説明

パーティクルモニタを備えた基板処理装置及びそれを用いた基板処理方法

【課題】従来のレーザー散乱方式のパーティクルモニタでは、45nmノード以降で課題となる30nmレベルの微小なパーティクルを感度良く検出することが困難となる。
【解決手段】本発明によるパーティクルモニタは、プラズマ処理装置内に浮遊するパーティクルを集塵電極により積極的に集め、四重極リニアトラップ等を用いて特定の場所に蓄積し、これらを電気的に検出する、もしくは、レーザー散乱光を用いて検出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パーティクルモニタ及び半導体デバイス等を製造するための基板処理装置並びにそれを用いた基板処理方法に係り、特に、基板処理装置内で発生するパーティクルをin-situ(その場)計測するパーティクルモニタと、これを用いた基板処理装置及び基板処理方法に関する。
【背景技術】
【0002】
半導体デバイスの製造工程において、成膜工程やエッチング工程の際に、プラズマ処理装置等の基板処理装置が広く用いられている。この際、基板処理装置内で様々な要因で発生するパーティクルが、製品の歩留まりを下げる大きな原因となっている。これに対し、処理室内のパーティクルをリアルタイムでin-situモニタリングする技術に注目が集まっている。
【0003】
例えば、特許文献1には、背景光の時間変化によるパーティクルの誤認や感度低下を低減したパーティクルモニタ技術が開示されている。これは、半導体プロセス装置内にレーザー光を照射し、CCDカメラで異物からの散乱光を検知するものである。この際、予め取得しておいたプラズマからの発光を含む背景画像情報と、パーティクルにより散乱された散乱光からの画像情報の差分をとることで、検出感度やS/N比の向上を図っている。
【0004】
また特許文献2には、配管設置型のパーティクルモニタに関する技術が開示されている。これは光を出射し、パーティクルからの散乱光を検出する際に、検出系にピンホールとレンズを適宜設けることで、パーティクル以外からの乱反射光を遮断し、検出感度やS/N比の向上を図っている。
【0005】
さらに、特許文献3には、処理装置内にレーザーを走査して照射し、異物からの散乱光を検出する技術について開示されている。レーザー光を空間的に走査することで、パーティクルの捕捉率を上げていることが特徴である。
【0006】
また、非特許文献1には、プラズマ中に電極を設け、そこにプラス数十V程度のDC電圧を印加することで、マイナスに帯電したパーティクルを電極付近に収集することが開示されている。
【0007】
【特許文献1】特開2000-155086号公報
【特許文献2】特開平8-97112号公報
【特許文献3】特開2005-43052号公報
【非特許文献1】“Removal of particles during plasma processes using a collector based on the properties of particles suspended in the plasma”, Journal of Vaccum Science and Technology A 23 (3), P388, 2005
【発明の開示】
【発明が解決しようとする課題】
【0008】
前記特許文献1〜3に開示された従来技術では、基板処理装置内もしくは配管内に光、もしくはレーザー光を照射し、一個一個のパーティクルからの散乱光を光学的に検出する、という点で共通している。(以下、これらの異物モニタリング技術を、レーザー方式異物モニタと総称する。)これら従来技術では、検出しようとするパーティクルの粒子径が小さくなると、感度が著しく低下するという課題を抱えている。
【0009】
ITRS(International Technology Roadmap for Semiconductors)では、配線ピッチの1/2以上の大きさのパーティクル(異物)の低減が必要とされており、2010年量産開始予定の45nmノードでは粒径30nmの微小異物も問題となる。従来のレーザー方式異物モニタは、異物粒径が小さくなるに従い、微小異物を検出するのは原理的に困難になることを以下で説明する。
【0010】
異物の直径をd, レーザー光の波長をλ、異物の粒子密度をn 、異物からの散乱係数を ks とする。散乱光を観測したい異物粒子の直径dは100nm以下である一方、入射させるレーザー光の波長λは350nm-700nm程度である。散乱光を観測する対象である異物の直径dがレーザー光の波長λのおおむね1/4以下となる領域での光の散乱はレイリー散乱となるが、このときの散乱係数ksは、
ks ∝ n d / λ (1)
と表すことができる。(1)式より、異物からの散乱光は、異物粒径の5乗に比例して強くなる、つまり、異物粒径が小さくなると、散乱光は極端に弱くなることが判る。
【0011】
現在、実現されている青色レーザー方式異物モニタの最小検出異物粒径は200nm程度であるが、(1)式より、30nmの異物を検出しようとすると、散乱光の強度は約1/10000になってしまう。つまり、約10000倍に検出器の感度を上げる必要があることが分かる。感度自体は光電子増倍管等を用いれば上げることは可能であるが、散乱光強度とプラズマからの発光・迷光との間のS/N比を上げることが非常に困難になる。実際、先述した特許文献1及び2の発明は、いずれも実質的なS/N比を上げるための技術である。
【0012】
S/Nを上げるためには、入射させるレーザー光をパルス化し、そのピーク強度を上げる方法があるが、レーザー系を大掛かりにすることにより、コストが非常に高くなってしまう。また、大出力のレーザーは安全面や、プラズマに与える擾乱の面からも好ましくない。したがって、従来のレーザー異物モニタのような異物からの散乱光を検出する方式では、特に、プラズマによる不要な光が存在するような環境下では、粒径100nm以下の微小異物を検出することは非常に困難であるといわざるを得ない。
【0013】
また、異物の捕捉率の問題もある。即ち、従来のレーザー異物モニタでは、入射したレーザー光の光路をパーティクルが横切らない限り、パーティクルの検出は不可能であった。これを改善したのが特許文献3における技術、即ち入射させるレーザー光を走査するパーティクルモニタであるが、こちらも、先述したように、検出したいパーティクルの粒子径が小さくなる事による感度低下は避けられない。さらに、レーザー光を空間的に走査するため、実質的なレーザー光強度が低下するため、位置的には広範囲の異物を検出できるが、検出できる異物の粒子径は、数百nm以上の大型のものに限られてしまう、という課題があった。
【課題を解決するための手段】
【0014】
上記課題は、基板処理装置内に存在するパーティクルを検出するパーティクルモニタであって、前記基板処理装置内のパーティクルを所望の位置に集める手段と、該集めたパーティクルを蓄積する手段と、該蓄積したパーティクルを検出する手段とを備えた、ことを特徴とするパーティクルモニタにより解決される。
【発明の効果】
【0015】
本発明によるパーティクルモニタは、プラズマ処理装置内に浮遊するパーティクルを集塵電極により積極的に集め、四重極リニアトラップ等を用いて特定の場所に蓄積することを特長としている。これにより、実効的なパーティクル検出感度を劇的に向上させる効果が期待できる。さらには、異物を積極的に集めることにより、プラズマ処理室内の異物レベルを低減することも期待できる。
【発明を実施するための最良の形態】
【0016】
本発明の代表的な実施例によれば、パーティクルモニタは、基板処理装置内に存在するパーティクルを検出するパーティクルモニタであって、基板処理装置内のパーティクルを所望の位置に集めるための手段と、集めたパーティクルを蓄積する手段と、蓄積したパーティクルを検出する手段と、を備えている。
【0017】
従来のレーザー異物モニタでは、基板処理装置内に浮遊するパーティクルの位置を全く制御していなかった。これに対し、本発明によるパーティクルモニタは、浮遊するパーティクルを能動的に集め、特定の場所に蓄積することにより、実効的な検出感度を劇的に向上させることができるものである。以下、プラズマ処理装置内でパーティクルを集め、蓄積する技術について説明する。
【0018】
一般的にプラズマ中に浮遊する異物は、マイナスの電荷を帯びていると考えられる。プラズマとは希薄気体が電離した状態であり、正イオンと電子とが準中性状態を保っている。ここに、イオンよりも遥かに巨大なパーティクルが突入した場合、パーティクルにはプラズマからプラスの電荷を持った正イオンと、マイナスの電荷を持った電子とが流入する。正イオンに比べ電子は質量が圧倒的に小さく、移動度が非常に大きいため、結果的にパーティクルはマイナスに帯電することになる。このようにマイナスに帯電したパーティクルは、プラズマ中に電極を設け、そこにプラス数十V程度のDC電圧を印加することで、電極付近に収集できることが非特許文献1等で知られている。(以下、この電極を集塵電極と呼ぶ。)
一般的には、プラズマ中に電極を設け、DC電圧を印加したとしても、電極のごく近傍に形成されるシースにのみ電圧が印加されてしまい、バルクプラズマ中には電界は浸透しないものと考えられている。さらに、プラズマ中に存在する帯電した異物も、プラズマによりデバイ遮蔽されてしまうため、電界を感じないはずである。つまり、完全電離状態に近いプラズマであれば、集塵電極により異物を収集することは不可能である。ところが、プラズマ処理に用いられるプラズマは電離度がかなり小さい弱電離プラズマであるため、集塵電極による異物収集が可能になるものと考えられる。
【0019】
また、パーティクルの質量をm、帯電量をzとし、一般的なプラズマパラメータを仮定すると、プラズマ中に浮遊するパーティクルの比電荷m/zは、異物直径200nmではm/z は約600万、30nmでは約20万程度と見積もることができる。つまり、プラズマ中のパーティクルは、あるマイナスの電荷を持った質量数数十万〜数百万の巨大多価イオンとみなすことができる。これより、イオントラップの技術を応用することで、パーティクルを特定の空間にトラップし、蓄積することが可能となることがわかる。
【0020】
イオントラップには、高周波電場によってイオンを閉じ込めるRFトラップや、静電場と静磁場の組み合わせによって閉じ込めるPenningトラップなどがある。さらに、RFイオントラップの閉じ込め形態にはいくつかの種類がある。この中で、4本の四重極ロッド電極と一対のエンドキャップ電極から構成される四重極リニアトラップは、安定な閉じ込め領域が直線状になるため、Paulトラップ等と比較すると、大容量のイオンをトラップできるという特徴がある。四重極リニアトラップの四重極ロッド電極間に高周波電圧を印加することにより、四重極リニアトラップ内ではある質量数以上のイオンが安定条件となり、これらを蓄積することができる。尚、リニアトラップの基本的な動作原理は周知であり、タンパク質等の質量分析に応用されている。
【0021】
先に説明した集塵電極により、プラズマ処理装置内に浮遊する異物を収集し、これらを四重極リニアトラップ内に蓄積することにより、単位体積あたりの異物密度を高めることができる。(1)式によれば、異物からの散乱光は異物密度に比例するため、例えば30nm異物を1000個蓄積したとすると、散乱光強度を1000倍に上げることができる。また、異物が存在する場所は四重極リニアトラップの中心軸上近傍に限られるため、入射させるレーザーを走査する必要もない。つまり、大掛かりなレーザー源を準備せずとも、粒子径30nmクラスの異物を十分に検出できることになる。
【0022】
また、マイナスに帯電した異物を十分蓄積することにより、リニアトラップ部の後段に設けた微小電流検出系により、異物を電気的に検出することも可能になる。たとえば、リニアトラップ部に30nm異物を1000個程度蓄積し、これらを10msの間に電流検出部に流し込んだと仮定すると、検出部に流れる電流値は約2pAとなる。つまり、電流検出部としては応答速度が1〜2ms、感度が0.2〜0.5pA程度のものを準備すれば良い。これらの値は、いずれも実現不可能なものではない。また、トラップ部にさらに多くの異物を蓄積できれば、電流検出部のスペックを低く抑えることができる。逆に、電流検出系に、二次電子増倍管等を用いることで、トラップ部に蓄積された異物が数個レベルであっても検出可能となる。
以下、図を参照して、本発明の実施例を詳細に説明する。
【実施例1】
【0023】
図1及から図4を用いて本発明の第一の実施形態について説明する。図1は、本発明によるパーティクルモニタを平行平板型のプラズマ処理装置に取り付けた状態の概略を示す断面図である。まず、プラズマ処理装置の構成から説明する。プラズマ処理室(以下、単に処理室)1の上部には、略円盤状の上部電極2が設けられており、該電極には第一の整合器5を介して第一の高周波電源6が接続されている。上部電極2には図示しないガス供給系から、プラズマ処理用のガスが所望の流量で処理室内に供給できる構造となっている。処理室1は、コンダクタンス調節バルブ10を介してターボ分子ポンプ11により排気されており、処理用のガスを流した状態で所望の圧力に調節できるようになっている。処理室1の下部には被処理基板3を載置するためのステージ4が設けられており、該ステージには第二の整合器7を介して第二の高周波電源8が接続されている。
【0024】
処理室1に導入された処理用のガスは、第一の高周波電源6により投入される高周波電力によりプラズマ化される。さらに、第二の整合器7を介して第二の高周波電源8より供給される高周波電力により、プラズマ中のイオンを被処理基板3に引き込むことでプラズマ処理が進行する。また、処理室1の側壁には、本発明によるパーティクルモニタを接続するための直径10mmから50mm程度の略円形状のポートが設けられている。該ポートは、被処理ウエハ3が設置される面よりも下方に設けられている。該ポートをこれよりも上部に設けると、処理の面内均一性を損なう恐れがあるためである。
【0025】
なお、パーティクルモニタで異物を電気的に集めるためには異物が帯電していることが前提なので、パーティクルモニタはプラズマ処理がなされる処理室に接続する必要がある。基板処理装置内に複数の処理室がある場合には、各処理室毎にパーティクルモニタを設置しても良い。
【0026】
次に、本発明によるパーティクルモニタについて説明する。パーティクルモニタの先端には、外径8mmから45mm程度、厚さ0.5mmから3mm程度の略円板状の集塵電極21が設置されている。集塵電極21の中心には、直径0.1mmから5mm程度の一個の小孔が開けられている。該集塵電極は、モニタ筐体20やプラズマ処理室1から絶縁体部材26により絶縁されており、第一のDC電源31と接続されている。ここで第一のDC電源の出力電圧をV1としておく。集塵電極にプラスの電圧を印加することで、プラズマ中でマイナスに帯電したパーティクルを集塵電極近傍の空間に集めることが可能となる。
【0027】
モニタ筐体20の内部には、前段キャップ電極22、四重極リニアトラップ電極部23、後段キャップ電極24から構成される異物トラップ部が備えられている。前段キャップ電極には第二のDC電源32が、四重極トラップ電極にはトラップ電源33が、後段キャップ電極24には第三のDC電源34が夫々接続されている。前段キャップ電極32及び後段キャップ電極は直径10mmから50mm程度の略円板状をしており、その中心に、直径0.1mmから5mm程度の一個の小孔が開けられている。ここで、軸方向のトラップに関する第二のDC電源の出力電圧をV2、第三のDC電源の出力電圧をV3とする。集塵電極に印加する電圧V1と、前段キャップ電極に印加する電圧V2との関係を V1 < V2 とすることで、集塵電極により集められたパーティクルは前段キャップ電極の小孔を介して、四重極リニアトラップ部へと導入される。
【0028】
後段キャップ電極24の後ろには、ファラデーカップや二次電子増倍管に代表される電流検出手段25と、電流計35が備えられている。また、モニタ筐体20は、第二のターボ分子ポンプ30により局所排気されている。すなわち、モニタ筐体はプラズマ処理室と繋がっているため、第一のターボ分子ポンプのみでも真空排気できるが、この場合、筐体内の圧力は、プラズマ処理室の圧力と同等か、若干高くなる。そこで、モニタ筐体内の圧力をプラズマ処理室よりも低くするために、モニタ筐体を別のポンプ(第二のターボ分子ポンプ)で排気する。
【0029】
ここで、ターボ分子ポンプの排気速度と集塵電極31に開けられた小孔の大きさでモニタ筐体内の圧力が決まってくる。
【0030】
また、モニタ筐体20を第二のターボ分子ポンプ30で局所排気し、プラズマ処理室1よりも低い圧力にすることにより、プラズマ処理室からモニタ筐体へのガス流れを形成することができる。これにより、集塵電極21近傍に集まってきたパーティクルを、より効率よく、四重極リニアトラップ部へと導入することができる。
【0031】
これにより帯電したパーティクル90を四重極トラップ電極の中央部付近(正方形の中心部付近)にトラップすることができる四重極電場を形成することができる。即ち、図1において、帯電したパーティクルは四重極トラップ電極の中心付近に、z軸方向に直線状にトラップされることになる。
【0032】
なお、ターボ分子ポンプ11、30により排気される流量を各々Q1,Q2とすると、Q1>>Q2となる。すなわち、モニタ筐体20先端の集塵電極21には一個の小孔しか空けていないため、ターボ分子ポンプ30から排気される流量Q2は処理用ガス全体(Q=Q1+Q2)のごく一部(例えば1%以下)である。
【0033】
換言すると、モニタ筐体20で電気的に集塵することにより、処理室全体のガスに対して1%以下の少量のガスをモニタ筐体20に流すだけで、処理室内に存在し排気される全体のパーティクルの1−2割程度をパーティクルモニタに集めることが可能になる。これにより、異物を積極的に集めパーティクルの検出感度を劇的に向上させる効果がある。
【0034】
ロッド電極に印加する高周波電圧の周波数は、トラップしたいパーティクルの質量と帯電量の比率、すなわち比電荷m/zにより適宜選択される。タンパク質等の質量分析に用いられるリニアトラップでは、トラップ用高周波電圧の周波数はMHzオーダーである。一方、帯電したパーティクルは質量数が非常に大きいため、トラップ周波数は5kHzから50kHz程度が好ましく、また、高周波電圧は数十Vから数kVの間から適宜選択される。但し、基板処理装置内に存在するパーティクルとして将来的にタンパク質の分子量レベルまで小さい異物が問題になる場合は、MHzオーダーのトラップ周波数を使用する必要がある。
【0035】
前段キャップ電極32及び後段キャップ電極24は、直径10mmから50mm程度の略円板状をしており、その中心に、直径0.1mmから5mm程度の小孔が開けられている。これら一対のキャップ電極は、四重極電場によりz軸上にライン状にトラップされたパーティクルを、該キャップ電極間に拘束するために設置されている。
【0036】
ここで、図3に、前段キャップ電極−四重極リニアトラップ部−後段キャップ電極の各位置におけるDCポテンシャル分布を示す。図3の上段に示したように、前段キャップ電極および後段キャップ電極に印加するDC電圧V2,V3よりも、四重極ロッド電極に印加するDC電圧Vdcを高くすることにより、即ちV2,V3 < Vdc なる関係を満たすようにDC電圧を設定することで、マイナスに帯電したパーティクルを一対のキャップ電極間にトラップできるようなポテンシャルの井戸を形成することができる。
【0037】
ここで、モニタ筐体内が完全な真空ならば、たとえポテンシャルの井戸を形成したとしても、帯電したパーティクルは実際にはトラップされない。なぜならば、前段キャップ電極22を、ある初速度v0で通過したパーティクルは、後段キャップ電極24により反発力をうけた後、逆向きの速度-v0でトラップ領域から出て行ってしまうからである。しかし、モニタ筐体内にあるていどのバックグラウンドガスが存在した場合、パーティクルの運動エネルギーがガスとの衝突で失われることにより、つまり、コリジョンダンピングがあることによって、パーティクルはポテンシャルの井戸に実際にトラップされるようになる。筐体内の圧力は先述したように、第二のターボ分子ポンプ30の排気速度と、集塵電極21の小孔の大きさで調整できる。筐体内の圧力は、0.0001Paから数Paの間で適宜設定される。ここでターボ分子ポンプと筐体の間にコンダクタンス調節バルブ(図示せず)を設けることにより、圧力制御範囲が広がることは言うまでもない。または、前段エンドキャップ電極付近にHeやAr等のバッファガスを供給することにより圧力を調節し、コリジョンダンピングの度合いを調節しても構わない。
【0038】
図4には、本実施例における異物の「蓄積」から「排出」までの各電極の電圧V1,Vref,Vdc,V2の設定のタイムチャートの一例を示す。
【0039】
ここまで説明してきたような、帯電した異物がトラップされる状態を数10msから数十秒の間維持することで、集塵電極により集められた異物は、四重極リニアトラップ内に次第に「蓄積」されていく。蓄積される異物の量は、蓄積時間に応じて増加するのは言うまでもない。異物がトラップ内に十分蓄積された後は、V3 > Vdc > V2 とすることにより、即ち、図3下段にしたようなポテンシャル分布を形成することにより、トラップ内に蓄積された異物を、後段キャップ電極の孔から電流検出手段35に「排出」することができる。電流検出手段35は、「排出される異物数×その異物の帯電量」に比例した電流を検出する。
【0040】
ここで排出時間は数msから数百msの間で設定される。また、「蓄積」「排出」の間、四重極電場を形成するための高周波電圧Vrfは常に印加されている。
【0041】
たとえば、リニアトラップ部に30nm異物を1000個程度蓄積し、これらを10msの間に電流検出部に流し込んだと仮定すると、検出部に流れる電流値は約2pAとなる。つまり、電流検出部としては応答速度が1〜2ms、感度が0.2〜0.5pA程度のものを準備すれば良い。また、トラップ部にさらに多くの異物を蓄積できれば、電流検出部のスペックを低く抑えることができるのは言うまでもない。
【0042】
ここまでの説明では、ロッド電極やキャップ電極に印加するDC電圧の関係でパーティクルのトラップを説明してきたが、モニタ筐体自体を電気的にフローティングとし、数十Vの電圧を印加することで、四重極部から散逸するパーティクルを少なくすることができ、トラップ効率をさらに上げることも可能になる。但し、筐体の周りを全て設置した金属で覆う等の処置が必要となり、コスト的には不利になる。
【0043】
次に、各部電極の材質について説明する。プラズマプロセスでは、ハロゲン系のガスやフルオロカーボン系のガスを用いることが多いため、ロッド電極やキャップ電極の材質は、これらのガスや、該ガスから発生するラジカルにより腐食しにくい金属材料、すなわち、ステンレスやアルミニウムが好ましい。さらに、耐食性の観点からは、金属の表面を金や白金等で被服することが好ましい。また、集塵電極の材質としては、プラズマにより損傷を受けにくく、かつ被処理ウエハに汚染を引き起こしにくい材質、即ち、シリコン、炭化シリコン、イットリウム、アルミニウム等が望ましい。
【0044】
以上で説明してきたように、プラズマ中でマイナスに帯電したパーティクルを集塵電極により集め、リニアトラップに蓄積し、蓄積したパーティクルを一気に微小電流検出系に排出することで、従来のレーザー散乱式のパーティクルモニタでは検出が困難な100nm以下の微小なパーティクルを検出することが可能となる。
【0045】
本実施例のパーティクルモニタでは、円板上の集塵電極を例に説明をしたが、本発明は集塵電極の形状により制限されるものではない。即ち、プラズマ中でマイナスに帯電したパーティクルを集めてくる機能を有していれば、その形状が円筒状であっても、または、四角の板状であっても何ら問題はない。また、本実施例ではパーティクルを蓄積するために四重極リニアトラップを用いたが、これは、四重極リニアトラップではトラップ領域が直線状になるため、トラップできる荷電粒子容量も大きく、構造も単純な点において実用的であるためである。ただし、本発明はこれに制限されるものではなく、他の多重極リニアトラップなどを用いても良い。即ち、大容量のパーティクルを蓄積できる機能を有したトラップであれば、その電極形状や、極数、方式に制限されるものではない。
【0046】
次に、本発明によるパーティクルモニタを具備したプラズマ処理装置の運用方法の一例を示す。
【0047】
従来のプラズマ処理装置では、異物起因のパターン欠陥による歩留まり低下が大きな課題であった。それゆえ量産ラインではベアーシリコンウエハを用いて頻繁に異物QC(Quality Control)を行い、さらに処理室のウエットクリーニングの頻度を高めることで異物起因の大量不良を未然に防止していた。つまり、異物の発生を抑え歩留まりを維持することと、NPW(Non Productive Wafer)使用量の削減、装置稼働率の向上はトレードオフの関係になっていた。これに対し、本発明によるパーティクルモニタを具備したプラズマ処理装置では、リアルタイムでプラズマ処理中の異物状態を高感度にモニタリングできるため、前記したトレードオフを解決できる。
【0048】
ウエハ一枚を処理する間に、図4に示したような異物の「蓄積」「排出」のサイクルを何回か繰り返す。この際、常に電流計35の出力値をモニタしておき、該モニタ出力が所定の閾値を超えた際に、警報を発するとともに直ちにウエハの処理を停止することで、突発異物に起因した大量不良を未然に防止することができる。蓄積と排出の時間は処理時間等の条件に応じて適宜設定すればよい。また、蓄積時間をウエハ一枚の処理時間と概ね等しく設定することにより、モニタ感度を最高にすることができる。
【0049】
従来のレーザー散乱式異物モニタを具備したプラズマ処理装置では、100nm以下の微小なパーティクルを検出することが困難であるため、今後のデバイスの微細化には全く対応できないことは言うまでもない。これに対し、本発明によるプラズマモニタを具備したプラズマ処理装置では、従来例に比べて少なくとも10倍、特に微小異物に対しては10000倍以上と、実効的なパーティクル検出感度を劇的に向上させる効果が期待できる。そのため、今後微細化が進む半導体デバイス製造において、歩留まりを向上し、NPWを削減できるという大きなメリットを有することがわかる。
【0050】
尚、本実施形態では平行平板型のプラズマ処理装置を例にとって説明をしたが、本発明はプラズマ処理装置の形態によって何ら制限を受けるものではない。即ち、誘導結合型のプラズマ装置や、マイクロ波プラズマ装置、有磁場プラズマ装置等、いずれのものであっても構わない。
【0051】
本実施例によれば、パーティクルを特定の場所に蓄積することで、実効的なパーティクル検出感度を劇的に向上させることができる。さらには、微小なパーティクルのリアルタイムモニタリングが可能となり、突発異物を防止し、歩留まりを向上させ、NPW(Non Productive Wafer)を削減することができる基板処理装置、処理方法を提供することができる。
【実施例2】
【0052】
次に、図5を用いて、本発明によるパーティクルモニタの第二の実施形態を説明する。尚、第一の実施形態と説明が重複する箇所については、説明を省略する。
【0053】
本実施形態では、プラズマ処理室1を排気するための第一のターボ分子ポンプ11の上流、かつ、コンダクタンス調節バルブ10の下流と、モニタ筐体20の電流検出手段20付近を、排気ダクト40で繋いだ構成としている。これにより、第二のターボ分子ポンプを用いなくても、モニタ筐体を局所排気することが可能となり、コスト低減が図れる。さらに、ダクトの内側には、排気方向下流に向けて傾斜させた異物反射板41が備えられている。本異物反射板は、第一のターボ分子ポンプ11により反射された異物がモニタ内に逆流することを防ぐ役割を担っている。
【0054】
本実施例でも、パーティクルを特定の場所に蓄積することで、実効的なパーティクル検出感度を劇的に向上させることができる。さらには、微小なパーティクルのリアルタイムモニタリングが可能となり、突発異物を防止し、歩留まりを向上させることができる。なお、本実施例では、コンダクタンス調節バルブ10の開度が大きい条件、つまり、大流量、低圧力条件では、モニタ筐体20を局所排気する能力が落ちる。換言すると、本実施例でモニタを使用できるプロセス条件は、図1の実施例よりもやや狭くなるので、用途に応じて使い分けることが望ましい。
【実施例3】
【0055】
次に、図6及び図7を用いて、本発明によるパーティクルモニタの第三の実施形態を説明する。尚、第一の実施形態と説明が重複する箇所については、説明を省略する。
【0056】
第三の実施形態では、四重極リニアトラップ部に蓄積したパーティクルを、第一の実施形態の電流検出手段25及び電流計35に代えて、レーザーの散乱光で検出する構成となっている。モニタ筐体20の上部には、レーザー光源51と、レーザー入射窓50aが、また、下部には、レーザー出射窓50b、及び、ビームダンパー52が具備されている。レーザー光源51から出たレーザーは四重局リニアトラップの中心部、即ち、集塵電極により集められた異物がトラップされている場所を通るように構成されている。また、図7に示したように、モニタ筐体の側壁には、観測窓50cと散乱光検出手段53が備えられている。散乱光検出手段53は、フォトダイオード、CCD素子、光電子増倍管等のいかなるものでも構わない。また、光学系を構成する窓50aから50cは、透明度が高く、またプラズマにより生成したラジカルへの耐性が高い材質である石英ガラス、サファイア等が望ましい。
【0057】
本発明では、従来のレーザー散乱式異物モニタと異なり、リニアトラップ部にパーティクルを蓄積しているために、微小なパーティクルを非常に高感度に検出することが可能となる。
【図面の簡単な説明】
【0058】
【図1】本発明によるパーティクルモニタと、それを実装した基板処理装置の第一の実施形態を示す断面図。
【図2】本発明によるパーティクルモニタ内部のリニアトラップ部のX−Y平面の断面図。
【図3】本発明によるパーティクルモニタ内部のリニアトラップ部のz軸方向の電位分布を示す模式図。
【図4】本発明によるパーティクルモニタの動作シーケンスの一例を示す模式図。
【図5】本発明によるパーティクルモニタと、それを実装した基板処理装置の第二の実施形態を示す断面図。
【図6】本発明によるパーティクルモニタと、それを実装した基板処理装置の第三の実施形態を示す断面図。
【図7】第三の実施形態におけるパーティクルモニタ内部のリニアトラップ部のX-Y平面での断面図。
【符号の説明】
【0059】
1:プラズマ処理室、2:上部電極、3:被処理基板、4:ステージ、5:第一の整合器、6:第一の高周波電源、7:第二の整合器、8:第二の高周波電源、10:コンダクタンス調節バルブ、11:第一のターボ分子ポンプ、21:集塵電極、22:前段キャップ電極、23:四重極ロッド電極、24:後段キャップ電極、25:電流検出手段、26:誘電体部材、30:第二のターボ分子ポンプ、31:第一のDC電源、32:第二のDC電源、33:トラップ電源、34:第三のDC電源、35:電流計、40:排気ダクト、41:異物反射板、50:窓、51:レーザー光源、52:ビームダンパー、53:散乱光検出手段、90:トラップされた異物。

【特許請求の範囲】
【請求項1】
基板処理装置内に存在するパーティクルを検出するパーティクルモニタであって、
前記基板処理装置内のパーティクルを所望の位置に集める手段と、該集めたパーティクルを蓄積する手段と、該蓄積したパーティクルを検出する手段とを備えた、ことを特徴とするパーティクルモニタ。
【請求項2】
請求項1において、
前記基板処理装置内の帯電したパーティクルを収集する集塵電極と、
前記収集したパーティクルを蓄積する四重極リニアトラップ部と、
前記蓄積したパーティクルを検出するために、前記四重極リニアトラップ部の後段に配置された電流検出手段及び電流計とを備えた、ことを特徴とするパーティクルモニタ。
【請求項3】
請求項1において、
前記基板処理装置内の帯電したパーティクルを収集する集塵電極と、
前記収集したパーティクルを蓄積する四重極リニアトラップ部と、
前記蓄積したパーティクルを検出するために、前記四重極リニアトラップ部にレーザー光を入射させるためのレーザー光源と、前記パーティクルからのレーザー散乱光を検出するための光検出器とを備えた、ことを特徴とするパーティクルモニタ。
【請求項4】
基板処理装置内に存在するパーティクルを検出するパーティクルモニタであって、
前記基板処理装置内の帯電したパーティクルを収集する集塵電極と、該集塵電極の後段に設けられ前記パーティクルを蓄積するための多重極リニアトラップ部と、該多重極リニアトラップ部の後段に設けられた微小電流検出手段とを備えた、ことを特徴とするパーティクルモニタ。
【請求項5】
プラズマ処理室を備えた基板処理装置であって、
前記プラズマ処理室に接続された請求項1に記載のパーティクルモニタを備えた、ことを特徴とする基板処理装置。
【請求項6】
請求項5において、
前記プラズマ処理室の側壁に設けられた集塵電極と、
前記プラズマ処理室を排気する第一のターボ分子ポンプと、
前記集塵電極により収集したパーティクルを蓄積する四重極リニアトラップ部と、
前記集塵電極を介して前記プラズマ処理室に接続され、前記四重極リニアトラップ部を収納するモニタ筐体と、
前記モニタ筐体を局所排気する第二のターボ分子ポンプとを備えた、ことを特徴とする基板処理装置。
【請求項7】
基板処理装置のプラズマ処理室で基板を処理する基板処理方法であって、
前記基板処理装置は、該基板処理装置内のパーティクルを所望の位置に集める手段と、該集めたパーティクルを蓄積する手段と、該蓄積したパーティクルを検出する手段とを有するパーティクルモニタを備えており、
前記パーティクルモニタからのモニタ出力が所定の閾値を超えた際に、警報を発するとともに直ちに前記基板の処理を停止することを特徴とする基板の処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−56270(P2010−56270A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2008−219234(P2008−219234)
【出願日】平成20年8月28日(2008.8.28)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】