説明

保持用治具およびこれを備えた吸着装置

【課題】 半導体ウエハなどの被保持体の絶縁破壊を抑制し、かつパーティクルの付着を特に抑制できる保持用治具および吸着装置を提供すること。
【解決手段】 半導電性を有するセラミックスからなる支持体16に吸気路2を形成した保持用治具20であって、吸気路2の表面4は支持体16における他の表面6より表面抵抗値が小さい領域を有している保持用治具20とする。また、この保持用治具20を備え、この保持用治具20の吸気路2の吸気により、支持体16の外表面6に対して表面抵抗値が小さい被保持体を吸着可能とした吸着装置とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコンウエハなどの被保持体を吸着するための保持用治具およびこれを備えた吸着装置に関する。
【背景技術】
【0002】
半導体ウエハやガラス基板等の物体(以下、被保持体という)を保持し搬送することを目的として保持用治具が使用されている(特許文献1を参照)。
【0003】
図3,4に示すように、従来の保持用治具400は、板状体の支持部材43に、その表側の一方端に形成された吸引孔44から裏面側の他方端に形成された吸着孔44まで連通となる流路45を形成したものである。この構成により、吸引孔44から例えば空気を吸引することによって、吸着孔42の周囲の吸着面41にて保持可能とする。
【0004】
図3(a)、(b)に示す保持用治具400は、支持部材43の保持面41が炭化珪素などからなる体積固有抵抗が10Ω・cm以下の硬質薄膜40で被覆されたものである。また、特許文献1に開示された図4に示すものでは、アルミナ/炭化チタン複合材料からなる支持部材43に、有機接着剤などの接着材でステンレス製のライナ46を接合したものであり、吸引孔44から吸着孔42までを連通可能とするよう流路45を確保して封止している。保持用治具400は、不図示の取付け孔にて不図示の搬送装置に取り付けられ、この搬送装置から真空吸引が行われ、吸引孔44から流路45を介して吸着孔42から物体を吸着し、物体は保持面41にて吸着保持される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平5−275513号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、保持用部材400の支持部材43をアルミナ/炭化チタン複合材料で形成した場合は、体積固有抵抗が10−2Ω・cm程度と低いため、静電気が極めて短時間で除去される。このため半導体ウエハが絶縁破壊されることがあった。
【0007】
炭化珪素からなる支持部材43は、体積固有抵抗が10〜10Ω・cm程度であり、半導電性を有しているので、静電気が短時間で除去されることによって発生する絶縁破壊は抑制されるものの、静電気が除去される間の初期に、パーティクル(微粒子)が引きつけられて付着するおそれがあった。
【0008】
また、保持面にパーティクルが付着した場合は、支持部材43の開気孔にパーティクルが堆積し、それが半導体ウエハなどの物体に転写されることがあった。
【0009】
以上のように、半導体ウエハなどの被保持体を絶縁破壊することなく、また、パーティクルの付着を時に抑制したまま静電気を速やかに除去することができる保持用治具が必要とされてきた。
【0010】
本発明は、このような要望に鑑みてなされたものであり、その目的は、半導体ウエハなどの被保持体の絶縁破壊を抑制し、かつ、パーティクルの付着を特に抑制できる保持用治具および吸着装置を提供することである。
【課題を解決するための手段】
【0011】
本発明の一形態に係る保持用治具は、半導電性を有するセラミックスからなる支持体に吸気路を形成した保持用治具であって、前記吸気路の表面は前記支持体における他の表面より表面抵抗値が小さい領域を有していることを特徴とする。
【0012】
本発明の一形態に係る吸着装置は、上記保持用治具を備え、この保持用治具の吸気路の吸気により、前記支持体の外表面に対して表面抵抗値が小さい被保持体を吸着可能としたことを特徴とする。
【発明の効果】
【0013】
本発明の一形態に係る保持用治具およびこれを備えた吸着装置によれば、支持体が半導電性を有するので絶縁破壊が抑制されるとともに、吸気路の表面に表面抵抗値の小さい領域を有することでパーティクルの付着を抑制できる。特に、吸気路の表面抵抗値が10〜1012(Ω/□)であることにより、静電気が除去される時間(帯電の減衰時間)が概ね10秒程度となるので、半導体ウエハなどの被保持体の絶縁破壊が抑制される。
【0014】
また、半導電性結晶の存在により、吸気路の表面に支持体の外表面の表面抵抗値より小さい領域を形成することが容易である。このため、パーティクルの付着を特に抑制しつつ、絶縁破壊を抑制することができる。主成分であるアルミナは耐摩耗性に優れているので、長時間保持用治具として使用しても支持体の摩耗によってパーティクルが発生するおそれがない。
【図面の簡単な説明】
【0015】
【図1】(a)は、本発明の保持用治具の一実施形態を示す上面図、(b)は(a)の側面図、(c)は(a)のB−B’線における断面図である。
【図2】(a)は、図1(a)の保持用治具に半導体ウエハが保持された状態を示す上面図、(b)は(a)の側面図、(c)は(a)の断面図である。
【図3】(a)は従来の保持用治具の平面図、(b)は(a)の断面図である。
【図4】従来の保持用治具の斜視図である。
【発明を実施するための形態】
【0016】
図1,2に示すように、本発明の一形態に係る保持用治具20は、半導電性を有するセラミックスからなる板状の支持体16の内部に吸気路2を形成してなり、吸気路2の表面4は支持体16における他の面である外表面6の表面抵抗値より小さい領域14を有している。保持用治具20は、通常、複数の半導体ウエハ(ウエハ18)を順次吸着、脱着することを繰り返すために用いられる。
【0017】
ここで、半導電性とは、表面抵抗値が10〜1013(Ω/□)であることを意味する。支持体16は具体的にはセラミックスの焼結体からなる。吸気路2は、3箇所の吸着部10にそれぞれ開口している吸入口8から排気口12へ繋がっている、セラミックスで囲まれた経路をいう。領域14は図1(c)において点線で示してあり、開口8から排気口12まで繋がっている。吸気路2の表面4の全ての面が上記の領域14である必要はなく、開口8から排気口12まで繋がっている領域14を有していれば良い。排気口12には、不図示の排気管が接続され、さらにこの排気管が真空ポンプなどの排気機能を有する装置等に繋がっている。排気口12側には、接地するためのアース22が設けられている。通常、アース22は金属製の排気管に電気的に接続される。
【0018】
セラミックスからなる支持体16は半導電性を有するので、ウエハ18の絶縁破壊は抑制される。支持体16がセラミックスからなるので、ウエハ18などの被保持体と接触しても摩耗しにくく、金属製または樹脂製の保持用治具に比べて、パーティクルが特に発生しにくい。
【0019】
次に、ウエハ18の吸着、脱着過程について説明する。ウエハ18が保持用治具20に保持される前、ウエハ18には、通常、静電気が帯電している。ウエハ18が保持用治具20の保持部10に接して配置されると、排気口12側から吸気路2内の気体が排気されて減圧される。ウエハ18は保持部10に吸着されて保持される。排気口12からの排気を止め、吸気路2内を復圧する。復圧は、保持用治具20の周囲と吸気路2内の圧力が同じになるまで行われる。ウエハ18は、保持用治具20から離される。次いで、他のウエハ18を保持部10に配置し、同様に吸着、脱着を繰り返す。
【0020】
ウエハ18に帯電していた静電気は保持用治具20に設けられたアース22を通して除去する必要がある。セラミックスからなる支持体16は、半導電性を有しているので、ウエハ18の静電気が保持用部材20のアースを通して除去することが可能である。この場合、仮に静電気が外表面側を通ってアースに流れてしまうと、保持用治具の周囲に浮遊しているパーティクルが外表面に吸着して、多数のウエハの吸着、脱着を繰り返している間に、保持用治具にパーティクルが堆積してしまうおそれがある。さらに、保持用治具にパーティクルが堆積すると、吸着されるウエハにパーティクルが再付着するおそれもある。このようなパーティクルの堆積、再付着は、吸気路2の表面4に外表面6よりも低い表面抵抗値を有する領域14を設けて、静電気が領域14からアース22側へ流れるようにすることによってなくすことができる。
【0021】
表面抵抗値は、四探針法により測定することができる。吸気路2の領域14の表面抵抗値は、吸気路2の表面4が現れるように保持用治具20を加工、洗浄、乾燥した後、測定する。
【0022】
静電気を効率良く除去して、パーティクルの堆積をより効果的に無くすには、吸気路2の表面抵抗値が10〜1012Ω/□であることが好ましい。この表面抵抗は、ANSI(American National Standards Institute:米国規格協会)/EIA541に規定されている静電気拡散性の範囲と概ね一致しており、帯電の減衰時間に関して良好な結果をもたらす。表面抵抗値が10〜1012Ω/□の場合には減衰時間が概ね10秒以下と好ましい結果が得られるのに対して、表面抵抗値が1012Ω/□よりも大きい半導電性の場合には100秒程度かかってしまい好ましくない。表面抵抗値が10Ω/□未満の場合には、帯電の減衰時間が短くなって、ウエハが絶縁破壊されることを十分に抑制できないおそれがある。
【0023】
セラミックスからなる支持体16は、アルミナを主成分し、Ti,MnおよびNbから選択される1種以上の元素を含有させた半導電性結晶とからなることが好ましい。この半導電性結晶は、静電気を除去してパーティクルの付着を抑制する作用がある。
【0024】
セラミックスからなる支持体16は、主成分であるアルミナと、Tiを含有する半導電性結晶とからなることが特に好ましい。支持体16は、半導電性結晶を有するので、吸気路2の表面4に、支持体16の外表面6の表面抵抗値より小さい領域14を形成することが特に容易である。このため、パーティクルの付着を特に抑制することができる。主成分であるアルミナは耐摩耗性に優れているので、長時間保持用治具20として使用しても支持体16の摩耗によってパーティクルが発生するおそれがない。
【0025】
保持用治具20にパーティクルが堆積したかどうかは、次の方法によって測定することができる。
【0026】
パーティクル数は、パーティクルカウンタにて測定することができる。保持用治具にシリコンなどのウエハを吸着させ、吸着させた部位のパーティクル数を画像処理にて数量を計測する。パーティクル数の測定対象は、平面視した際の外接円の直径が0.2μm以上の大きさのパーティクルとする。測定結果は、単位面積当たりのパーティクル数、例えば平方ミリメートル(mm)当たりの数で表すことができる。
【0027】
ウエハ18が絶縁破壊するかどうかは、保持用治具20を用いて多数のウエハ18の吸着、脱着を繰り返した後の、ウエハ18を観察して確認することができる。具体的には、目視または、光学顕微鏡を用いて観察することにより、絶縁破壊の有無を確認することができる。
【0028】
試料保持具の絶縁破壊の有無は、光センサで測定することができる。具体的には、ウエハが保持治具と接する部分が絶縁破壊する際に、放電によって発生する光の有無を光センサで読み取る。放電すればウエハが絶縁破壊するからである。
【0029】
本発明の保持用治具の製造方法を、支持体がアルミナを主成分とし、チタンの酸化物を含む場合を例に説明する。
【0030】
高純度のアルミナ粉末68〜99質量%と、酸化チタン粉末1〜32質量%とを秤量し、水とともにボールミルにて混合、粉砕する。アルミナ粉末は、純度99質量%以上で、平均粒径が0.3〜1μmのアルミナ粉末を用いることが好ましい。得られたスラリーに有機バインダーを添加し、噴霧乾燥して顆粒を作製する。
【0031】
顆粒をプレス成形、CIP(冷間等方加圧)成形などの公知の方法で成形して生成形体を作製する。成形圧は最大で80〜200MPaの範囲内であることが好ましい。焼成後に吸気路2となるべき空洞は、この生成形体を公知の方法、例えば切削加工により加工できる。吸気路2は、後述する貼り合わせ法により形成しても良い。
【0032】
加工した生成形体を最高温度1400〜1600℃で焼成してセラミックス焼結体を作製する。このセラミックス焼結体の結晶相は、アルミナとチタニアを含んでいる。この焼成において、生成形体が収縮を開始する温度から最高温度までの昇温速度と、最高温度から結晶の粒成長が止まるまでの降温速度を条件となるよう制御し、アルミナ結晶の粒界にアルミナとの反応生成物である、チタンを含む酸化物を分散させることが好ましい。
【0033】
セラミックス焼結体を、水素、窒素、水素/窒素混合ガスなどの還元雰囲気中で1000〜1500℃で還元する。好ましくは、水素ガス濃度7〜30体積%の窒素/水素混合ガス中、1300〜1400℃で0.1〜4時間保持して還元する。保持用治具20の外表面6および保持部10となる部分を研削加工する。吸気路2の表面4は加工せず、焼成後の焼肌面のまま残す。これにより、保持用治具20が作製される。
【0034】
上記の貼り合わせ法について説明する。貼り合わせ法の第1の方法について説明する。上記の生成形体は、平板状の生成形体Aと、焼成後に吸気路2となる溝が形成された生成形体Bの2つを用意し、生成形体A、Bの間に有機性の粘着スラリーを塗布して接着し、その後前記と同様の条件にて焼成し、セラミック焼結体を作製する。得られたセラミック焼結体には吸気路2が形成されている。その後、このセラミック焼結体を、上記と同様にして還元、加工する。
【0035】
第2の方法について説明する。前記生成形体A、Bを接着せずに、前記と同様の条件で別々に焼成して、焼結体A,Bを作製する。焼結体Aと焼結体Bの間にガラスペーストを塗布して、ガラス溶融温度まで加熱後、冷却して接合する。この場合の加熱温度は、還元温度よりも高いことが好ましい。接合後、上記と同様にして還元、加工する。
【0036】
なお、吸気路2の形状は、吸気抵抗が極端に大きくならない形状であれば良い。
【0037】
上記製造方法によって、吸気路2の表面4がセラミックスからなる支持体16の外表面6の表面抵抗値より小さい領域4を形成することができる。領域4が形成される理由は次の通りと考えられる。還元後のセラミック焼結体に含まれるチタン(Ti)の酸化物は、表面に近い程還元され、内部ほど還元されにくい。チタンの酸化物は還元されるほど電気抵抗が低下する傾向がある。セラミック焼結体を加工すると、元々セラミック焼結体の内部であった部分が現れ、この部分の表面抵抗は、焼肌面として残る吸気路2の内面よりも表面抵抗が高くなる。還元時の雰囲気、温度を変えることによって、表面抵抗を変化させることができる。
【0038】
上記の製造方法において、酸化チタン粉末に代えて、酸化ニオブ、酸化マンガンを用いても良い。ニオブを含む酸化物、マンガンを含む酸化物は、還元されるほど、電気抵抗が低下する傾向があり、吸気路2の表面の表面抵抗を外表面6より小さくできるからである。酸化ニオブ、酸化マンガン以外にも、還元されることによって電気抵抗が低下する物質を用いても、保持用治具20を作製することができる。
【0039】
吸着装置(不図示)は、保持用治具20を備え、保持用治具20の吸気路2の吸気により、支持体16の外表面6よりも表面抵抗値が小さいウエハ18を吸着するように構成したものである。この吸着装置によれば、支持用治具20にパーティクルが堆積せず、ウエハ18にもパーティクルが再付着しない。このように、吸着装置は保持用治具20を備えたものであればよいが、例えば前述の真空排気装置の他に、支持用治具20を駆動させるための駆動機構を備えたものでもよい。
【0040】
上記の実施形態では、保持用治具20に吸着される被保持体として、ウエハ18を例に説明したが、保持用治具20は被保持体としてシリコンウエハを吸着するための治具として特に好ましい。なぜなら、半導体ウエハの中でもシリコンウエハは大口径のものが量産されているため、多数のシリコンウエハをパーティクルを発生させずに、吸着・脱着できるからである。
【実施例】
【0041】
原料として、純度99.9質量%以上のアルミナ粉末と、表1に示す添加材(ルチル型の酸化チタン(TiO)、酸化ニオブ(Nb)、酸化マンガン(MnO))の粉末とを用いた。
【0042】
原料である各粉末をボールミルに投入して、水を用いて湿式で混合し粉砕した。粉砕後、有機バインダーを添加して撹拌した後、スプレードライヤを用いて噴霧乾燥し、顆粒を作製した。顆粒をプレス成形法により成形した。生成形体は、平板状の生成形体A、焼成後に吸気路となる溝を有する生成形体Bの2つの形状とした。
【0043】
得られた生成形体A、Bを空気中1550℃で3時間保持して焼成し、焼結体A、Bを作製した。焼結体A,Bの間にガラスペーストを塗布して1480℃で加熱し、焼結体A、Bを接合した。接合後、水素ガスと窒素ガスの混合ガス中で、表1に示す温度、時間で保持した。還元後、焼結体の外側の表面を加工して図1に示す保持用治具20を作製した。
【0044】
加工した部分は、外表面6および保持部10に相当する部分とした。加工時の研磨シロは、焼成後の焼肌面から深さ方向に0.5〜2mmとした。吸気路2の表面4は加工せず、焼成後の焼肌面のまま残した。
【0045】
作製した保持用治具20のサイズは、全長200mm、最大厚み5mm、吸気路2の断面積(平均値)2mm、3箇所の保持部の間隔(距離)100mmとした。
【0046】
保持用治具20の排気口12に金属製の排気管を取付け、さらにこの排気管に真空ポンプを接続した。また、排気管にアース22を取り付け接地した。
【0047】
シリコンからなる直径6インチ、厚み0.775mmのウエハ18を10枚準備し、実施形態に示した方法で、ウエハ18を入れ替えながら吸着、脱着を繰り返した。この結果を表1に示す。
【0048】
【表1】

【0049】
ウエハが絶縁破壊したかどうかは、光センサで放電の有無を確認することにより測定した。放電があればウエハが絶縁破壊するからである。表1に示す通り、絶縁破壊した試料はなかった。
【0050】
ウエハ18を吸着、脱着後、保持用治具20の外表面6を米国KLA-Tencor CorporationのCandela CS10を用いて測定し、単位面積当たりのパーティクル数を求めた。試料No.1〜17のパーティクル数は、10個/mm未満であり少なかった。特に、試料No.5〜11のパーティクル数は1個/mm以下と少なかった。
【0051】
絶縁破壊、パーティクル数の評価後、試料をさらに分析した。外表面6と、吸気路2の表面4の表面抵抗値をそれぞれ四探針法により測定した。吸気路2の表面抵抗値を測定するために、保持用治具20を加工して表面4が見えるようにした後、洗浄し乾燥し、保持用治具20の長手方向の中央部の表面4を測定箇所とした。
【0052】
測定装置は、表面抵抗値が10Ω/□未満の場合は、株式会社三菱化学アナリテックの抵抗率計ロレスタ−EP,ロレスタ−GPを使用した。表面抵抗が10Ω/□以上の場合は、ハイレスタ−UPとMCPプローブ等を併用して測定した。吸気路2の表面抵抗は、外表面6の表面抵抗よりも低かった。
【0053】
X線回折法により、試料に含まれる結晶相を特定した。主結晶相は、α−アルミナであった。表1に、α―アルミナの結晶相以外の結晶相を示した。表1において、ルチルとあるのは、チタンを含む酸化物の結晶相がルチル型であることを示す。空欄は結晶相が特定できなかったことを示す。
【0054】
保持用治具20の組成をICP発光分光分析法により測定した。その結果、保持用治具20のTiO,Nb,MnO換算(質量%)でのTi,Nb,Mnの含有量は、測定誤差の範囲内において、原料中の含有量と同じであることがわかった。
【0055】
比較例として、次の作製条件を除く他は、上記実施例と同様にして試料を作製し、実施例と同様に評価した。試料No.18は、アナターゼ型の酸化チタン粉末を用いたものである。試料No.19は還元温度が1100℃であった試料である。試料No.20は、水素濃度が5体積%の雰囲気で還元した試料である。試料No.21は還元しなかった試料である。試料No.22はアルミナ粉末のみを使用し、還元せずに作製した試料である。
【0056】
比較例の試料は、パーティクル数が87個/mm以上と多かった。試料No.21,22を用いた場合は、表面抵抗が5×1014Ω/□以上と高く半導電性を有していなかったためウエハが絶縁破壊した。
【符号の説明】
【0057】
2:吸気路
4:表面
6:外表面
8:開口
10:保持部
12:排気口
14:領域
16:支持体
18:ウエハ
20:保持用治具
22:アース

【特許請求の範囲】
【請求項1】
半導電性を有するセラミックスからなる支持体に吸気路を形成した保持用治具であって、前記吸気路の表面は前記支持体における他の表面より表面抵抗値が小さい領域を有していることを特徴とする保持用治具。
【請求項2】
前記吸気路の表面抵抗値が10〜1012Ω/□であることを特徴とする請求項1に記載の保持用治具。
【請求項3】
前記セラミックスは、主成分であるアルミナと、Tiを含有する半導電性結晶とを有することを特徴とする請求項1または請求項2に記載の保持用治具。
【請求項4】
前記半導電性結晶がルチル型であることを特徴とする請求項3に記載の保持用治具。
【請求項5】
請求項1乃至4のいずれかに記載の保持用治具を備え、該保持用治具の吸気路の吸気により、前記支持体の外表面に対して表面抵抗値が小さい被保持体を吸着可能としたことを特徴とする吸着装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−177415(P2010−177415A)
【公開日】平成22年8月12日(2010.8.12)
【国際特許分類】
【出願番号】特願2009−17924(P2009−17924)
【出願日】平成21年1月29日(2009.1.29)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】