説明

半導体レーザ素子の製造方法

【課題】 赤色半導体レーザにおいて出力向上,特性の安定化を図る。
【解決手段】 共振器の少なくとも一端にコーティング膜が設けられ、前記コーティング膜は、前記共振器端面に形成される第1層と、該第1層上に形成される第2層とを有する半導体レーザ素子の製造方法において、前記第1層の光学厚さd1と前記第2層の光学厚さd2の和がレーザ光の波長の0.45倍から0.55倍の厚さであり、前記第1層と前記第2層の光学膜厚比d1/d2は、0.54≦d1/d2≦0.95、または1.05≦d1/d2≦1.86の関係となる設計値で、前記第1層と前記第2層とを成膜する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体レーザ素子に係わり、特に、波長(発振波長)が620〜700nmの赤色半導体レーザ素子の製造技術に適用して有効な技術に関する。
【背景技術】
【0002】
0.6μm帯の赤色半導体レーザ(半導体レーザ素子)は各種情報処理装置の光源として期待されている。例えば、650nm帯の半導体レーザはDVD(Digital Versatile Disc)用の発光源として使用され、630nm帯の半導体レーザは計測装置等の光源として使用されている。
光ディスクに用いる単一横モード発振する高出力半導体レーザとして、GaAs基板上にGaInP/AlGaInP量子井戸構造を活性領域としたダブルヘテロ構造を形成した半導体レーザが知られている。(例えば、特許文献1参照)。
一方、共振器の端面に第1、第2の誘電体薄膜からなる反射防止膜を備えた光通信用の半導体レーザ装置が提案されている。(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−209553号公報(第2−3頁、図2)
【特許文献2】特開平10−51072号公報(第2−3頁、図1)
【発明の概要】
【発明が解決しようとする課題】
【0004】
パーソナルコンピュータ(PC)や、CD(コンパクトディスク),DVD等の光ディスクを用いたAV(音響・映像)機器の普及に伴い、情報端末機器向けの半導体レーザ素子の需要は急速に増大している。特に、DVD−R/RW(追記/書換え可能)やCD−R/RW等の記録型光ディスク装置は、PCへの標準搭載が一般的になっており、光ディスク装置の光源となる高出力半導体レーザ素子の需要拡大の主要因となっている。また、長時間の映像録画が可能な記録型DVD装置では、光ディスク装置の特性を生かした高機能の録画機器に応用できるため、今後更なる需要増加が期待されている。このような市場要求に応えるため、特性のばらつきが小さく、優れた特性の半導体レーザ素子を安定して供給することが重要な課題となっている。
【0005】
半導体レーザ素子の特性のばらつきが生じる原因の一つに、素子の端面(レーザ光を出射する出射面)に設けるコーティング膜(端面反射膜)の膜厚製造ばらつきに伴う反射率の変動が挙げられる。特に、素子の前方出射面(使用する出力の大きいレーザ光を出射する出射面)に反射率が小さいAR(Anti-Reflection)膜をコーティングし、後方出射面(モニタ用等に使用する出力の小さいレーザ光を出射する出射面)に反射率が大きいHR(High-Reflection )膜をコーティングした高出力半導体レーザ素子では、前方出射面の反射率ばらつきが素子特性に与える影響が大きく、スロープ効率、動作電流、モニタ電流等が変動して素子の選別歩留りを低下させるばかりでなく、半導体レーザ素子を組み込む装置の制御回路にも調整が必要になる等の問題が生じることになる。
【0006】
また、DVD−RWやCD−RW等の書換え型光ディスク装置は、パーソナルコンピュータの内蔵型記憶装置として用いられることが多く、機器内の発熱により雰囲気温度が非常に高い状態で使用される。このような状態においても正常な動作を保証するためには、半導体レーザ素子の動作電流を低減し、素子自体の発熱による特性の低下をできる限り抑制できるように温度特性の優れた素子を提供する必要がある。
【0007】
特許文献1に記載された光ディスクに使用される半導体レーザ素子(以下素子とも呼称する)では、電流ブロック層の一部にレーザ光に対して透明なGaInPまたはAlGaInP結晶を用いたAlGaInP系半導体レーザ素子が使用されている。また、電流狭窄構造の幅、即ちストライプ構造の幅を2.5〜5μmに設定することで、キンクレベルを向上させて半導体レーザ素子の高出力化を図っている。
【0008】
しかし、このような半導体レーザ素子では、高出力化を図るための素子のシリーズ抵抗についての考慮がなされていない。即ち、AlGaInP系の半導体レーザ素子を一般的な方法で作製し、上記のストライプ構造を形成すると、電流狭窄部(ストライプ構造)の上部の幅が非常に狭くなり、シリーズ抵抗が増大して素子の周波数応答が低下する、あるいは発熱の増加により高温域での光出力が低下するという問題が想定される。
【0009】
また、半導体レーザ素子のキンクレベルは、電流狭窄構造と活性層の間隔やその他の構造に依存して変化するため、電流狭窄部の幅を規定するだけではキンクレベルを十分に高めることは困難である。
【0010】
一方、半導体レーザ素子のレーザ光を出射する前方出射面及び後方出射面には、前述のようにそれぞれコーティング膜(端面反射膜)が設けられる。端面反射膜としては、半導体レーザ素子の波長(発振波長)λに対して、単一の誘電体薄膜をλ/4またはλ/2に相当する膜厚とすることが一般的である。比較的光出力が高い半導体レーザ素子ではλ/4の低反射膜(反射率5%程度)、低出力の半導体レーザ素子ではλ/2の端面反射膜が用いられることが多い。
【0011】
単一の誘電体薄膜をλ/4(0.25λ)またはλ/2(0.5λ)に相当する膜厚とすると、半導体レーザ素子の発振波長のばらつきや膜厚ばらつきに対する反射率の変動は小さくできるが、作製可能な反射率が端面反射膜形成に用いる材料の屈折率によって決まってしまう。また、このような値と異なる反射率を実現するために、λ/4の整数倍から外れた膜厚の端面反射膜を用いると、反射率の膜厚及び波長依存性が大きくなり、製造ばらつきによる素子特性の変動が生じてしまう。
【0012】
所望の反射率を得るために、複数の層を重ね合わせる手法が採用されている。特許文献2には、屈折率が1.82から2.00で光学膜厚が発振波長の0.17倍から0.23倍の第1層の窒化シリコンと、光学膜厚が発振波長の0.03倍から0.15倍の第2層の酸化シリコンとからなる2層構造の反射防止膜が形成された半導体レーザ素子が開示されている。即ち、反射防止膜(端面反射膜)の厚さは0.2λ〜0.38λになっている。
【0013】
他方、光ディスク等に用いる高出力半導体レーザ素子は、例えば、70℃程度の高温域で使用される。本発明者は低温域(室温:25℃)及び高温域における前方出射面に設ける端面反射膜の反射率Rf と動作電流Iopとの相関について検討した結果、例えば、7.5%前後(6〜9%)程度が高温域で最も動作電流Iopが低下することが判明した。
【0014】
本発明の目的は、コーティング膜(端面反射膜)の製造ばらつきに起因する反射率の変動を改善するとともに、温度特性に優れかつ高い光出力を安定して得ることができるシングルモード発振する赤色半導体レーザ素子を提供することにある。
本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面からあきらかになるであろう。
【課題を解決するための手段】
【0015】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。
(1)本発明の半導体レーザ素子は、
第1導電型の半導体基板上に第1導電型のクラッド層、単一または多重の量子井戸構造からなる活性層、第2導電型のクラッド層を順次重ねた構造であり、
前記第2導電型のクラッド層は加工され、前記活性層上に形成される平坦層と、該平坦層上にストライプ状に突出形成されるリッジストライプ部とからなり、
前記平坦層上には前記リッジストライプ部の側面を被う第1導電型の電流ブロック層を有し、
前記リッジストライプ部及び前記電流ブロック層の上面側には第2導電型のコンタクト層が設けられ、
前記半導体基板の下面には第1の電極が形成されるとともに、前記コンタクト層の上面には第2の電極が形成され、
前記リッジストライプ部の両端面には前記半導体基板,前記第1導電型のクラッド層,前記活性層,前記第2導電型のクラッド層及び前記コンタクト層を被うコーティング膜(端面反射膜)を有し、
前記リッジストライプ部に対応する前記活性層部分で形成される共振器の端面からレーザ光を出射する半導体レーザ素子であって、
前記平坦層の厚さをhとし、前記リッジストライプ部のリッジ底部の幅をWsとした場合、Wsは1.0μm以上であり、h≧0.17(Ws−1)の関係にあり、0.1μm≦h≦0.35μmの関係にあり、
前記コーティング膜は、前記共振器端面に形成される第1層と、該第1層上に形成される第2層とで形成され、
前記第1層の厚さd1 と前記第2層の厚さd2 の和はレーザ光の波長の0.45倍から0.55倍の厚さになり、
前記コーティング膜の反射率は6〜9%になり、
前記半導体基板はn型GaAs、前記半導体基板の上面側に形成される各半導体層はAlGaInPまたはGaInPであり、波長が620〜700nmのレーザ光を出射する半導体レーザ素子である。
【0016】
上記した手段(1)によれば、(a)Wsは1.0μm以上であり、h≧0.17(Ws−1)の関係にあり、0.1μm≦h≦0.35μmの関係にあることからシングルモード発振し、キンクの原因となる高次の導波モードの発生を抑制できる為、直線性に優れた光出力−電流特性が得られ、高い光出力でも安定に動作するレーザ素子を提供することができる。
(b)コーティング膜の厚さはレーザ光の波長の0.45倍から0.55倍の厚さになり、かつコーティング膜の反射率は6〜9%と動作電流値を最も小さくできる状態で動作可能になり、消費電力の低減及び光出力向上が達成できる。
(c)光出力が高く、かつ高温時の発光特性が良好なため、CD,DVD,AV機器等の発光源に適した半導体レーザ素子となる。
【発明の効果】
【0017】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
(1)光出力の増大が可能になるシングルモード発振する赤色半導体レーザ素子を提供することができる。
(2)赤色半導体レーザ素子において、コーティング膜(端面反射膜)の製造ばらつきに起因する反射率の変動を改善することができる。
(3)高温域でも安定して高出力のレーザ光を出射できる赤色半導体レーザ素子を提供することができる。
(4)スロープ効率の向上や動作電流の低減を図ることができる赤色半導体レーザ素子を提供することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施形態(実施形態1)である半導体レーザ素子の共振器に直交する面の模式的断面図である。
【図2】前記半導体レーザ素子の共振器方向に沿う面の模式的断面図である。
【図3】前記半導体レーザ素子の製造方法を示す工程断面図である。
【図4】前記半導体レーザ素子において、シングルモード発振するためのp型クラッド層の寸法条件を示すグラフであり、p型クラッド層を構成する平坦層(pクラッド層膜厚h)と、リッジストライプ部幅(ストライプ幅Ws)との相関を示すグラフである。
【図5】前記寸法条件を計算するために使用するp型クラッド層の各部に寸法記号を付した半導体レーザ素子の模式図である。
【図6】前記寸法条件を計算するための各部が現れるように示す半導体レーザ素子の各断面の模式図である。
【図7】前記半導体レーザ素子の前方出射面を被うコーティング膜の膜構成の違いによる反射率とコーティング膜の膜厚との相関を示すグラフである。
【図8】前記半導体レーザ素子の前方出射面を被うコーティング膜の膜構成の違いによる反射率とコーティング膜の膜厚ずれとの相関を示すグラフである。
【図9】前記半導体レーザ素子の高温時と低温時における光出力Iopと反射率Rf との相関を示すグラフである。
【図10】本実施形態1の半導体レーザ素子(本発明素子)及び従来素子における前方出射面反射率Rf と波長λp との相関を示すグラフである。
【図11】本実施形態1の半導体レーザ素子(本発明素子)及び従来素子における、光出力と電流との相関を示すグラフである。
【図12】本発明の他の実施形態(実施形態2)である半導体レーザ素子の製造方法を示す工程断面図である。
【図13】本発明の他の実施形態(実施形態3)である半導体レーザ素子の共振器に直交する面の模式的断面図である。
【図14】前記半導体レーザ素子の共振器方向に沿う面の一部の模式的断面図である。
【発明を実施するための形態】
【0019】
以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
(実施形態1)
図1乃至図11は本発明の一実施形態(実施形態1)である半導体レーザ素子に係わる図である。本実施形態1では第1導電型はn型、第2導電型はp型となり、波長(発振波長)が620〜700nm帯になる赤色半導体レーザ素子に本発明を適用した例について説明する。
【0020】
本実施形態1の半導体レーザ素子1は、図1及び図2に示す構造になっている。図1は半導体レーザ素子の共振器に直交する面の模式的断面図、図2は半導体レーザ素子の共振器方向に沿う面の模式的断面図である。
図1及び図2に示すように、半導体レーザ素子1は第1導電型(n型)の半導体基板2、具体的にはn−GaAs基板2を基にして製造されている。n−GaAs基板2の上面(主面)上には、n−AlGaInPからなるクラッド層3が形成されるとともに、このn−クラッド層3上には活性層4が形成され、さらに活性層4上には第2導電型(p型)のAlGaInPからなるクラッド層5が形成されている。
【0021】
p−クラッド層5は、活性層4の上面に形成される厚さhとなる薄い平坦部分(平坦層5a)と、この平坦層5a上にストライプ状に突出形成されるリッジストライプ部5bとからなっている。リッジストライプ部5bは、リッジストライプ部5bの厚さに形成したp−クラッド層を選択的にエッチングすることによって形成される。即ち、リッジストライプ部5bはp−クラッド層の中央を残して両側を所定厚さエッチングすることによって形成される。このエッチングにおいて、リッジストライプ部5bの幅は上面の幅W1 に比較してリッジ下部の幅Wsが、例えば、0.2〜0.8μm程度広くなる。
【0022】
n−クラッド層3は、元素の混晶比がそれぞれ選択され、例えば、n−(Al0.7Ga0.30.5In0.5Pからなっている。また、厚さは1.8μm程度になっている。p−クラッド層5は、例えば、n−(Al0.7Ga0.30.5In0.5Pからなり、厚さはリッジストライプ部5bの部分で1.6μm程度になっている。
【0023】
活性層4は多重量子井戸(MQW)構造となり、井戸層と井戸層との間に障壁層が位置し、かつこの構成が繰り返し重ねられる構造になっている。井戸層はアンドープ(u)−GaInP層が選ばれ、障壁層はu−AlGaInP層が選ばれている。また、活性層4は、井戸層が3周期となるとともに、材料の選択によって歪多重量子井戸構造になっている。
【0024】
p−クラッド層5の平坦層5a上にはリッジストライプ部5bの側面を被うn−AlInPからなる電流ブロック層6が設けられている。このn−電流ブロック層6はn−Al0.5In0.5Pからなり、エッチングによって除去されたp−クラッド層部分を被う程度の厚さ、例えば0.5〜0.8μm程度の厚さに形成されている。
また、n−電流ブロック層6及びリッジストライプ部5bの上面を被うように厚さ3μm程度のp−GaAsからなるコンタクト層7が設けられている。
【0025】
n−GaAs基板2の下面には第1の電極としてn電極8が形成され、p−コンタクト層7の上面には第2の電極としてp電極9が形成されている。電極はいずれも金を含む材料で形成されている。
【0026】
このような半導体レーザ素子1においては、n電極8とp電極9間に所定の電圧を印加することによって、リッジストライプ部5bに対応する活性層4の部分が共振器10を構成し、図2に示すように、共振器10の両端(出射面)からレーザ光11を出射するようになる。一般に、高出力半導体レーザは、出射面の一方を出力大きくして使用に供し、他方の出射面から出射されるレーザ光を光出力を小さくして光強度をモニタすることが多い。前者の出射面を前方出射面と呼称し、モニタ側の後者の出射面を後方出射面と呼称している。図2では、左側の出射面が前方出射面12となり、右側の出射面が後方出射面13となる。
半導体レーザ素子1は、各層の元素の混晶比等の選択によって、発振波長を620〜700nm程度の間で選択することができる。
【0027】
つぎに、このような半導体レーザ素子1の製造方法について、図3(a)〜(d)を参照しながら説明する。図3(a)に示すように、厚さ350〜450μm程度のn−GaAs母基板(ウエハ)2aを用意する。
【0028】
つぎに、MOCVD(Metalorganic Chemical Vapor Deposition:有機金属気相成長法)によって、前記ウエハ2aの主面上にそれぞれ所定組成からなる半導体結晶を順次成長させ、n−クラッド層3,活性層4,p−クラッド層5,n−GaAsキャップ層22を順次重ねるように形成する。ウエハ2aは数インチの直径のGaAs基板からなり、最終的なウエハの分断によって多数の半導体レーザ素子を製造することになる。図3では単一の半導体レーザ素子部分のみを示すことにする。
【0029】
ウエハ2aの主面上にはn−クラッド層3として、n−(Al0.7Ga0.30.5In0.5Pが1.8μm程度の厚さに形成される。n−クラッド層3上には活性層4として、u−GaInPを井戸層とし、u−AlGaInPを障壁層とし、3周期の歪多重量子井戸構造が形成される。活性層4上にはp−クラッド層5として、n−(Al0.7Ga0.30.5In0.5Pが1.6μm程度の厚さに形成される。p−クラッド層5上には厚さ0.5μm程度のn−GaAsキャップ層22が形成される。
【0030】
つぎに、図3(b)に示すように、リッジストライプ部を形成するため、前記n−GaAsキャップ層22の上面に選択的にストライプ状のマスク23を形成する。マスク23は、例えば、n−GaAsキャップ層22上にSiO膜をスパッタ法によって形成した後、常用のホトレジスト技術とエッチング技術によって幅2μm程度のストライプ状のマスク23を形成する。その後、このマスク23をエッチング用マスクとして、常用のドライエッチングによってp−クラッド層5を深さ1.4μm程度までエッチングして、平坦層5a及びリッジストライプ部5bを形成する。この平坦層5aの厚さ及びリッジストライプ部5bの寸法については後に詳細に説明する。
【0031】
つぎに、塩素系のエッチャント(Hcl水溶液)によってp−クラッド層5の表面をライトエッチングしてドライエッチングによりダメージを受けた表面層を除去し、ついで、p−クラッド層5のエッチングで除去した部分にn−Al0.5In0.5Pを0.5〜0.8μm程度の厚さに形成してn−電流ブロック層6を形成する〔図3(c)参照〕。
【0032】
つぎに、マスク23及びn−GaAsキャップ層22を常用のエッチングによって除去した後、n−電流ブロック層6及びリッジストライプ部5bの上面を被うように厚さ3μm程度のp−GaAsからなるコンタクト層7を形成する。
【0033】
つぎに、ウエハを分断させてチップ化する際、チップ分離が容易になるように、図示はしないがウエハ2aの主面側に縦横にアイソレーション溝を形成し、ついでウエハ2aの主面側、即ちp−コンタクト層7上に選択的にp電極9を形成する〔図3(d)参照〕。その後、ウエハ2aの下面を所定厚さ研磨するとともに、研磨によって発生した結晶歪層を化学エッチングによって除去して100μm程度の厚さのウエハ2aとし、ついでウエハ2aの下面にn電極8を形成する。
【0034】
つぎに、図示はしないが、ウエハ2aをリッジストライプ部5bのストライプに直交する方向に結晶の劈開を行って分断させ、幅が900μm程度の細長い短冊体を形成する。この短冊体の両側面はレーザ光の出射面となることから、それぞれの出射面に保護膜となるとともに反射膜となるコーティング膜をスパッタリング法によって形成する。このコーティング膜の構成については、後にさらに詳述する。
【0035】
つぎに、短冊体を所定寸法で切断することによって図3(d)に示すような半導体レーザ素子1を多数製造する。これにより、共振器長さが900μm、幅が250μmで厚さが100μm程度の半導体レーザ素子1を得ることができる。
【0036】
本実施形態1では、レーザ光をシングルモード発振させるため、リッジストライプ部5bの上面の幅W1及び下部の幅Ws及び平坦層5aの厚さhを以下に示すように選択している。
【0037】
リッジストライプ部5bの寸法条件は下記により決定される。図5は前記寸法条件を計算するために使用するp型クラッド層の各部に寸法記号を付した半導体レーザ素子1の模式断面図である。図6(a)〜(c)は寸法条件を計算するための各部が現れるように示す半導体レーザ素子1の各断面の模式図である。
【0038】
図5は、リッジストライプ部5bの共振器10の延在方向に垂直になる面を示す断面図である。説明の便宜上縦軸をy軸、横軸をx軸とする。図5においてストライプ部5bの下部の幅Wsに対応する活性層4の部分が発光部となり、リッジストライプ部5bから外れた平坦層5aに対応する活性層4が非発光部になる。リッジストライプ部5bの下部の幅をWsとし、平坦層5aの厚さ(高さ)をhとする。
【0039】
図6(a)は、発光部となるリッジストライプ部5bを横切るy方向屈折率分布と屈折率との相関を示すグラフである。活性層4部分では屈折率はna と大きくなるが、活性層4の上下に位置するクラッド層は導電型が異なるが組成が同じになることから屈折率は共にnc になる。実効屈折率ne (x)はNe1となる。
【0040】
図6(b)は、リッジストライプ部5bを外れた非発光部となる平坦層5a及びn−電流ブロック層6を横切るy方向屈折率分布と屈折率との相関を示すグラフである。活性層4部分では屈折率はna と大きくなり、活性層4の上下に位置するクラッド層部分は導電型が異なるが組成が同じになることから屈折率は共にnc になり、n−電流ブロック層6では屈折率はnb とさらに小さくなる。実効屈折率ne (x)はNe2となる。
【0041】
図6(c)は、x方向屈折率分布と実効屈折率ne (x)との相関を示すグラフであり、前記Ne1とNe2を示してある。リッジストライプ部5bの下部の幅Wsの部分の実効屈折率はNe1になり、平坦層5aの部分の実効屈折率はNe2にと小さくなる。
【0042】
ここで共振器(導波路)の解析方法について説明する。半導体レーザの構造及び屈折率の分布は図5及び図6(a)〜(c)のようになる。これらの図では、活性層4の屈折率の上下のクラッド層の屈折率を等しくしているが、p、n双方のクラッド層の屈折率は異なってもよい。また、活性層4は、単一あるいは多重量子井戸構造で構成することが一般的であるが、量子井戸構造全体を単一の層として簡略化して記載した。量子井戸構造の場合においても、同様の手法により解析が可能である。
【0043】
これらの図のような半導体レーザ素子1において、厳密な光強度分布を求めることは困難であるが、素子の設計においては、等価屈折率法を用いることによって容易に導波路構造の解析が可能である。
【0044】
(1)先ず、発光部(電流注入部)及び非発光部(ブロック層下部)の縦方向に関し、図6(a),(b)の屈折率分布を用いて下記波動方程式、数1を各々に対して解を求め、垂直方向(y方向)の実効屈折率を求めた。等価屈折率法では、電磁界の分布関数を変数分離により表し、下記数2のように記述できると仮定する。数1,数2より、X及びYに対して数3,数4が導けるため、y方向及びx方向について順に式を解くことで解が求められる。ここで、ne (x)は、位置xにおける垂直方向(y方向)の実効屈折率である。
【0045】
(2)上記(1)で求めた実効屈折率を、横方向の屈折率分布とし〔図6(c)〕、横方向に再度等価屈折率法を適用して導波路全体の実効屈折率、導波モード等を解析した。
【0046】
【数1】

(TEモードの場合)
【数2】

【0047】
【数3】

【0048】
【数4】

【0049】
図4は半導体レーザ素子1において、シングルモード発振するためのp−クラッド層の寸法条件を示すグラフであり、p−クラッド層を構成する平坦層(pクラッド層膜厚h)と、リッジストライプ部幅(ストライプ幅Ws)との相関を示すグラフである。図4ではp−クラッド層5のリッジストライプ部5bの幅Wsの上限及び下限を規定するとともに、p−クラッド層5の平坦層5aの厚さhの上限及び下限を設定して半導体レーザ素子1がシングルモード発振するようになっている。
【0050】
p−クラッド層5の平坦層5aの膜厚hに対するリッジストライプ部5bの下部の幅Wsの上限は、図4の解析結果となる。但し、活性層4の膜厚・組成によってはこの境界が若干変化するため、図4の境界線以下のリッジストライプ幅Wsで範囲を規定した。
【0051】
リッジストライプ部5bの下部の幅Wsの下限は、素子抵抗の増大を防ぐため、即ち、シリーズ抵抗を10Ω以下にするため1μm以上が必要である。換言するならば、前記リッジストライプ部(リッジ)の最も幅が狭い部分の幅は1.0μm以上にする必要がある。リッジストライプ部5bの形成時、リッジ側面を略垂直形成することも可能であり、この場合、リッジの厚さ方向のいずれの幅も同じ寸法になる。
【0052】
発光部への光の閉じ込めは、図6(c)に示すように、発光部と非発光部の屈折率差(Ne1とNe2の差)により行い、導波路構造を形成している。半導体レーザ素子の駆動は活性層4へのキャリア注入によりレーザ発振を行わせるため、レーザ動作時に活性層4のキャリア濃度が増加すると屈折率が低下する。キャリア注入による屈折率変化はせいぜい、10−3程度であり、このような状況においても、安定な光閉じ込めを実現するためには、1.5×10−3以上が望ましく、2.0×10−3以上の屈折率差を設けておく必要がある。これにより、平坦層5aの膜厚hの上限としては、0.35μm以下、望ましくは0.3μm以下となる。
【0053】
また、半導体レーザ素子は、pn接合を用いて形成されており、逆方向電流に対してはある程度の耐圧がある。素子の実使用上は、逆方向耐圧は、数ボルト程度あれば問題なく使用できるが、膜厚hを薄くしていくと、n−電流ブロック層6の部分がブレークダウンし易くなるため、逆方向耐圧が低下してしまう。実用上問題ないレベルを確保するためにはh≧0.1μmが必要になる。
【0054】
これらのことから、リッジストライプ部5bにおける下部の幅Wsと平坦層5aの膜厚hの範囲は、図4の斜線部とする必要がある。下部の幅Wsの上限は、平坦層5aの厚さをhとし、前記リッジストライプ部のリッジ底部の幅をWsとした場合、h=0.17(Ws−1)の関係になっている。境界線h=0.17(Ws−1)は、図4に示すように、本発明者がシュミレーションによる解析結果によって得た曲線を直線と見なした数式(関数)である。
【0055】
本実施形態1では、例えば、リッジストライプ部5bの幅は、上部の幅W1を1.3μm、下部の幅Wsを2.4μmとし、p−クラッド層5の平坦層5aの厚みh(活性層4とn−電流ブロック層6との間隔)を0.27μmとして、導波路構造がシングルモード発振するように設計した。
【0056】
ところで、前述のように、光ディスク等に用いる高出力半導体レーザ素子は、70℃程度の高温域で使用される。本発明者は低温域(室温:25℃)及び高温域における前方出射面に設ける端面反射膜の反射率Rf と動作電流Iopとの相関について検討した結果、図9は半導体レーザ素子の高温時と低温時における光出力Iopと反射率Rf との相関を示すグラフである。同グラフから分かるように、7.5%前後(6〜9%)程度が高温域で最も動作電流Iopが低下する。即ち、動作電流Iopを低減することは、レーザ素子の発熱・温度上昇を抑制し、逆に高温域において光出力の増大を図ることになる。
【0057】
本実施形態1の半導体レーザ素子1は、図2に示すように、前方出射面12に設けるコーティング膜31を共振器10の端面に形成される第1層31aと、この第1層31a上に形成される第2層31bとで形成し、かつ第1層31aの厚さ(光学厚さ)d1 と第2層31bの厚さ(光学厚さ)d2 の和はレーザ光の波長の0.45倍から0.55倍の厚さにし、反射率を7.5%前後(6〜9%)程度としたものである。
【0058】
本実施形態1では、例えば、第1層31aとして屈折率が1.95のSiN膜を用い、第2層31bとして屈折率が1.45のSiO膜を用いた。そして、SiN膜の膜厚を0.22λ、SiO膜の膜厚を0.23λとして、コーティング膜31の膜厚を0.45λ(=0.22λ+0.23λ)とした。
【0059】
また、後方出射面13にもコーティング膜33を設ける。このコーティング膜33は、λ/4の厚さのSiO膜とSiN膜を10層程度交互に形成して屈折率を93%程度とした層である。
【0060】
端面反射膜(コーティング膜)の形成においては、1バッチ処理における面内の膜厚ばらつきや製造レートのばらつきにより、各半導体レーザ素子の端面反射膜の膜厚にばらつきが生じる。ばらつきの大きさや、変動の仕方は個々の製造装置により異なるが、±10%程度の膜厚ばらつきが生じた場合、本発明による2層膜構造では反射率のばらつき幅は1%程度に留まるのに対し、従来の方法では4%程度のばらつきが生じてしまう。
【0061】
ここで、本実施形態1のような高出力半導体レーザにおいて、前方出射面での反射率Rf が7.5%程度必要である理由について説明する。
半導体レーザの閾値(閾値電流)Ithは次式で与えられる。
【0062】
【数5】

【0063】
半導体レーザのスロープ効率ηは次式で与えられる。
【数6】

【0064】
ここで、J:利得発生に必要な電流、d:活性層の膜厚、α:内部損失、L:共振器長さ、R:前方出射面の反射率、R:後方出射面の反射率である。
高出力時の動作電流Iopは次式で与えられる。
【0065】
【数7】

【0066】
一般にはある反射率Rf において動作電流Iopが最小になり、反射率Rf には最適値が存在する。換言するならば、素子寿命を高める、低電流で使いやすい素子を提供する等の理由から、動作電流Iopを低減する必要がある。
【0067】
反射率Rf が小の時、スロープ効率ηは大きくなるが、ln(1/R)の項が増大して閾値電流Ith及び動作電流Iopが増加する。また、反射率Rf が大の時、スロープ効率ηが低下して動作電流Iopが増加する。
【0068】
特に高温域においては、η及びβの低下、J,αの増加により閾値Ithの増大が顕著になるため、Iopを最小とするRf の値が高反射率側にシフトする。半導体レーザ素子を構成する材料、構造等により異なるが、経験的に前方出射面の反射率は数%が最適となる。
【0069】
本実施形態1のように、前方出射面の反射率を6〜9%程度とし、後方出射面の反射率を93%とする非対称コーティングを施した半導体レーザ素子1では、Run−to−Runの反射率ばらつきは、±5%の範囲にあり、スロープ効率や閾値電流等の半導体レーザ素子の特性ばらつきも抑えられた。
【0070】
図7は半導体レーザ素子の前方出射面を被うコーティング膜の膜構成の違いによる反射率とコーティング膜の膜厚との相関を示すグラフ、図8は半導体レーザ素子の前方出射面を被うコーティング膜の膜構成の違いによる反射率とコーティング膜の膜厚ずれとの相関を示すグラフである。
【0071】
図7のグラフには、前方出射面における端面反射膜を、従来仕様であるSiO膜単層(反射率7.5%)のものと、本発明仕様であるSiN膜とSiO膜による2層コートの例を示してある。2層コートの場合では反射率が7.5%,10%,20%のものを示す。2層コートでは、全体の厚さを変えずに、各層の膜厚比を変えることで反射率が調整できる。SiO膜単層の場合、7.5%で設計するならば□印の膜厚になる。また、2層コートの場合は、各々の曲線における○印の箇所が設計値となる。図7では、単純に膜厚を変化させた場合に反射率がどのように変化するかを計算した例を表示したものである。
【0072】
実際には、面内ばらつきが成膜レートの変動、素子の波長変化により膜厚がずれる等により、2層の膜厚が略比例してずれる。図8は製造ばらつきによる反射率の変動を示すもので、SiO膜単層7.5%と、2層コートにおける7.5%,10%,30%のものを示すグラフである。コーティング膜の膜厚ずれによる反射率の変動は小さくなる。即ち、±10%の膜厚ばらつきが発生しても、図8から分かるように、本発明の場合には反射率のばらつきは1%に留まる。
【0073】
コーティング膜31の反射率を、例えば、6〜9%程度とした場合、第1層31aの膜厚(光学膜厚)d1 と、第2層31bの膜厚(光学膜厚)d2 との比率、d1 /d2 は、0.54≦d1 /d2 ≦0.95、または1.05≦d1 /d2 ≦1.86の関係にある。これにより、コーティング膜の反射率を所望の設計値に設定し、尚かつコーティング膜の膜厚の製造ばらつきによる反射率の変動を抑制した反射率の安定なコーティング膜が形成できる。膜厚比が高い第1層31aが厚くてもまたは薄くてもよい。膜厚比は第1層31aまたは第2層31bを形成する材質の屈折率によって決まる。
【0074】
例えば、第1層31aの屈折率が2.4となる誘電体膜であり、第2層31bの屈折率が1.43となる誘電体膜である場合、両膜の厚さ比率を選択することによって、コーティング膜31の反射率を1〜30%のうちのいずれかの数値の反射率にすることができる。これにより、設計可能な反射率の範囲を広げた反射率のばらつきの小さいコーティング膜を構成することができる。
【0075】
また、第1層31aの屈折率が2.0となるSiN膜であり、第2層31bの屈折率が1.43となるSiO膜である場合、両膜の厚さ比率を選択することによって、コーティング膜31の反射率を5〜30%のうちのいずれかの数値の反射率にすることができる。
【0076】
コーティング膜31aおよび31bには、SiO、TiO等の酸化膜や、SiN等の窒化膜等の誘電体膜を用い、第1層31aの屈折率nd1 を1.6≦nd1 ≦2.4、第2層31bの屈折率nd2 を1.2≦nd2 ≦2.0の関係となるようにコーティング膜の材料を選択し、第1層31aの屈折率が第2層31bの屈折率よりも大きく、即ち、nd1 ≧nd2 となるように材料を選択すれば良い。
【0077】
図10は本実施形態1の半導体レーザ素子(本発明素子)及び従来素子における前方出射面反射率Rf と波長λp との相関を示すグラフである。従来素子の場合は、波長が600〜700nmの間で膜厚変化により反射率が大きく変動し、かつ高温域で反射率が低下するが、本発明素子の場合は波長が600〜700nmの間で反射率は7.5〜8.8%程度の間の少しの変動である。
【0078】
図11は本実施形態1の半導体レーザ素子(本発明素子)及び従来素子における、光出力と電流との相関を示すグラフである。従来素子の場合では70℃と高い温度下での使用では光出力が50mW程度が最大であるのに対して、本発明素子の場合は70℃と高い温度下での使用でも光出力は90mW以上と極めて高い数値が得られる。本発明によれば、閾値電流が低下し、スロープ効率が向上し、動作電流を大きく低減することができる。また、動作電流の低減によって、特に高温域での半導体レーザ素子の発熱を抑えられるため、従来の半導体レーザ素子よりも高い温度で動作させることができるようになった。
【0079】
また、p−クラッド層5のリッジストライプ部5bの幅は、従来の半導体レーザ素子の場合における5μm程度に対して、本発明では2.4μmと半分程度になっているにもかかわらず、両者の素子抵抗(シリーズ抵抗)はどちらも約5Ωであり、1GHz以上の周波数帯域幅が得られた。
【0080】
本実施形態1によれば以下の効果を有する。
(1)電流狭窄層(n−電流ブロック層6)に禁制帯幅が大きく、レーザ光に対して透明な材料を用いることにより、レーザ内部の光の損失を低減できるリアルガイド構造となるため、従来のGaAs電流ブロック層に代表されるロスガイドの導波路構造の素子に比べて低閾値化、高効率化の特性改善が図れる。この結果、光出力の増大を図ることができる。
【0081】
(2)本発明による半導体レーザ素子1ではキンクレベルが向上し、高い光出力が得られる。即ち、キンクレベルを向上させて高い光出力を得るためには、p−クラッド層5におけるリッジストライプ部5bの幅Ws及び平坦層5aの厚さhを調整し、レーザ内で高次のモードが存在し得ないシングルモード導波路(共振器)となるように設計すればよい。h=0.17(Ws−1)となる相関線よりWsが狭いか、またはhを大きくすることにより、導波路構造がシングルモードとなり、この範囲に設計することによりキンクが発生せず、直線性の良い光出力−電流特性を持った半導体レーザ素子1を製造することができる。
【0082】
(3)前方出射面に設けるコーティング膜(端面反射膜)31は、2層の誘電体膜構造になっているとともに、コーティング膜31の膜厚は〜λ/2となっていることから、反射率Rf は波長依存性のdRf /dλが略零となる安定点に設定できる。即ち、前方出射面の反射率Rf は、2層の誘電体膜の膜厚比を調整することにより、1〜30%の範囲で任意の値に調整が可能であり(SiN膜の膜厚がSiOの膜厚より大の場合は、SiN膜を厚くすると共に反射率Rf は大きくなり、逆の場合はSiN膜を厚くすると共に反射率Rf が低下する。)、反射率の設計値によらず安定点に設定できるため、プロセスばらつきが生じても、反射率の設計値からのずれを略零に抑えることができる。
【0083】
(4)本発明においては、高温域での発振波長に対して端面反射膜の膜厚が約λ/2に設定することにより、室温あるいは半導体レーザ素子1の動作温度範囲下限よりも高温域において端面反射膜の反射率が大きくなるように設計することができ、高温域での動作電流の増加を抑制でき、光出力の向上を図ることができる。即ち、一般的にレーザ素子特性は端面の反射率に依存して変動する。前方出射面の反射率が低下すると、効率は増加するものの閾値電流が増加し、特に高温域での閾値電流の増加が顕著になる。このため、半導体レーザ素子の高温特性が低下し、高温域でスロープ効率が低下し、動作電流が急増する可能性がある。しかし、本発明によりこのような問題点も解消できることになる。
【0084】
(実施形態2)
図12は本発明の他の実施形態(実施形態2)である半導体レーザ素子の製造方法を示す工程断面図である。本実施形態2では実施形態1の半導体レーザ素子1において、リッジストライプ部5bとp−コンタクト層7との間にp−GaInPバッファ層40を設けて、p−コンタクト層7とリッジストライプ部5bとの間の階段状のバンドギャップの差を小さくしてヘテロ接合界面のポテンシャル障壁を低減し、シリーズ抵抗を低減する構造に本発明を適用した例である。
【0085】
本実施形態2の半導体レーザ素子1は、図12(d)に示すように、p−クラッド層5のリッジストライプ部5bの両側に設けるn−電流ブロック層を、n−AlGaInP層6aと、この上に形成されるn−GaAs層6bとで形成すること、リッジストライプ部5bの上面にp−GaInPバッファ層40を形成すること、p−コンタクト層7はp−GaInPバッファ層40とn−GaAs層6bの上面を被うことで実施形態1の半導体レーザ素子1と異なるが、他の各部の構造は実施形態1の半導体レーザ素子1と同じである。n−電流ブロック層6を2層構造とすることによって、コンタクト層7の埋込成長を行なう際に結晶表面にAlを含む層が露出せず、結晶の酸化による結晶欠陥の発生を抑えるとともに、電流ブロック効果が安定する。
【0086】
つぎに、本実施形態2の半導体レーザ素子1の製造について図12(a)〜(d)を参照しながら説明する。図12(a)〜(d)は、実施形態1の半導体レーザ素子の製造方法を示す図3(a)〜(d)に対応する図であり、符号の同じものは実施形態1の半導体レーザ素子の製造と同じ材料になっている。また、図12においても単一の半導体レーザ素子部分のみを示すことにする。
【0087】
実施形態1の場合と同様に、図12(a)に示すように、厚さ350〜450μm程度のn−GaAs母基板(ウエハ)2aを用意する。
つぎに、MOCVD法によって、前記ウエハ2aの主面上にそれぞれ所定組成からなる半導体結晶を順次成長させ、n−クラッド層3,活性層4,p−クラッド層5,p−GaInPバッファ層40及びn−GaAsキャップ層22を順次重ねるように形成する。実施形態1の場合と異なる点はp−クラッド層5とn−GaAsキャップ層22との間にp−GaInPバッファ層40を設けることである。p−GaInPバッファ層40は、厚さが0.5μmのGa0.5In0.5Pからなっている。
【0088】
つぎに、図12(b)に示すように、実施形態1の場合と同様に、リッジストライプ部を形成するため、前記n−GaAsキャップ層22の上面に選択的にストライプ状のマスク23を形成し、このマスク23をエッチング用マスクとして使用して常用のドライエッチングによってp−クラッド層5を所定深さまでエッチングして、平坦層5a及びリッジストライプ部5bを形成する。
【0089】
つぎに、塩素系のエッチャント(Hcl水溶液)によってp−クラッド層5の表面をライトエッチングして表面層を除去し、ついで、図12(c)に示すように、p−クラッド層5のエッチングで除去した部分にn−AlGaInP層6a及びn−GaAs層6bを順次形成してn−電流ブロック層6を形成する。
【0090】
つぎに、図12(d)に示すように、マスク23及びn−GaAsキャップ層22を常用のエッチングによって除去する。この際、リッジストライプ部5bの上面のp−GaInPバッファ層40はそのまま残留している。つぎに、図12(d)に示すように、n−電流ブロック層6及びリッジストライプ部5bの上面を被うように厚さ3μm程度のp−GaAsからなるコンタクト層7を形成する。
【0091】
つぎに、実施形態1と同様にウエハ2aの表裏面にn電極8及びp電極9を形成し、ついでウエハ2aを短冊状に劈開させた後、劈開面にAR膜やHR膜を形成し、その後、短冊体を所定寸法で切断して図12(d)に示すような半導体レーザ素子1を多数製造する。
【0092】
本実施形態2の半導体レーザ素子1は、AlGaInPからなるリッジストライプ部5bと、GaAsからなるp−コンタクト層7との間にバンドギャップがその中間になるGaInPからなるp−GaInPバッファ層40を介在させる結果、ヘテロ接合部分のポテンシャル障壁を分散されて大きなギャップが生じなくなる為、シリーズ抵抗を低減することができる。
【0093】
(実施形態3)
図13は本発明の他の実施形態(実施形態3)である半導体レーザ素子の共振器に直交する面の模式的断面図、図14は半導体レーザ素子の共振器方向に沿う面の一部の模式的断面図である。
【0094】
本実施形態3の半導体レーザ素子1は、リッジストライプ部5bの両側のn−電流ブロック層6をn−GaAs層6dとした以外は、他の部分は実施形態1の半導体レーザ素子1と同じである。即ち、n−電流ブロック層6をn−GaAs層6dとし、前方出射面12に実施形態1と同様に、第1層31a(SiN膜)及び第2層31b(SiO膜)からなるコーティング膜31を形成した場合でも、従来素子に比べて、70℃の動作電流は約13mA低減でき、飽和光出力は約10mW向上させることができた。また、本実施形態3の半導体レーザ素子1も、前方出射面に設けたコーティング膜31の反射率ばらつきが、従来素子の±10%から±5%に半減できる。この結果、閾値電流及びスロープ効率の特性ばらつきも略半減することができた。
【0095】
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【符号の説明】
【0096】
1…半導体レーザ素子、2…n−GaAs基板、2a…ウエハ(GaAs母基板)、3…クラッド層(n−クラッド層)、4…活性層、5…クラッド層(p−クラッド層)、5a…平坦層、5b…リッジストライプ部、6…n−電流ブロック層、6a…n−AlGaInP層、6b…n−GaAs層、7…p−コンタクト層、8…n電極、9…p電極、10…共振器、11…レーザ光、12…前方出射面、13…後方出射面、22…n−GaAsキャップ層、23…マスク、31…コーティング膜、31a…第1層、31b…第2層、33…コーティング膜、40…p−GaInPバッファ層。

【特許請求の範囲】
【請求項1】
共振器の少なくとも一端にコーティング膜が設けられ、
前記コーティング膜は、前記共振器端面に形成される第1層と、該第1層上に形成される第2層とを有する半導体レーザ素子の製造方法において、
前記第1層の光学厚さd1と前記第2層の光学厚さd2の和がレーザ光の波長の0.45倍から0.55倍の厚さであり、
前記第1層と前記第2層の光学膜厚比d1/d2は、0.54≦d1/d2≦0.95、または1.05≦d1/d2≦1.86の関係となる設計値で、前記第1層と前記第2層とを成膜することを特徴とする半導体レーザ素子の製造方法。
【請求項2】
前記第1層の屈折率nd1は前記第2層の屈折率nd2よりも大きいことを特徴とする請求項1に記載の半導体レーザ素子の製造方法。
【請求項3】
前記第1層は屈折率が1.6≦nd1≦2.4となる誘電体膜であり、
前記第2層は屈折率が1.2≦nd2≦2.0となる誘電体膜であり、
前記両膜の厚さ比率が選択され、前記コーティング膜の反射率が1〜30%のうちのいずれかの数値の反射率になっていることを特徴とする請求項2に記載の半導体レーザ素子の製造方法。
【請求項4】
前記コーティング膜の反射率が6〜9%になっていることを特徴とする請求項3に記載の半導体レーザ素子の製造方法。
【請求項5】
波長600nm〜700nmの光に対する、前記コーティング膜の反射率が、7.5〜8.8%になっていることを特徴とする請求項4に記載の半導体レーザ素子の製造方法。
【請求項6】
前記第1層は、SiNx膜であり、
前記第2層は、SiO膜であることを特徴とする請求項1に記載の半導体レーザ素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−139110(P2011−139110A)
【公開日】平成23年7月14日(2011.7.14)
【国際特許分類】
【出願番号】特願2011−90883(P2011−90883)
【出願日】平成23年4月15日(2011.4.15)
【分割の表示】特願2002−379771(P2002−379771)の分割
【原出願日】平成14年12月27日(2002.12.27)
【出願人】(301005371)日本オプネクスト株式会社 (311)
【Fターム(参考)】