説明

フォトレジスト組成物、およびフォトリソグラフィパターンを形成する方法

【課題】フォトスピード、限界寸法(critical demension;CD)均一性、ネガティブトーン現像剤(NTD)中での溶解速度、及び、パターン忠実度に優れた、フォトレジスト組成物、フォトレジスト組成物の層を含むコーティングされた基体及びフォトリソグラフィパターンを形成する方法を提供する。
【解決手段】(A)式(I)、(II)および(III):


の単位を含む第1のポリマー;(B)(メタ)アクリル酸C3〜C7アルキルホモポリマーもしくはコポリマーである第2のポリマー;並びに(B)光酸発生剤;を含むフォトレジスト組成物、及びフォトレジスト層の未露光領域が現像剤によって除去されて、フォトリソグラフィパターンを形成する方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概して電子デバイスの製造に関する。より具体的には、本発明はフォトレジスト組成物、コーティングされた基体に関し、およびネガティブトーン(negative tone)現像プロセスを用いて微細パターンの形成を可能にするフォトリソグラフィ方法に関する。
【背景技術】
【0002】
半導体製造産業においては、フォトレジスト材料は、半導体基体上に配置される金属、半導体および誘電体層のような1以上の下層に、並びに基体自体に像を転写するために使用される。半導体デバイスの集積密度を増大させかつナノメートル範囲の寸法を有する構造物の形成を可能にするために、高解像能を有するフォトリソグラフィ処理ツールおよびフォトレジストが開発されてきており、かつ開発され続けている。
【0003】
ポジティブトーン化学増幅型フォトレジストは、従来、高解像処理のために使用されている。このレジストは典型的には酸不安定脱離基を有する樹脂および光酸発生剤を使用する。化学線への露光は酸発生剤に酸を形成させ、この酸は露光後ベーク中に、樹脂中の酸不安定基の開裂を引き起こす。このことが、水性アルカリ現像剤溶液中で、レジストの露光領域と未露光領域との間の溶解度特性の差を造り出す。このレジストの露光領域は水性アルカリ現像剤中で可溶性であって、そして基体表面から除去されるが、この現像剤中で不溶性である未露光領域は現像後に残ってポジティブ像を形成する。
【0004】
半導体デバイスにおいてnmスケールのフィーチャサイズを達成するための1つの手法は、化学増幅型フォトレジストの露光中での短波長、例えば、193nm以下の光の使用である。リソグラフィ性能をさらに向上させるために、像形成装置、例えば、KrFまたはArF光源を有するスキャナーのレンズの開口数(NA)を効果的に増大させる液浸リソグラフィツールが開発されてきた。これは、像形成装置の最終面と半導体ウェハの上面との間に、比較的高い屈折率の流体(すなわち、液浸流体)を使用することにより達成される。液浸流体は、空気または不活性ガス媒体を用いて起こるであろうよりも、より多量の光がレジスト層に焦点を合わせられることを可能にする。液浸流体として水を使用する場合には、最大開口数は、例えば、1.2から1.35に増大されうる。開口数のこのような増大によって、単一の露光プロセスにおいて40nmハーフピッチ解像度を達成することを可能にし、それにより向上したデザイン収縮を可能にする。しかし、この標準の液浸リソグラフィ方法は概して、より高い解像度を必要とするデバイスの製造に、例えば、32nmおよび22nmハーフピッチノードに一般的に適していない。
【0005】
材料および処理の双方の観点から、液浸リソグラフィにおけるポジティブトーン現像の実際の解像能を拡大するためのかなりの努力がなされてきた。そのような例の1つは従来のポジ型化学増幅型フォトレジストのネガティブトーン現像(NTD)を伴う。NTDは臨界的な暗いフィールド層を印刷するための明るいフィールドマスクを用いて得られる優れた像形成品質の使用を可能にする。NTDレジストは典型的には酸不安定(acid−labile)(または、酸により開裂可能な)基を有する樹脂と光酸発生剤とを使用する。化学線への露光は光酸発生剤に酸を形成させ、この酸は、露光後ベーキング中に酸不安定基の開裂をもたらし、露光領域における極性切り替えを引き起こす。その結果、そのレジストの未露光領域が特定の現像剤、典型的には有機現像剤、例えば、ケトン、エステルもしくはエーテルによって除去されることができ、不溶性の露光領域によって作られるパターンを残すことができるように、そのレジストの露光領域と未露光領域との間に溶解度特性の差がつくり出される。このようなプロセスは、例えば、グッドオール(Goodall)らへの米国特許第6,790,579号に記載されている。この文献は、酸発生性開始剤と、反復した酸不安定ペンダント基をポリマー骨格に沿って含む多環式ポリマーとを含むフォトレジスト組成物を開示する。露光領域はアルカリ現像剤で選択的に除去されることができ、あるいは未露光領域はネガティブトーン現像に適した非極性溶媒での処理によって選択的に除去されることができる。
【0006】
従来の193nmフォトレジストポリマーは典型的には、アルキルアダマンチル部分が酸不安定脱離基として機能するアルキルアダマンチルメタクリラート単位を含む。しかし、この脱離基は2−ヘプタノンおよび酢酸n−ブチル(NBA)のようなNTD現像剤中で非常に遅い溶解速度を示す。低い溶解速度は結果的に劣ったパターン忠実度をもたらすことが認められている。NTD現像剤におけるこのポリマーの溶解速度の増大は比較的低い分子量のポリマーの使用によって達成されうる。より低い分子量のポリマーが劣ったフォトスピードおよびCD均一性を示すことが見いだされたように、このことは実行可能な全体的な解決策ではない。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第6,790,579号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
この技術分野において、電子デバイス製造における微細パターンの形成を可能にし、および最新技術に関連する1以上の上記課題を回避するかまたは顕著に改善する、改良されたフォトレジスト組成物、およびネガティブトーン現像のためのフォトリソグラフィ方法についての継続した必要性が存在している。
【課題を解決するための手段】
【0009】
本発明の第1の形態に従ってフォトレジスト組成物が提供される。このフォトレジスト組成物は、下記一般式(I)、(II)および(III):
【化1】

(式中、RはC〜Cアルキル基を表し;RはC〜Cアルキレン基を表し;Rは水素またはメチルを表し;Lはラクトン基を表し;および、nは1または2である)
の単位を含む第1のポリマー;(メタ)アクリル酸C〜Cアルキルホモポリマーもしくはコポリマーである第2のポリマー;並びに光酸発生剤を含む。
【0010】
コーティングされた基体も提供される。このコーティングされた基体は基体と、基体の表面上の本明細書に記載されるフォトレジスト組成物の層とを含む。
【0011】
フォトリソグラフィパターンを形成する方法も提供される。この方法は(a)パターン形成される1以上の層を基体の表面上に含む基体を提供し;(b)本明細書において記載されるフォトレジスト組成物の層を前記パターン形成される1以上の層上に適用し;(c)フォトレジスト組成物層を化学線でパターン様式で(patternwise)露光し;(d)露光したフォトレジスト組成物層を露光後べークプロセスにおいて加熱し;並びに(e)現像剤をフォトレジスト組成物層に適用して、フォトレジスト層の一部分を除去し、それによりフォトレジストパターンを形成する工程であって、この工程においてはフォトレジスト層の未露光領域が現像剤によって除去されて、フォトレジストパターンを形成する;ことを含む。
【0012】
本明細書において記載される方法によって形成される電子デバイスも提供される。
【図面の簡単な説明】
【0013】
【図1A】図1A〜Eは本発明に従ったフォトリソグラフィパターンを形成するためのプロセスフローを示す。
【図1B】図1A〜Eは本発明に従ったフォトリソグラフィパターンを形成するためのプロセスフローを示す。
【図1C】図1A〜Eは本発明に従ったフォトリソグラフィパターンを形成するためのプロセスフローを示す。
【図1D】図1A〜Eは本発明に従ったフォトリソグラフィパターンを形成するためのプロセスフローを示す。
【図1E】図1A〜Eは本発明に従ったフォトリソグラフィパターンを形成するためのプロセスフローを示す。
【図2】図2は実施例のフォトレジスト組成物についてのMwに応じた溶解速度を示すグラフである。
【発明を実施するための形態】
【0014】
本明細書において使用される場合、「g」はグラムを意味し;「重量%」は重量パーセントを意味し;「L」はリットルを意味し;「mL」はミリリットルを意味し;「nm」はナノメートルを意味し;「mm」はミリメートルを意味し;「min」は分を意味し;「h」は時間を意味し;「Å」はオングストロームを意味し;「モル%」はモルパーセントを意味し;「Mw」は重量平均分子量を意味し;および「Mn」は数平均分子量を意味し;「PDI」は多分散度=Mw/Mnを意味し;「コポリマー」は2種以上の異なる種類の重合単位を含むポリマーを包含する。
【0015】
本発明は添付の図面を参照して説明され、この図面においては同様の参照番号は同様のフィーチャを示す。
【0016】
フォトレジスト組成物
本発明のフォトレジスト組成物は第1のマトリックスポリマー、第2の添加剤ポリマー、光酸発生剤を含み、かつ様々な任意成分を含むことができる。このフォトレジスト組成物は化学増幅型材料であり、かつネガティブトーン現像プロセスにおける使用に特に適する。
【0017】
本発明の好ましいフォトレジスト組成物は、ネガティブトーン(negative tone)現像プロセスにおいて非常に微細なパターンを形成するために使用される場合に、従来のポジティブトーンフォトリソグラフィ技術と比較して、解像度、上部損失(top loss)、焦点寛容度(focus latitude)、露光寛容度(exposure latitude)および不具合(defectivity)の1以上の改良を提供することができる。好ましいフォトレジストは、コンタクトホールについて形状が均一なレジストパターンをさらに提供することができる。この組成物をドライリソグラフィまたは液浸リソグラフィプロセスにおいて使用する場合に、これら利点は達成されうる。液浸リソグラフィにおいて使用される場合には、好ましいフォトレジスト組成物は、液浸流体へのフォトレジスト材料の移動(漏出)の低減をさらに示すことができ、トップコートなしのプロセスを可能にする。
【0018】
A.マトリックスポリマー
フォトレジスト組成物はマトリックスポリマーを含み、このマトリックスポリマーは酸感受性である。このことは、フォトレジスト組成物の層の成分としてのマトリックスポリマーが、ソフトベーク、活性化放射線への露光および露光後ベークの後で、光酸発生剤から生じた酸との反応の結果としての有機現像剤中での溶解度の変化を受けることを意味する。
【0019】
このマトリックスポリマーは以下の一般式(I)、(II)および(III)の単位を含む:
【化2】

式中、RはC〜Cアルキル基を表し;RはC〜Cアルキレン基を表し;Rは水素またはメチルを表し;Lはラクトン基を表し;および、nは1または2である。
【0020】
一般式(I)の単位は酸不安定基を含み、この酸不安定基は活性化放射線への露光の際および熱処理の際に光酸促進脱保護反応を受ける。このことはマトリックスポリマーの極性の切り替えを可能にし、有機現像剤中でのポリマーおよびフォトレジスト組成物の溶解度の変化をもたらす。式(I)の単位を形成するのに適したモノマーには、例えば、以下のものが挙げられる:
【化3】

【0021】
一般式(II)の単位は、マトリックスポリマーおよびフォトレジスト組成物の溶解速度を制御するのに有効な延長(extended)ラクトン部分を含む。一般式(II)の単位を形成するのに適したモノマーには、例えば、以下のものが挙げられる:
【化4】

【0022】
式(III)の単位は極性基を提供し、この極性基はマトリックスポリマーおよびフォトレジスト組成物の耐エッチング性を増大させ、かつマトリックスポリマーおよびフォトレジスト組成物の溶解速度を制御するさらなる手段を提供する。式(III)の単位を形成するためのモノマーには、メタクリル酸3−ヒドロキシ−1−アダマンチル(HAMA)および好ましくはアクリル酸3−ヒドロキシ−1−アダマンチル(HADA)が挙げられる。
【0023】
マトリックスポリマーは第1の単位とは異なる一般式(I)、(II)および/または(III)の1種以上の追加の単位を含むことができる。この追加の単位がマトリックスポリマー中に存在する場合には、好ましくは、その追加の単位はさらなる式(I)の脱離基含有単位および/または式(II)のラクトン含有単位を含むであろう。上記重合単位に加えて、マトリックスポリマーは一般式(I)、(II)または(III)のものではない1種以上の追加の単位を含むことができる。例えば、特に適するラクトン基含有単位は下記一般式(IV)のものである:
【化5】

式中、Lはラクトン基を表し;かつ一般式(IV)の単位は一般式(II)の単位とは異なる。以下の典型的なモノマーは、一般式(IV)の追加のラクトン単位の形成に使用するのに適する:
【化6】

好ましくは、一般式(II)の単位におけるLおよび一般式(IV)の単位におけるLは独立して以下のラクトン基から選択される:
【化7】

【0024】
典型的には、マトリックスポリマーのための追加の単位は、一般式(I)、(II)または(III)の単位を形成するために使用されるモノマーについて使用されるのと同じもしくは類似の重合性基を含むことができるが、同じポリマー骨格内に他の異なる重合性基、例えば、場合によって置換されたノルボルネンのような非芳香族環式オレフィン(環内二重結合)またはビニルの重合単位を含むものを含んでいても良い。193nmのようなサブ−200nm波長での像形成のためには、マトリックスポリマーは典型的には、フェニル、ベンジルもしくはこの放射線を非常に吸収する他の芳香族基を実質的に(例えば、15モル%未満しか)含まない。このポリマーのために適した追加のモノマー単位には、例えば、以下の1種以上が挙げられる:エーテル、ラクトンもしくはエステルを含むモノマー単位、例えば、2−メチル−アクリル酸テトラヒドロ−フラン−3−イルエステル、2−メチル−アクリル酸2−オキソ−テトラヒドロ−フラン−3−イルエステル、2−メチル−アクリル酸5−オキソ−テトラヒドロ−フラン−3−イルエステル、2−メチル−アクリル酸3−オキソ−4,10−ジオキサ−トリシクロ[5.2.1.02,6]デカ−8−イルエステル、2−メチル−アクリル酸3−オキソ−4−オキサ−トリシクロ[5.2.1.02,6]デカ−8−イルエステル、2−メチル−アクリル酸5−オキソ−4−オキサ−トリシクロ[4.2.1.03,7]ノナ−2−イルオキシカルボニルメチルエステル、アクリル酸3−オキソ−4−オキサ−トリシクロ[5.2.1.02,6]デカ−8−イルエステル、2−メチル−アクリル酸5−オキソ−4−オキサ−トリシクロ[4.2.1.03,7]ノナ−2−イルエステル、および2−メチル−アクリル酸テトラヒドロ−フラン−3−イルエステル;極性基を有するモノマー単位、例えば、アルコールおよびフッ素化アルコール、例えば、2−メチル−アクリル酸3−ヒドロキシ−アダマンタン−1−イルエステル、2−メチル−アクリル酸2−ヒドロキシ−エチルエステル、6−ビニル−ナフタレン−2−オール、2−メチル−アクリル酸3,5−ジヒドロキシ−アダマンタン−1−イルエステル、2−メチル−アクリル酸6−(3,3,3−トリフルオロ−2−ヒドロキシ−2−トリフルオロメチル−プロピル)−ビシクロ[2.2.1]ヘプタ−2−イル、および2−ビシクロ[2.2.1]ヘプタ−5−エン−2−イルメチル−1,1,1,3,3,3−ヘキサフルオロ−プロパン−2−オール;酸不安定部分を有するモノマー単位、例えば、ポリマーのエステルのカルボキシル酸素に共有結合した、t−ブチルのような第三級非環式アルキル炭素を含むエステル基、またはメチルアダマンチルもしくはエチルフェンキルのような第三級脂環式炭素を含むエステル基、2−メチル−アクリル酸2−(1−エトキシ−エトキシ)−エチルエステル、2−メチル−アクリル酸2−エトキシメトキシ−エチルエステル、2−メチル−アクリル酸2−メトキシメトキシ−エチルエステル、2−(1−エトキシ−エトキシ)−6−ビニル−ナフタレン、2−エトキシメトキシ−6−ビニル−ナフタレン、および2−メトキシメトキシ−6−ビニル−ナフタレン。追加の単位は、使用される場合には、典型的には10〜30モル%の量でポリマー中に存在する。
【0025】
典型的な好ましいマトリックスポリマーには、例えば、下記のものが挙げられる:
【化8】

式中、0.3<a<0.7;0.3<b<0.6;および0.1<c<0.3;RはC〜Cアルキル基を表し;並びにLはラクトン基を表す:
【化9】

式中、0.3<a<0.7;0.1<b<0.4;0.1<c<0.4;および0.1<d<0.3;RはC〜Cアルキル基を表し;並びにLはラクトン基を表す:
【化10】

式中、0.1<a<0.5;0.1<b<0.5;0.2<c<0.6;および0.1<d<0.3;Rは独立してC〜Cアルキル基を表し;RはC〜Cアルキレン基を表し;並びにLはラクトン基を表す:
【化11】

【0026】
2種以上のマトリックスポリマーのブレンドが本発明の組成物中で使用されうる。マトリックスポリマーは、所望の厚さの均一な塗膜を得るのに充分な量でレジスト組成物中に存在する。典型的には、マトリックスポリマーは、レジスト組成物の全固形分を基準にして70〜95重量%の量で組成物中に存在する。有機現像剤中のマトリックスポリマーの向上した溶解特性のせいで、マトリックスポリマーに有用な分子量は、より低い値に限定されず、非常に広い範囲をカバーする。例えば、ポリマーの重量平均分子量Mは典型的には100,000未満、例えば、5000〜50,000、より典型的には6000〜30,000、または7,000〜25,000である。
【0027】
マトリックスポリマーの形成に使用される適したモノマーは商業的に入手可能でありおよび/または既知の方法を用いて合成されうる。マトリックスポリマーは、当業者によって、既知の方法および他の市販の出発材料で、モノマーを用いて容易に合成されうる。
【0028】
B.添加剤ポリマー
第2の添加剤ポリマーは(メタ)アクリル酸C〜Cアルキル、好ましくはメタクリル酸C〜Cアルキルのホモポリマーまたはコポリマーである。添加剤ポリマーは線状、分岐もしくは環式であることができる。第2のポリマーはマトリックスポリマーのよりも低い表面エネルギーを有し、かつマトリックスポリマーと実質的に非混和性であるべきである。添加剤ポリマーの典型的な表面自由エネルギーは10〜40mJ/mである。このようにして、添加剤ポリマーから実質的になる表面層を形成するための、コーティングプロセス中の適用されたフォトレジスト層の頂部もしくは上部への第1の添加剤の分離もしくは移動が促進されうる。露光および露光後ベーク(PEB)の後で、レジスト塗膜層が現像剤、典型的には有機溶媒中で現像される。現像剤はフォトレジスト層の未露光領域と、露光領域の表面層とを除去する。露光されたレジスト部分の表面層の除去は、表面阻害の低減の結果として、向上したレジストプロファイルを提供すると考えられる。また、添加剤ポリマーの表面移動の結果、フォトレジスト組成物層は、液浸リソグラフィプロセスの場合に、レジスト層から液浸流体中へのフォトレジスト材料の移動を効果的に阻害する。
【0029】
添加剤ポリマーは好ましくは酸に非感受性である。このことは、フォトレジスト組成物の層の成分としての添加剤ポリマーが、ソフトベーク、活性化放射線への露光および露光後ベークの後で、光酸発生剤から生じた酸と反応しないことを意味する。よって、添加剤ポリマーは光酸不安定エステルもしくはアセタール基のような光酸不安定基を有さないべきであり、これらの基は典型的にはマトリックスポリマー中に含まれる。コーティング中でのレジスト表面への添加剤ポリマーの移動およびその酸不活性の結果として、フォトマスクによって遮蔽されたレジストの領域での迷光の存在により引き起こされる溝形成におけるマイクロ架橋欠陥およびコンタクトホール欠失欠陥が最小限にされうるかまたは回避されうる。
【0030】
添加剤ポリマーは好ましくはケイ素およびフッ素を含まない。ケイ素含有ポリマーはあるエッチング剤において有機フォトレジストポリマーよりも有意に低いエッチング速度を示す。その結果、有機マトリックスポリマーベースのレジスト層の表面でのケイ素含有添加剤ポリマーの凝集がエッチングプロセス中にコーン(cone)欠陥を引き起こしうる。よって、添加剤ポリマーはケイ素を含まないのが望まれる。フッ素含有添加剤ポリマーの回避が同様に望まれる。これに関しては、あるフッ素ベースのポリマーの疎水特性が、ネガティブトーン現像において有用な有機溶媒中でのその限定された溶解度の結果として問題となる場合がある。同様に、環境的な目的のために、フッ素化材料の使用を低減することが望まれる。
【0031】
好ましい添加剤ポリマーは、フォトレジスト組成物を配合するのに使用されるのと同じ有機溶媒に可溶性である。好ましい添加剤ポリマーは、ネガティブトーン現像プロセスにおいて使用される有機溶媒中に可溶性であるか、露光後ベーク(例えば、120℃で60秒間)により可溶性になるであろう。
【0032】
本発明のフォトレジスト組成物において使用するのに適した、添加剤ポリマーおよびこの添加剤ポリマーを製造するためのモノマーは市販されており、および/または当業者によって製造されうる。添加剤ポリマーを製造するのに有用な典型的な適するモノマーは以下に記載されるが、これら構造に限定されない:
【化12】

上記式において、Rは水素もしくはメチルである。
【0033】
好ましいポリマー添加剤には、例えば、ポリ(アクリル酸n−ブチル)、ポリ(メタクリル酸n−ブチル)、ポリ(アクリル酸i−ブチル)、ポリ(メタクリル酸i−ブチル)、ポリ(アクリル酸t−ブチル)およびポリ(メタクリル酸t−ブチル)が挙げられる。添加剤ポリマーは、コポリマーを提供するための2種以上の異なる種類の重合単位のモノマーによって形成されうる。好ましいコポリマーはメタクリル酸n−ブチルと、このメタクリル酸n−ブチルとは異なる第2の(メタ)アクリル酸C〜Cアルキルとの単位を含む。
【0034】
1種以上の添加剤ポリマーは典型的にはフォトレジスト組成物中に比較的少量で存在することができるが、依然として有効な結果を提供できる。添加剤ポリマーの含量は、例えば、リソグラフィがドライタイププロセスであるかまたは液浸タイププロセスであるかに応じて変化しうる。例えば、液浸リソグラフィについての添加剤ポリマーの下限は概して、レジスト成分の漏出を妨げる必要性によって決定される。より高い添加剤ポリマー含量は典型的にはパターン劣化をもたらすであろう。1種以上のポリマー添加剤は典型的には、フォトレジスト組成物の全固形分を基準にして0.1〜10重量%、より典型的には1〜5重量%の量で本発明の組成物中に存在する。添加剤ポリマーの重量平均分子量は典型的には400,000未満、例えば、5000〜50,000である。
【0035】
C.光酸発生剤
感光性組成物は、活性化放射線への露光の際に組成物の塗膜層中に潜像を生じさせるのに充分な量で使用される光酸発生剤(PAG)をさらに含む。例えば、光酸発生剤はフォトレジスト組成物の全固形分を基準にして約1〜20重量%の量で適切に存在しうる。典型的には、化学増幅型ではない材料と比較して、より少ない量のPAGが化学増幅型レジストのためには適しているであろう。
【0036】
適切なPAGは化学増幅型フォトレジストの技術分野で知られており、例えば、オニウム塩、例えば、トリフェニルスルホニウムトリフルオロメタンスルホナート、(p−tert−ブトキシフェニル)ジフェニルスルホニウムトリフルオロメタンスルホナート、トリス(p−tert−ブトキシフェニル)スルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムp−トルエンスルホナート;ニトロベンジル誘導体、例えば、2−ニトロベンジルp−トルエンスルホナート、2,6−ジニトロベンジルp−トルエンスルホナート、および2,4−ジニトロベンジルp−トルエンスルホナート;スルホン酸エステル、例えば、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、および1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン;ジアゾメタン誘導体、例えば、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン;グリオキシム誘導体、例えば、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、およびビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム;N−ヒドロキシイミド化合物のスルホン酸エステル誘導体、例えば、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル;並びに、ハロゲン含有トリアジン化合物、例えば、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、および2−(4−メトキシナフチル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンが挙げられる。このようなPAGの1種以上が使用されてもよい。
【0037】
D.溶媒
本発明のフォトレジスト組成物に適切な溶媒には、例えば、グリコールエーテル、例えば、2−メトキシエチルエーテル(ジグリム)、エチレングリコールモノメチルエーテル、およびプロピレングリコールモノメチルエーテル;プロピレングリコールモノメチルエーテルアセタート;乳酸エステル、例えば、乳酸メチルおよび乳酸エチル;プロピオン酸エステル、例えば、プロピオン酸メチル、プロピオン酸エチル、エチルエトキシプロピオナート、およびメチル−2−ヒドロキシイソブチラート;セロソルブエステル、例えば、メチルセロソルブアセタート;芳香族炭化水素、例えば、トルエンおよびキシレン;並びにケトン、例えば、アセトン、メチルエチルケトン、シクロヘキサノンおよび2−ヘプタノンが挙げられる。溶媒のブレンド、例えば、上述の溶媒の2種類、3種類もしくはそれより多い種類のブレンドも適切である。溶媒はフォトレジスト組成物の全重量を基準にして典型的には90〜99重量%、より典型的には95〜98重量%の量で組成物中に存在する。
【0038】
E.他の成分
フォトレジスト組成物は他の任意材料を含むこともできる。例えば、組成物は化学線およびコントラスト染料(actinic and contrast dyes)、ストリエーション防止剤(anti−striation agents)、可塑剤、速度向上剤、増感剤などの1種以上を含むことができる。このような任意の添加剤は、使用される場合には、典型的には、フォトレジスト組成物の全固形分を基準にして0.1〜10重量%のような少量で組成物中に存在する。
【0039】
本発明のレジスト組成物の好ましい任意の添加剤は追加塩基、例えば、カプロラクタムであり、これは現像されたレジストレリーフ像の解像度を向上させることができる。他の適切な塩基性添加剤には、アルキルアミン、例えば、トリプロピルアミンおよびドデシルアミン、アリールアミン、例えば、ジフェニルアミン、トリフェニルアミン、アミノフェノール、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパンなどが挙げられる。追加塩基は適切には比較的少量で、例えば、フォトレジスト組成物の全固形分を基準にして0.01〜5重量%、好ましくは0.1〜2重量%で使用される。
【0040】
フォトレジスト組成物の製造
本発明に従って使用されるフォトレジストは既知の手順に従って一般的に製造される。例えば、本発明のフォトレジスト組成物は、フォトレジストの成分を溶媒成分中に溶解させることにより製造されうる。フォトレジストの望まれる全固形分量は組成物中の具体的なポリマー、最終層厚さおよび露光波長などの要因に応じて変化しうる。典型的には、フォトレジストの固形分量は、フォトレジスト組成物の全重量を基準にして1〜10重量%、より典型的には2〜5重量%で変化する。
【0041】
本発明のフォトレジスト組成物には、以下に記載されるようなネガティブトーン現像プロセスにおける特別な適用性が見いだされる。
【0042】
ネガティブトーン現像方法
本発明は、本発明のフォトレジストを用いてフォトレジストレリーフ像を形成する方法および電子デバイスを製造する方法をさらに提供する。本発明は、本発明のフォトレジスト組成物でコーティングされた基体を含む新規製造物品も提供する。本発明に従う方法は、ここで図1A〜Eを参照して説明され、この図1A〜Eは、ネガティブトーン現像によってフォトリソグラフィパターンを形成するための代表的なプロセスフローを示す。
【0043】
図1Aは様々な層およびフィーチャを含むことができる基体100の断面を示す。基体は、半導体、例えばケイ素、または化合物半導体(例えば、III−VまたはII−VI)、ガラス、石英、セラミック、銅などの材料からなることができる。典型的には、基体は半導体ウェハ、例えば、単結晶シリコン、または化合物半導体ウェハであり、基体はその表面上に形成された1以上の層およびパターン形成されたフィーチャを有することができる。パターン形成される1以上の層102が基体100上に提供されうる。場合によっては、例えば、基体材料に溝を形成することが望まれる場合には、下にあるベース基体材料自体がパターン形成されてよい。ベース基体材料自体をパターン形成する場合には、このパターンは基体の層に形成されると見なされるものとする。
【0044】
この層には、例えば、1以上の導電体層、例えば、アルミニウム、銅、モリブデン、タンタル、チタン、タングステン、このような金属の合金、窒化物もしくはケイ化物、ドープされた非晶質ケイ素、またはドープされたポリシリコン、1以上の誘電体層、例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、もしくは金属酸化物の層、半導体層、例えば、単結晶シリコン、並びにこれらの組み合わせが挙げられ得る。パターン形成される層は様々な技術、例えば、化学蒸着(CVD)、例えば、プラズマ援用CVD、低圧CVDもしくはエピタキシャル成長;物理蒸着(PVD)、例えばスパッタリングもしくは蒸発;または電気めっきによって形成されうる。パターン形成される1以上の層102の具体的な厚みは、材料および形成される具体的なデバイスに応じて変化しうる。
【0045】
パターン形成される具体的な層、膜厚および使用されるフォトリソグラフィ材料およびプロセスに応じて、層102上に、フォトレジスト層108がこの上にコーティングされる反射防止塗膜(bottom antireflective coating;BARC)106および/またはハードマスク層104を配置することが望まれる場合がある。例えば、パターン形成される層がかなりのエッチング深さを必要とし、および/または具体的なエッチング剤がレジスト選択性に劣る非常に薄いレジスト層を使用する場合には、ハードマスク層104の使用が望まれる場合がある。ハードマスク層が使用される場合には、形成されるレジストパターンはハードマスク層に写されることができ、これはひいては、下にある層102をエッチングするためのマスクとして使用されうる。適切なハードマスク材料および形成方法は当該技術分野において知られている。典型的な材料には、例えば、タングステン、チタン、窒化チタン、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸窒化アルミニウム、酸化ハフニウム、非晶質炭素、酸窒化ケイ素および窒化ケイ素が挙げられる。ハードマスク層104は単一層を構成するか、または異なる材料の複数の層を含むことができる。ハードマスク層は、例えば、化学または物理蒸着技術によって形成されうる。
【0046】
反射防止塗膜がなければ基体および/または下にある層が、フォトレジスト露光中に有意な量の入射放射線を反射し、その結果、形成されたパターンの品質が悪影響を受けるであろう場合には、反射防止塗膜106が望まれる場合がある。このような塗膜は焦点深度、露光寛容度、ライン幅均一性およびCD制御を向上させうる。レジストが深紫外光(300nm以下)、例えば、KrFエキシマレーザー光(248nm)、もしくはArFエキシマレーザー光(193nm)に露光される場合には、反射防止塗膜が典型的に使用される。反射防止塗膜106は単一層を構成するか、または複数の異なる層を含むことができる。適切な反射防止材料および形成方法は当該技術分野において知られている。反射防止材料は市販されており、例えば、ロームアンドハースエレクトロニックマテリアルズエルエルシー(米国、マサチューセッツ州、マルボロ)により、AR商標40AおよびAR商標124反射防止材料などのAR商標の下で販売されているものがある。
【0047】
本明細書において記載されるようにフォトレジスト組成物が基体上に、(存在する場合には)反射防止層106上に適用されて、フォトレジスト層108を形成する。フォトレジスト組成物はスピンコーティング、ディッピング、ローラーコーティング、または他の従来のコーティング技術によって基体に適用されうる。これらのなかで、スピンコーティングが典型的である。スピンコーティングについては、コーティング溶液の固形分量は、所望の膜厚を提供するために、使用される具体的なコーティング装置、溶液の粘度、コーティングツールの速度および回転の時間量に基づいて調節されうる。フォトレジスト層108の典型的な厚みは約500〜3000Åである。
【0048】
フォトレジスト層は、次いで、ソフトベークされることができ、層内の溶媒含量を最小限にすることができ、それにより、粘着性のない塗膜を形成し、この層の基体に対する接着性を向上させることができる。ソフトベークはホットプレート上でまたはオーブン内で行われることができ、ホットプレートが典型的である。ソフトベーク温度および時間は、例えば、フォトレジストの具体的な材料および厚みに応じて変動しうる。典型的なソフトベークは約90〜150℃の温度で、約30〜90秒の時間で行われる。
【0049】
フォトレジスト層108は次いで、第1のフォトマスク112を通した活性化放射線110に露光されて、露光領域と未露光領域との間に溶解度の差を作り出す。本明細書における、組成物を活性化する放射線へのフォトレジスト組成物の露光についての言及は、その放射線がフォトレジスト組成物に潜像を形成することができることを意味する。フォトマスクは光学的に透明な領域113および光学的に不透明な領域114を有し、これらはそれぞれ、示されるようなNTDプロセスにおけるポジ型材料については、その後の現像工程において、レジスト層が残る領域およびレジスト層が除去される領域に対応する。露光波長は典型的にはサブ−400nm、サブ−300nm、またはサブ−200nm、例えば、248nm、193nmまたはEUV波長(例えば、13.5nm)である。本方法は液浸もしくはドライ(非液浸)リソグラフィ技術における用途を見いだす。露光エネルギーは典型的には約10〜80mJ/cmであり、露光ツールおよび感光性組成物の成分に応じて変化する。
【0050】
図1Bに示されるように、露光されたレジスト層は未露光領域108aおよび露光領域108bからなる。フォトレジスト層108の露光の後で、露光後ベーク(PEB)が行われる。PEBは、例えば、ホットプレート上でまたはオーブン内で行われうる。PEBの条件は、例えば、具体的なフォトレジスト組成物および層厚さに応じて決定されうる。PEBは典型的には約80〜150℃の温度で、約30〜90秒の時間で行われる。
【0051】
露光されたフォトレジスト層は次いで現像されて未露光領域108aを除去し、露光領域108bを残して、図1Cに示されるようなレジストパターンを形成する。現像剤は典型的には有機現像剤であり、例えば、ケトン、エステル、エーテル、炭化水素およびこれらの混合物から選択される溶媒である。適切なケトン溶媒には、例えば、アセトン、2−ヘキサノン、5−メチル−2−ヘキサノン、2−ヘプタノン、4−ヘプタノン、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトンおよびメチルイソブチルケトンが挙げられる。適切なエステル溶媒には、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、エチル−3−エトキシプロピオナート、3−メトキシブチルアセタート、3−メチル−3−メトキシブチルアセタート、ギ酸メチル、ギ酸エチル、ギ酸ブチル、ギ酸プロピル、乳酸エチル、乳酸ブチルおよび乳酸プロピルが挙げられる。適切なエーテル溶媒には、例えば、ジオキサン、テトラヒドロフラン、およびグリコールエーテル溶媒、例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテルおよびメトキシメチルブタノールが挙げられる。適切なアミド溶媒には、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、およびN,N−ジメチルホルムアミドが挙げられる。適切な炭化水素溶媒には、例えば、芳香族炭化水素溶媒、例えば、トルエンおよびキシレンが挙げられる。さらに、これらの溶媒の混合物、または上記以外の溶媒と混合された1種以上の示された溶媒、または水と混合された1種以上の示された溶媒が使用されても良い。他の適切な溶媒には、フォトレジスト組成物に使用される溶媒が挙げられる。現像剤は好ましくは2−ヘプタノンまたは酢酸ブチル、例えば、酢酸n−ブチルである。
【0052】
好ましくは、有機溶媒の混合物、例えば、第1および第2の有機溶媒の混合物が現像剤として使用されうる。第1の有機溶媒はヒドロキシアルキルエステル、例えば、メチル−2−ヒドロキシイソブチラートおよび乳酸エチル;並びに線状もしくは分岐C〜Cアルコキシアルキルアセタート、例えば、プロピレングリコールモノメチルエーテルアセタート(PGMEA)から選択されうる。第1の有機溶媒の中では、2−ヘプタノンおよび5−メチル−2−ヘキサノンが好ましい。第2の有機溶媒は線状もしくは分岐非置換C〜Cアルキルエステル、例えば、酢酸n−ブチル、酢酸n−ペンチル、プロピオン酸n−ブチル、酢酸n−ヘキシル、酪酸n−ブチルおよび酪酸イソブチルなど;並びに線状もしくは分岐C〜Cケトン、例えば、4−オクタノン、2,5−ジメチル−4−ヘキサノン、および2,6−ジメチル−4−ヘプタノンなどから選択されうる。第2の有機溶媒の中では、酢酸n−ブチル、プロピオン酸n−ブチルおよび2,6−ジメチル−4−ヘプタノンが好ましい。第1および第2の有機溶媒の好ましい組み合わせには、2−ヘプタノン/プロピオン酸n−ブチル、シクロヘキサノン/プロピオン酸n−ブチル、PGMEA/プロピオン酸n−ブチル、5−メチル−2−ヘキサノン/プロピオン酸n−ブチル、2−ヘプタノン/2,6−ジメチル−4−ヘプタノン、および2−ヘプタノン/酢酸n−ブチルが挙げられる。これらの中で、2−ヘプタノン/酢酸n−ブチルおよび2−ヘプタノン/プロピオン酸n−ブチルが特に好ましい。
【0053】
有機溶媒は現像剤中に、現像剤の全重量を基準にして典型的には90重量%〜100重量%、より典型的には95重量%超、98重量%超、99重量%超、もしくは100重量%の合計量で存在する。
【0054】
現像剤材料は、フォトレジストに関して上述したような界面活性剤など任意の添加剤を含むことができる。このような任意の添加剤は、典型的には低濃度で、例えば、現像剤の全重量を基準にして約0.01〜5重量%の量で存在することができる。
【0055】
現像剤は既知の技術で、例えば、スピンコーティングもしくはパドルコーティングで基体に適用されることができる。現像時間はフォトレジストの未露光領域を除去するのに有効な期間であり、5〜30秒の時間が典型的である。現像は典型的には室温で行われる。現像プロセスは現像の後にクリーニングすすぎを使用することなく行われうる。これに関して、現像プロセスが、このような追加のすすぎ工程を不要にする残留物非含有ウェハ面を生じさせうることが見いだされた。
【0056】
レジストパターン108bをエッチングマスクとして用いて、存在する場合には、BARC層106が選択的にエッチングされて、下にあるハードマスク層104を露出させる。図1Dに示されるように、このハードマスク層は、次いで、レジストパターン108bを再びエッチングマスクとして使用して、選択的にエッチングされて、結果として、パターン形成されたBARC層106’およびハードマスク層104’を生じさせる。BARC層およびハードマスク層をエッチングするのに適切なエッチング技術および化学物質は、当該技術分野において知られており、かつ、例えば、これらの層の具体的な物質に応じて変化するであろう。反応性イオンエッチングのようなドライエッチングプロセスが典型的である。レジストパターン108bおよびパターン形成されたBARC層106’は、次いで、既知の技術、例えば、酸素プラズマアッシングを用いて、基体から除去される。
【0057】
ハードマスクパターン104’をエッチングマスクとして使用して、1以上の層102が選択的にエッチングされる。下にある層102をエッチングするのに適切なエッチング技術および化学物質は当該技術分野において知られており、反応性イオンエッチングのようなドライエッチングプロセスが典型的である。パターン形成されたハードマスク層104’は、次いで、公知の技術、例えば、反応性イオンエッチングのようなドライエッチングプロセスを用いて、基体表面から除去されうる。得られる構造は図1Eに示されるようなエッチングされたフィーチャ102’のパターンである。別の典型的な方法においては、ハードマスク層104を使用することなく、レジストパターン108bを用いて直接に、層102をパターン形成することが望ましい場合がある。直接パターニングが使用されるかどうかは、関連する物質、レジスト選択性、レジストパターン厚みおよびパターン寸法などの要因に応じて定まるであろう。
【0058】
本発明のネガティブトーン現像方法は上述の代表的な方法に限定されない。例えば、本発明のフォトレジスト組成物は、コンタクトホールを製造するためのネガティブトーン現像二重露光方法において使用されうる。代表的なこのような方法は図1を参照して説明されるが、第1の露光とは異なるパターンでのフォトレジスト層のさらなる露光を使用する技術のバリエーションである。このプロセスにおいては、フォトレジスト層は第1の露光工程でフォトマスクを通して化学線に露光される。フォトマスクは、マスクの不透明な領域を形成する一連の平行線を含む。第1の露光の後で、フォトレジスト層の第2の露光が、第1のフォトマスクの方向とは垂直の方向の一連の線を含む第2のフォトマスクを通して行われる。得られるフォトレジスト層は未露光領域、1回露光された領域および2回露光された領域を含む。第2の露光の後で、フォトレジスト層は上述のように、露光後ベークされ、そして現像剤を用いて現像される。2つのマスクの線の交点に対応する未露光領域が除去され、レジストの1回および2回露光された領域を残す。得られる構造は、次いで、図1に関して上述したようにパターン形成されうる。この方法は電子デバイスの製造におけるコンタクトホールの形成に特に適する。
【実施例】
【0059】
マトリックスポリマー合成
実施例において使用されるコポリマーの合成に以下のモノマーが使用された:
A.脱離基モノマー
【化13】

【0060】
B.ラクトン基モノマー
【化14】

【0061】
C.極性基モノマー
【化15】

【0062】
重合方法について代表的な例が以下に示され、他のコポリマーの全ては類似の方法を用いて、分子量を制御するために異なる開始剤添加量で製造された。
【0063】
ポリ(MCPMA/NLM)(P−17)の合成
MCPMA(17.234g)およびNLM(22.766g)のモノマーを60gのプロピレングリコールメチルエーテルアセタート(PGMEA)に溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(31.938g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後この反応フラスコ内の溶媒を80℃の温度にした。V601(ジメチル−2,2−アゾジイソブチラート)(2.831g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液が前記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間の(3時間の供給および1時間の供給後攪拌)後、重合混合物を室温まで冷却させた。メチルtert−ブチルエーテル(MTBE)(1713g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1713g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、以下のポリマーP−17(M=8,060およびM/M=1.46)を得た:
【0064】
【化16】

【0065】
ポリ(MCPMA/OTDMA)(P−18)の合成
MCPMA(16.636g)およびOTDMA(23.364g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(30.647g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後、この反応フラスコ内のこの溶媒を80℃の温度にした。V601(2.277g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液は上記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間の(3時間の供給および1時間の供給後攪拌)後、重合混合物を室温まで冷却させた。MTBE(1691g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1691g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、以下のポリマーP−18(M=8,814およびM/M=1.51)を得た:
【0066】
【化17】

【0067】
ポリ(MCPMA/MNLMA)(P−19)の合成
MCPMA(15.004g)およびMNLMA(24.996g)のモノマーを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(31.084g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後、この反応フラスコ内のこの溶媒を80℃の温度にした。V601(2.464g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液は上記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間の(3時間の供給および1時間の供給後攪拌)後、重合混合物を室温まで冷却させた。MTBE(1699g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1699g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、以下のポリマーP−19(M=8,653およびM/M=1.46)を得た:
【0068】
【化18】

【0069】
ポリ(ECPMA/MCPMA/MNLMA/HADA)(P−29)の合成
ECPMA(5.092g)、MCPMA(10.967g)、MNLMA(15.661g)およびHADA(8.280g)のモノマーを60gのプロピレングリコールモノメチルエーテルアセタート(PGMEA)に溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(27.335g)を入れ、この溶媒を窒素での20分間のバブリングによって脱ガスした。その後、この反応フラスコ内のこの溶媒を80℃の温度にした。V601(0.858g)を8gのPGMEAに溶解させ、この開始剤溶液を窒素での20分間のバブリングによって脱ガスした。この開始剤溶液は上記反応フラスコに入れられ、次いで激しく攪拌しつつ窒素環境下でモノマー溶液が3時間にわたってこの反応器に滴下で供給された。モノマー供給が完了した後、重合混合物をさらに1時間80℃でそのまま置いておいた。合計4時間の重合時間の(3時間の供給および1時間の供給後攪拌)後、重合混合物を室温まで冷却させた。MTBE(1634g)中で沈殿が行われた。沈殿した粉体がろ過により集められ、一晩空気乾燥させられ、120gのTHF中に再溶解させられ、そしてMTBE(1634g)中で再沈殿させられた。最終的なポリマーはろ別され、一晩空気乾燥させられ、さらに真空下、60℃で、48時間乾燥させられて、以下のポリマーP−29(Mw=20,120およびMw/Mn=1.59)を得た:
【0070】
【化19】

【0071】
添加剤ポリマー合成:ポリ(メタクリル酸n−ブチル)(PnBMA)
40gのメタクリル酸n−ブチルを60gのPGMEAに溶解させた。このモノマー溶液を窒素での20分間のバブリングによって脱ガスした。凝縮器および機械式攪拌装置を備えた500mLの三ツ口フラスコにPGMEA(35.913g)を入れ、窒素での20分間のバブリングにより脱ガスした。その後、この反応フラスコ内のこの溶液を80℃の温度にした。V601(1.295g)が8gのPGMEAに溶解させられ、この開始剤溶液は窒素での20分間のバブリングによって脱ガスされた。この開始剤溶液をこの反応フラスコに添加し、次いで、激しく攪拌しつつ窒素環境下でモノマー溶液を3時間にわたってこの反応器に滴下で供給した。モノマー供給が完了した後、重合混合物はさらに1時間、80℃で置いておかれた。合計4時間の重合時間の(3時間の供給および1時間の供給後攪拌)後、重合混合物を室温に冷却した。メタノール/水(8/2)混合物(1781g)中で沈殿が行われた。沈殿したポリマーはろ過により集められ、120gのTHF中に再溶解させられ、そしてメタノール/水(8/2)混合物(1781g)中で再沈殿させられた。最終的なポリマーはろ別され、真空下60℃で48時間乾燥させられて、31.5gのPnBMA(Mw=17,600およびMw/Mn=1.80)を得た。
【0072】
ネガティブトーン現像剤中でのポリマーの溶解速度測定
200mmシリコンウェハがヘキサメチルジシラザン(HMDS)で30秒間120℃でTELクリーントラック(CleanTrack)において前処理された。PGMEA中10重量%で準備されたポリマー溶液が、TELクリーントラックACT8コータ/デベロッパにおいて、1100rpmでこの前処理されたウェハ上にコーティングされ、120℃で60秒間ソフトベークされて、〜4000Åの膜厚さを提供した。このポリマーコーティングされたウェハはTherma Wave Optiprobe(サーマウェーブオプティプローブ)(KLA−Tencor)において測定されて、当初膜厚さを決定し、次いでTractrix(トラックトリックス)現像剤(Site Services,Inc)において、2−ヘプタノンを用いて現像された。ポリマー膜の現像はウェハを回転させながら5秒間の動的分配によって行われた。5秒間の現像時間の後で残っている膜厚さはTherma Wave Optiprobeにおいて測定され、ポリマーの溶解速度をÅ/秒で算出した。
【0073】
表1は様々な分子量のポリ(IAM/aGBLMA/HAMA)コポリマーについての溶解速度を示す。193nmフォトレジストは典型的には、アルカリ現像剤(2.38重量%テトラメチルアンモニウムヒドロキシド水溶液)中で〜1000Å/秒より高い溶解速度を生じさせることを考慮すると、ネガティブトーン現像剤(2−ヘプタノン)における例1〜9から得られる溶解速度は非常に低い。この種のコポリマーを用いて200Å/秒より高い溶解速度を達成するためには、より低いMwが必要であろうと思われる。
【0074】
【表1】

重合中の供給物モル比
「比較」=比較例
【0075】
脱離基モノマー構造が溶解速度に及ぼす影響が表2にまとめられる。例1〜9における2−アダマンチルプロピルメタクリラート(IAM)について観察されるように、EAMAおよびMAMAのようなアルキルアダマンチル脱離基モノマーは比較的低い溶解速度を生じさせることが認められた。例10および11におけるアルキルアダマンチル脱離基モノマーの代わりに、1−エチルシクロペンチルメタクリラート(ECPMA)のようなより小さな脱離基モノマーが導入される場合には、例12におけるようにかなり高い溶解速度が観察された。脱離基モノマーが溶解速度に及ぼす同様の影響は、CNNMA(例13および14)並びにCMAMA(例15および16)のような異なる極性モノマーを有するコポリマーについても観察された。ECPMAのようなより小さな脱離基モノマーは、IAM、EAMAもしくはMAMAのような嵩高なアダマンチル含有脱離基モノマーと比較してほぼ2倍高い溶解速度を生じさせる。
【0076】
【表2】

重合中の供給物モル比
「比較」=比較例
【0077】
ケージラクトンモノマーが溶解速度に及ぼす影響が表3にまとめられている。NLM、OTDMAおよびMNLMAのようなケージラクトンモノマーは、その耐エッチング性のせいで、aGBLMAのようなより小さなラクトンと比べて好ましい。しかし、MNLMA含有コポリマーのみが2−ヘプタノン中での均一な溶解挙動をもたらしたが、これに対して、NLM含有コポリマーおよびOTDMA含有コポリマーは、ほぼ確実に2−ヘプタノン現像剤におけるその低い溶解度のせいでウェハにわたって不均一な溶解挙動を生じさせたことが認められた。表3において認められるように、より低いMwを有するコポリマーは、より高いMwを有するコポリマーよりも、高い溶解速度を生じさせた(例19〜22)。
【0078】
【表3】

重合中の供給物モル比
**ウェハにわたる不均一な溶解のせいで測定誤差が非常に高かった。
「比較」=比較例
【0079】
表4はアクリル系モノマーが溶解速度に及ぼす影響を示す。3−ヒドロキシアダマンチルアクリラート(HADA)を含むP−24ポリマーはポリマーP−1〜P−24の中で最も高い溶解速度を示した。これに対して、3−ヒドロキシアダマンチルメタクリラート(HAMA)を含むP−23ポリマーは、おそらくは2−ヘプタノン現像剤中でのその低い溶解度のせいで不均一な溶解挙動を示した。モノマー組成はわずかに異なっているが、OTDMAの代わりにMNLMAが使用された場合には、P−25ポリマーは妥当な溶解速度で均一な溶解挙動を示した。このことは、MNLMAはNTDプロセスにおいては、OTDMAもしくはNLMのような他のケージラクトンモノマーと比べてより好ましいということも示すと考えられる。わずかに異なるモノマー組成で同じ脱離基および極性基モノマーを含むがより小さなラクトン(aGBLMA)を含むP−12ポリマーを用いて同様の観察がなされた。ECPMAおよびMCPMA脱離基モノマーのいずれも、実施例31および32に示されるように、同様の溶解挙動を生じさせると思われる。
【0080】
【表4】

重合中の供給物モル比
**ウェハにわたる不均一な溶解のせいで測定誤差が非常に高かった。
「比較」=比較例
【0081】
表5は、より小さな脱離基モノマー(ECPMAおよびMCPMA)、延長ラクトン(MNLMA)およびHADAを用いて製造される、同じモノマーから形成されるが異なる分子量を有するコポリマーについて得られた溶解速度を提供する。Mwを変えることにより溶解速度が効果的に制御されうることが認められた。より高い溶解速度に寄与するモノマーを用いて製造されたポリマーについては、非常に高いMwのポリマー(Mw20,000超)でさえ合理的に高い溶解速度を示したことも認められた。図2は、表1におけるポリマー(例1〜8)と表5におけるポリマー(実施例33〜38)とを比較することにより、モノマー構造が溶解速度に及ぼす影響を示す。
【0082】
【表5】

重合中の供給物モル比
【0083】
フォトレジスト組成物製造
例39
2.526gのポリマーP−17を29.070gのPGMEA、19.380gのシクロヘキサノンおよび48.450gのメチル−2−ヒドロキシイソブチラート中に溶解させた。この混合物に0.484gの以下に記載の「PAG A」、0.029gの1−(tert−ブトキシカルボニル)−4−ヒドロキシピペリジンクエンチャー、および0.062gのPnBMAを添加した。得られた混合物をローラー上で6時間ロールし、次いで0.2ミクロン孔サイズを有するテフロン(登録商標)フィルターを通して濾過した。
【0084】
【化20】

【0085】
例40〜44および実施例45〜47
P−17ポリマーについて上述したのと同じ手順を用いて、表6に示される成分および量でさらなる配合物が製造された。
【0086】
【表6】

クエンチャー:1−(tert−ブトキシカルボニル)−4−ヒドロキシピペリジン
溶媒A:プロピレングリコールモノメチルエーテルアセタート
溶媒B:シクロヘキサノン
溶媒C:メチル−2−ヒドロキシイソブチラート
全ての含量はグラム単位である。
「比較」=比較例。
【0087】
リソグラフィ評価
TEL CLEAN TRACK(商標)LITHIUS(商標)(テルクリーントラックリシウス)i+コータ/デベロッパにおいて、300mmシリコンウェハがAR(商標)40A反射防止剤(ロームアンドハースエレクトロニックマテリアルズ)でスピンコートされ、第1の反射防止塗膜(bottom antireflective coating:BARC)を形成した。このウェハは60秒間215℃でベークされ、840Åの第1のBARC膜厚を生じさせた。次いで、この第1のBARC上に、AR(商標)124反射防止剤(ロームアンドハースエレクトロニックマテリアルズ)を用いて第2のBARC層がコーティングされ、205℃で60秒間ベークされて、200Åの上部BARC層を生じさせた。次いで、TEL CLEAN TRACK LITHIUS i+コータ/デベロッパにおいて、この二重BARCコートウェハ上にフォトレジスト配合物がコーティングされ、90℃で60秒間ソフトベークされて、900Åのレジスト層厚を提供した。
【0088】
フォトレジストコーティングしたウェハは、1.35のNA、0.97アウターシグマ、0.85インナーシグマおよびX偏光で、ダイポール照明(dipole illumination)を使用して、ASML TWINSCAN(商標)XT:1900i液浸スキャナにおいて、マスクを通して露光された。第1の露光工程の直後に、異なるマスクを用いて、1.35のNA、0.97アウターシグマ、0.85インナーシグマおよびY偏光で、ダイポール照明を使用して、ウェハは再び露光された。露光されたウェハは、TEL CLEAN TRACK(商標)LITHIUS(商標)i+コータ/デベロッパにおいて、90℃で60秒間露光後ベークされ、次いで2−ヘプタノンを用いて25秒間現像されて、ネガティブトーンパターンを生じさせた。マスク上のポストパターンでコンタクトホールパターンが得られた。日立CG4000CD SEMにおいて、様々なマスクCDおよびピッチで限界寸法(critical demension;CD)が測定された。40nmで1:1のライン/スペースCDのマスクを用いて、露光エネルギーに応じたコンタクトホールのCD値をプロットすることにより、40nmホールをプリントするための最適エネルギー(Eop)が計算された。270ホールCD値の3σとして、40nmコンタクトホールのCD均一性(CDU)が測定された。各ウェハについて、ダイあたり30個の像および像あたり9個のコンタクトホール測定値が250K倍で採られた。
【0089】
リソグラフィ結果は表7にまとめられる。このデータに基づいて、MLNMA含有ポリマー(例50〜53)はNMLもしくはOTDMA含有ポリマー(それぞれ、例48および49)よりも良好な解像度を示すことが認められた。また、CD均一性は、MCPMAおよびMNLMA(例50〜53)の低Mwコポリマーで概して増大することが認められた。HAMA含有ターポリマー(実施例54および55)については、優れたCDUデータが得られた。P−31ポリマー含有配合物(実施例56)については、CDU値は比較的高かったが、この配合物は結果的に最もよいトップダウン(top−down)プロファイルも生じさせた。
【0090】
【表7】

ウェハにわたる不均一な溶解のせいで測定誤差が非常に高かった。
**コンタクトホールの低い忠実度のせいで測定が行われなかった。
「比較」=比較例
【符号の説明】
【0091】
100 基体
102 パターン形成される層
102’フィーチャ
104 ハードマスク層
104’ハードマスクパターン
106 反射防止塗膜
108 フォトレジスト層
108a 未露光領域
108b 露光領域
110 活性化放射線
112 第1のフォトマスク
113 光学的に透明な領域
114 光学的に不透明な領域

【特許請求の範囲】
【請求項1】
下記一般式(I)、(II)および(III):
【化1】

(式中、RはC〜Cアルキル基を表し;RはC〜Cアルキレン基を表し;Rは水素またはメチルを表し;Lはラクトン基を表し;および、nは1または2である)
の単位を含む第1のポリマー;
(メタ)アクリル酸C〜Cアルキルホモポリマーもしくはコポリマーである第2のポリマー;並びに
光酸発生剤;
を含むフォトレジスト組成物。
【請求項2】
第1のポリマーが下記式:
【化2】

(式中、0.3<a<0.7;0.3<b<0.6;および0.1<c<0.3である)
で表される請求項1に記載のフォトレジスト組成物。
【請求項3】
第1のポリマーが一般式(I)の第2の単位をさらに含み、一般式(I)の第1の単位および第2の単位におけるRが異なっている、請求項1に記載のフォトレジスト組成物。
【請求項4】
第1のポリマーが下記式:
【化3】

(式中、0.1<a<0.5;0.1<b<0.5;0.2<c<0.6;および0.1<d<0.3である)
で表される請求項3に記載のフォトレジスト組成物。
【請求項5】
第1のポリマーが下記一般式(IV):
【化4】

(式中、Lはラクトン基である)
の単位をさらに含み、前記一般式(IV)の単位は前記一般式(II)の単位とは異なっている、請求項1に記載のフォトレジスト組成物。
【請求項6】
第1のポリマーが下記式:
【化5】

(式中、0.3<a<0.7;0.1<b<0.4;0.1<c<0.4および0.1<d<0.3である)
で表される請求項5に記載のフォトレジスト組成物。
【請求項7】
およびLが独立して下記ラクトン基:
【化6】

から選択される請求項5に記載のフォトレジスト組成物。
【請求項8】
第2のポリマーがポリ(メタクリル酸n−ブチル)ホモポリマーである請求項1〜7のいずれか1項に記載のフォトレジスト組成物。
【請求項9】
第2のポリマーがメタクリル酸n−ブチル、およびメタクリル酸n−ブチルとは異なる第2の(メタ)アクリル酸C〜Cアルキルの単位を含むコポリマーである、請求項1〜7のいずれか1項に記載のフォトレジスト組成物。
【請求項10】
基体と、基体の表面上の請求項1〜9のいずれか1項に記載のフォトレジスト組成物の層とを含むコーティングされた基体。
【請求項11】
(a)パターン形成される1以上の層を基体の表面上に含む基体を提供し;
(b)請求項1〜9のいずれか1項に記載のフォトレジスト組成物の層を前記パターン形成される1以上の層上に適用し;
(c)フォトレジスト組成物層を化学線でパターン様式で露光し;
(d)露光したフォトレジスト組成物層を露光後べークプロセスにおいて加熱し;並びに
(e)現像剤をフォトレジスト組成物層に適用して、フォトレジスト層の一部分を除去し、それによりフォトレジストパターンを形成する工程であって、この工程においてはフォトレジスト層の未露光領域が現像剤によって除去されて、フォトレジストパターンを形成する;
ことを含む、フォトリソグラフィパターンを形成する方法。
【請求項12】
現像剤が2−ヘプタノンを含む請求項11に記載の方法。
【請求項13】
現像剤が酢酸n−ブチルを含む請求項11に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図2】
image rotate


【公開番号】特開2012−181522(P2012−181522A)
【公開日】平成24年9月20日(2012.9.20)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−39713(P2012−39713)
【出願日】平成24年2月27日(2012.2.27)
【出願人】(591016862)ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. (270)
【Fターム(参考)】