソード電極である負極活物質層を形成し、この負極活物質層上に、RFスパッタリング法により、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成し、この固体電解質薄膜層上に、真空蒸着法によりLiからなる正極活物質層を形成し、又は反応性スパッタリング法により、V若しくはV及びLiからなる合金と酸素とから得られる酸化物膜からなる正極活物質層を形成し、次いでDCスパッタリング法によりNi又はCuからなる正極集電体層を形成することを特徴とする薄膜固体リチウムイオン2次電池の製造方法。
【請求項6】
基板上に、DCスパッタリング法によりPt及びTiからなる負極集電体層を形成し、この負極集電体層上に、コバルト酸リチウムターゲットにRF電力及びDC電力を重畳印加させながら、スパッタリング法により、希ガスを供給して、0.1〜1.0Paの圧力下、コバルト酸リチウム薄膜からなるカソード電極である負極活物質層を形成し、この負極活物質上に固体電解質薄膜層を形成する際に、真空槽の天井部に設置されているターゲット及びバッキングプレートと、このバッキングプレートの背面に設けられているカソードと、このカソード中に配置されているマグネットと、真空槽内の下方に該ターゲットに対向して設置されている基板載置用ステージと、該バッキングプレートの側面の下方部分、該ターゲットの厚み方向の周囲部、及び該バッキングプレートの底面の周縁部に対向して設けられているアースシールド及びこのアースシールドに対向し、離間して設けられた上部防着板からなる第1防着板と、該第1防着板の下方に、成膜空間を囲繞するように設置されている、該バッキングプレートの底面の直径より大きな直径を有する昇降自在な第2防着板とを有する平行平板型マグネトロンスパッタ装置であって、該第2防着板は、その上端部が、成膜時に、該アースシールド及び該上部防着板とで形成されている開口部内に突出し得るように構成され、該第2防着板の上端部と上部防着板との間に1〜3mmの隙間が設けられ、そして、該第2防着板の上端部とアースシールドとの間に、該上端部と上部防着板との間の隙間よりも大きい隙間が設けられるように構成されている平行平板型マグネトロンスパッタ装置を用い、スパッタリング法により、リン酸リチウム焼結体からなるターゲットを用い、このターゲットにRF電力を印加しながら、希ガス及び窒素ガスを供給して、0.1〜1.0Paの圧力下、窒素置換リン酸リチウム薄膜からなる固体電解質薄膜層を形成し、この固体電解質薄膜層上に、真空蒸着法によりLiからなる正極活物質層を形成し、又は反応性スパッタリング法により、V若しくはV及びLiからなる合金と酸素とから得られる酸化物膜からなる正極活物質層を形成し、次いでDCスパッタリング法によりNi又はCuからなる正極集電体層を形成することを特徴とする薄膜固体リチウムイオン2次電池の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−187682(P2009−187682A)
【公開日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2008−23336(P2008−23336)
【出願日】平成20年2月1日(2008.2.1)
【出願人】(000231464)株式会社アルバック (1,740)
【Fターム(参考)】