説明

半導体素子の製造方法、ESD保護素子の製造方法

【課題】半導体ウエハに厚みばらつきがある前提で、コストアップをすることなく高品質の半導体素子を提供すること。
【解決手段】第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、活性層と埋込拡散層の総厚を測定し、測定した総厚から前記活性層の厚さを求めるステップと、活性層に、埋込拡散層との間で電流が流れる第1導電型のコレクタ領域をイオン注入によって形成するステップと、活性層に、埋込拡散層との間で電流が流れる第2導電型のベース領域をイオン注入によって形成するステップと、ベース領域内に、ベース領域との間で電流が流れる第1導電型のエミッタ領域をイオン注入によって形成するステップとを備え、ベース領域を形成するステップは、活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体素子、特にESD(Electrostatic Discharge)保護素子の製造方法に関し、より詳しくは、半導体ウエハに厚みばらつきがある前提で、ばらつきに応じた対応をすることで、コストアップをすることなく高品質の半導体素子を製造する方法に関する。
【背景技術】
【0002】
従来、半導体デバイスの内部回路が静電気(ESD)により破壊されるのを防止するため、当該内部回路への過大な電圧入力を抑制するESD保護回路(保護素子)が開発されている。
【0003】
特許文献1には、ESD保護回路の一例が開示されている。特許文献1に開示されているESD保護回路は、NPNトランジスタの構造を利用して形成されたものである。
【0004】
このESD保護回路は、P型のシリコン基板と、当該シリコン基板上に形成されたN型のエピタキシャル層と、上記シリコン基板と上記エピタキシャル層の間に形成されたN型の埋込層と、上記エピタキシャル層内に形成されたベース領域としてのP型拡散層と、当該P型拡散層内に形成されたエミッタ領域としてのN型拡散層と、上記エピタキシャル層内にコレクタ領域として形成されたN型拡散層とを有している。
【0005】
このESD保護回路がブレークダウンする電圧(耐圧)は、上記埋込層と上記ベース領域の距離等で決まる。このESD保護回路が形成される半導体ウエハの厚さ(特に、エピタキシャル層の厚さ)は、設計値としては予め定まっているが、実際の厚さは半導体ウエハの研磨精度等によって多少のばらつきがある。そのようなばらつきを考慮せずにベース領域の深さを設定すると、以下のような問題が生じる。
【0006】
例えば、半導体ウエハの実際の厚さ(特に、エピタキシャル層の厚さ)が設計値よりも大きい場合には、埋込層とベース領域の距離が設計値よりも大きくなる。この場合、ESD保護回路の耐圧が内部回路の耐圧よりも大きくなり、そうなると静電気が印加されたときに内部回路を保護できない恐れがある。また、半導体ウエハの実際の厚さが設計値よりも小さい場合には、埋込層とベース領域の距離が設計値よりも小さくなる。この場合、ESD保護回路の耐圧が小さくなり過ぎ、内部回路に流すべき信号電流がESD保護回路に電流が流れてしまい、内部回路が正常に作動しない恐れがある。
【0007】
なお、半導体ウエハの厚さばらつきを小さくすると、ウエハメーカ内での工程増加が生じ、或いは高品質ウエハの選別によって歩留まりが低下し、コストアップの一因となる。また、半導体ウエハの厚み誤差を小さくするには限界があるため、研磨精度を向上させることは根本的な課題解決にはならない。
【0008】
また、ベース領域の深さの調節は、通常、不純物(イオン)を拡散させるための熱処理時間を変化させることで行う。しかしながら、熱処理時間が長くなれば、ベース領域は深さ方向だけでなく半導体ウエハの面方向にも広く拡散する。面方向へ広く拡散することは、ESD保護回路の特性に影響を与える可能性がある。
【0009】
上述の種々の問題が、ESD保護回路に限らず、他の半導体素子でも起こり得る。ESD保護回路以外の半導体素子を半導体ウエハに形成する場合においても、半導体ウエハの実際の厚さ(特に、エピタキシャル層の厚さ)は、設計値に対し半導体ウエハの研磨精度等によって多少のばらつきがあるからである。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2010−86989号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、このような実情に鑑みてなされたもので、半導体ウエハに厚みばらつきがある前提で、ばらつきに応じた対応をすることで、コストアップをすることなく高品質の半導体素子を提供することを目的とする。
【課題を解決するための手段】
【0012】
第1の発明は、
半導体素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
上記活性層と上記埋込拡散層の総厚を測定し、測定した総厚から上記活性層の厚さを求めるステップと、
上記活性層に、上記埋込拡散層との間で電流が流れる第1導電型のコレクタ領域をイオン注入によって形成するステップと、
上記活性層に、上記埋込拡散層との間で電流が流れる第2導電型のベース領域をイオン注入によって形成するステップと、
上記ベース領域内に、上記ベース領域との間で電流が流れる第1導電型のエミッタ領域をイオン注入によって形成するステップとを備え、
上記ベース領域を形成するステップは、上記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、半導体素子の製造方法である。
【0013】
第1の発明においては、「第1導電型」はP型、N型のいずれであってもよい。第1導電型がP型の場合は「第2導電型」はN型となり、第1導電型がN型の場合は「第2導電型」はP型となる。なお、第2乃至第6の発明においても同様である。
【0014】
第1の発明によれば、活性層と埋込拡散層の総厚を測定し、測定した総厚から活性層の厚さを求め、求めた活性層の厚さに応じてベース領域を形成する際のイオン加速エネルギーを変化させる。よって、活性層の厚さにばらつきがあっても、そのばらつきに対応してイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質の半導体素子を提供することができる。
【0015】
第2の発明は、
半導体素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
上記活性層と上記埋込拡散層の総厚を測定し、測定した総厚から上記活性層の厚さを求めるステップと、
上記活性層に、上記埋込拡散層との間で電流が流れる第1導電型のカソード領域をイオン注入によって形成するステップと、
上記活性層に、上記埋込拡散層との間で電流が流れる第2導電型のアノード領域をイオン注入によって形成するステップとを備え、
上記アノード領域を形成するステップは、上記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、半導体素子の製造方法である。
【0016】
第2の発明によれば、活性層と埋込拡散層の総厚を測定し、測定した総厚から活性層の厚さを求め、求めた活性層の厚さに応じてベース領域を形成する際のイオン加速エネルギーを変化させる。よって、活性層の厚さにばらつきがあっても、そのばらつきに対応してイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質の半導体素子を提供することができる。
【0017】
第3の発明は、第1または第2の発明において、
上記半導体基板は、絶縁層上に上記埋込拡散層および上記活性層が積層されたSOI(Silicon on Insulator)基板であることを特徴とする。
【0018】
第3の発明によれば、SOI基板における活性層の厚さにばらつきがあっても、そのばらつきに対応して、コストアップをすることなく高品質の半導体素子を提供することができる。
【0019】
第4の発明は、第1または第2の発明において、
上記ベース領域を形成するステップは、上記ベース領域の下端部が上記埋込拡散層の上部と重畳するように形成するステップであることを特徴とする。
【0020】
第4の発明によれば、ベース領域と埋込拡散層の重畳面積を適切に調節することができる。ベース領域の下端部と埋込拡散層の上部が重畳している場合は、重畳していない場合に比べてPN接合部の発熱が抑制され、ESD耐量が高くなる。
【0021】
第5の発明は、
静電気による内部回路の破壊を抑制するESD(Electrostatic Discharge)保護素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
上記活性層と上記埋込拡散層の総厚を測定し、測定した総厚から上記活性層の厚さを求めるステップと、
上記活性層に、静電気により上記ESD保護素子がブレークダウンした時に上記埋込拡散層との間で静電気が流れる第1導電型のコレクタ領域をイオン注入によって形成するステップと、
上記活性層に、上記ブレークダウン時に上記埋込拡散層との間で静電気が流れる第2導電型のベース領域をイオン注入によって形成するステップと、
上記ベース領域内に、上記ブレークダウン時に上記ベース領域との間で静電気が流れる第1導電型のエミッタ領域をイオン注入によって形成するステップとを備え、
上記ベース領域を形成するステップは、上記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、ESD保護素子の製造方法である。
【0022】
第5の発明によれば、活性層と埋込拡散層の総厚を測定し、測定した総厚から活性層の厚さを求め、求めた活性層の厚さに応じてベース領域を形成する際のイオン加速エネルギーを変化させる。よって、活性層の厚さにばらつきがあっても、そのばらつきに対応してイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質のESD保護回路(保護素子)を提供することができる。
【0023】
第6の発明は、
静電気による内部回路の破壊を抑制するESD(Electrostatic Discharge)保護素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
上記活性層と上記埋込拡散層の総厚を測定し、測定した総厚から上記活性層の厚さを求めるステップと、
上記活性層に、静電気により上記ESD保護素子がブレークダウンした時に上記埋込拡散層との間で静電気が流れる第1導電型のカソード領域をイオン注入によって形成するステップと、
上記活性層に、上記ブレークダウン時に上記埋込拡散層との間で静電気が流れる第2導電型のアノード領域をイオン注入によって形成するステップとを備え、
上記アノード領域を形成するステップは、上記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、ESD保護素子の製造方法である。
【0024】
第6の発明によれば、活性層と埋込拡散層の総厚を測定し、測定した総厚から活性層の厚さを求め、求めた活性層の厚さに応じてベース領域を形成する際のイオン加速エネルギーを変化させる。よって、活性層の厚さにばらつきがあっても、そのばらつきに対応してイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質のESD保護回路(保護素子)を提供することができる。
【発明の効果】
【0025】
本発明によれば、半導体ウエハの厚さ(特に、ウエハ中の活性層の厚さ)にばらつきがあっても、当該総厚を測定し、測定した総厚から求めた活性層の厚さに応じてイオン注入することで、コストアップをすることなく高品質のESD保護回路(保護素子)を提供することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の第1実施形態に係るESD保護素子を被保護回路(内部回路)とともに示す図
【図2】第1実施形態に係るESD保護素子の製造工程を示すフローチャート
【図3】本発明の第2実施形態に係るESD保護素子を被保護回路(内部回路)とともに示す図
【図4】第2実施形態に係るESD保護素子の製造工程を示すフローチャート
【発明を実施するための形態】
【0027】
(第1実施形態)
本発明の第1実施形態について、図面を参照しつつ説明する。
図1は、本発明の第1実施形態に係る半導体素子を示す図である。第1実施形態においては、半導体素子として、ESD(Electrostatic Discharge)保護素子を例に挙げて説明する。なお、図1は、ESD保護素子を被保護回路(内部回路)とともに示している。
【0028】
第1実施形態に係るESD保護素子1は、静電気による内部回路2の破壊を抑制するものである。以下の実施形態では、ESD保護素子1がNPN型トランジスタにより構成されている例について説明する。
【0029】
内部回路2およびESD保護回路1は、同一の半導体基板3に形成される。図1においては、主としてESD保護回路(以下、ESD保護素子と称する)1の構造を説明するために、内部回路2については模式的にブロックで示している。図1に示される例では、半導体基板3はSOI(Silicon on Insulator)基板である。半導体基板3(SOI基板)は、支持基板4、BOX酸化膜5、埋込拡散層6、活性層7が順に積層されたものである。半導体基板3自体は、従来公知のものを使用することができる。半導体基板3(SOI基板)は、例えば、裏面側に埋込拡散層6をイオン注入によって形成した上側基板と、表面側に熱酸化によってBOX酸化膜5を形成した下側基板を接合することにより形成することができる。
【0030】
支持基板4、BOX酸化膜5、埋込拡散層6、活性層7それぞれの厚さは、特に限定されるものではないが、例えば、設計値として、順に、500μm、1μm、4μm、8μmとされる。このような設計値であっても、半導体基板3を製造する際の研磨精度に起因して、埋込拡散層6と活性層7の総厚tは、実際にはプラスマイナス1μm程度の製造誤差が生じ得る。つまり、当該総厚tは、設計値12μmに対して実際には11〜13μmの値となり得る。埋込拡散層6は、N型の不純物イオンが注入されてなる領域であり、その厚さは比較的正確に制御可能である。よって、活性層7の厚さが、研磨精度の影響を受けやすい。
【0031】
そこで、本実施形態に係るESD保護素子1の製造工程においては、半導体基板3を準備した後、当該半導体基板3にESD保護素子1を形成する前に、埋込拡散層6と活性層7の総厚tを測定し、測定した総厚tから活性層7の厚さt1を求める。活性層7の厚さt1は、総厚tから埋込拡散層6の厚さt2を減算することにより求めることができる。
【0032】
内部回路2は、入力信号を当該内部回路2へ入力する入力パッド8と接続される。この入力パッド8から静電気による過大な電圧が内部回路2へ印加されることを防ぐべく、ESD保護素子1は、入力パッド8に対して内部回路2と並列に接続される。図1に示される例では、図示しないコレクタ端子を介してコレクタ端子接続領域9が入力パッド8に接続される。また、図示しないエミッタ端子を介してエミッタ領域10が接地される。
【0033】
次に、ESD保護素子1の構成について説明する。
ESD保護素子1は、支持基板4、BOX酸化膜5、埋込拡散層6、活性層7、コレクタ領域11、コレクタ端子接続領域9、ベース領域12、およびエミッタ領域10を備えている。
【0034】
支持基板4は、P型不純物イオンを低濃度で含むP−領域である。BOX酸化膜5は、絶縁層である。埋込拡散層6は、N型不純物イオンを高濃度で含むN+領域である。活性層7は、N型不純物イオンを低濃度で含むN−領域である。
【0035】
コレクタ領域11は、N型不純物イオンを高濃度で含むN+領域である。コレクタ領域11は、活性層7の表面部から縦方向に形成され、下端部が埋込拡散層6に重畳している。コレクタ領域11は、活性層7の表面からN型不純物イオンを注入することにより形成される。コレクタ領域11は、静電気によりESD保護素子1がブレークダウンした時に埋込拡散層6との間で静電気が流れる領域である。
【0036】
コレクタ端子接続領域9は、コレクタ領域11よりもN型不純物イオンをさらに高濃度で含むN+領域である。コレクタ端子接続領域9は、コレクタ領域11の表面からN型不純物イオンを注入することにより形成される。なお、図示はしないが、コレクタ端子接続領域9の上にはコレクタ端子が設けられる。ブレークダウンの際、静電気は、図1に示されるように、コレクタ端子接続領域9からコレクタ領域11を介して埋込拡散層6へ流れる。埋込拡散層6へ流れた電流は、埋込拡散層6内で、ベース領域12の方へ流れる。
【0037】
ベース領域12は、P型不純物イオンを高濃度で含むP+領域である。ベース領域12は、活性層7の表面部から縦方向に形成され、下端部が埋込拡散層6に重畳している。ベース領域12は、コレクタ領域11から横方向に離れた位置に形成される。ベース領域12は、活性層7の表面からP型不純物イオンを注入することにより形成される。ベース領域12は、静電気によりESD保護素子1がブレークダウン時に埋込拡散層6との間で静電気が流れる領域である。なお、ベース領域12の表面部にベース端子接続領域を設けるとともに当該ベース端子接続領域の上にベース端子を設けてもよいし、或いはこれらを設けなくてもよい。図示例では、ベース端子接続領域およびベース端子は設けていない。ベース端子接続領域およびベース端子を設けない場合、ベース領域12はフローティング状態とされる。
【0038】
エミッタ領域10は、N型不純物イオンを高濃度で含むN+領域である。エミッタ領域10は、ベース領域12の表面からN型不純物イオンを注入することにより形成される。エミッタ領域10は、静電気によりESD保護素子1がブレークダウン時にベース領域12との間で静電気が流れる領域である。なお、図示はしないが、エミッタ領域10の上にはエミッタ端子が設けられる。ブレークダウンの際、静電気は、図1に示されるように、埋込拡散層6からベース領域12を介してエミッタ領域10へ流れる。
【0039】
次に、ESD保護素子1の製造方法について、図2を参照しつつ説明する。図2は、第1実施形態に係るESD保護素子1の製造工程を示すフローチャートである。
図2に示されるように、まず、N型の活性層7の下にN型の埋込拡散層6を有する半導体基板3を準備する(ステップS1)。半導体基板3は、例えば、支持基板4、BOX酸化膜5、埋込拡散層6、活性層7が順に積層されたSOI基板とすることができる。
【0040】
次いで、活性層7と埋込拡散層6の総厚tを測定する(ステップS2)。総厚tは、例えば、従来公知の方法で測定することができる。次いで、総厚tから埋込拡散層6の厚さt2を減算することにより、活性層7の厚さt1を求める(ステップS3)。埋込拡散層6の厚さt2は、比較的正確に制御することができるので、t2には設計値を用いればよい。
【0041】
次いで、活性層7に、静電気によりESD保護素子1がブレークダウンした時に埋込拡散層6との間で静電気が流れるN型のコレクタ領域11およびコレクタ端子接続領域9をイオン注入によって形成する(ステップS4)。
【0042】
次いで、活性層7に、上記ブレークダウン時に埋込拡散層6との間で静電気が流れるP型のベース領域12をイオン注入によって形成する(ステップS5)。ステップS5においては、活性層7にイオン注入する深さを調整するべく、ステップS3で求めた活性層7の厚さt1に応じてイオン加速エネルギーを変化させる。活性層7の厚さt1とイオン加速エネルギーの関係は、ESD保護素子1の性能が最適となるように、予め実験等によって決定しておく。ここで言うESD保護素子1の性能とは、入力パッド8から静電気が入力された時に、内部回路2よりも先にESD保護素子1がブレークダウンして静電気を接地に流し、内部回路2を静電気から保護する機能、および、入力パッド8から内部回路2に流すべき電気信号は内部回路2に流し、当該電気信号はESD保護素子1には流さない機能を安定して発揮することである。活性層7の厚さt1とイオン加速エネルギーの最適な関係を予め決定しておくことにより、活性層7の厚さt1に対して最適なイオン加速エネルギーを決定し、その加速エネルギーでイオンを加速して活性層7にイオン注入することができる。なお、ESD保護素子1がブレークダウンする電圧(耐圧)は、埋込拡散層6とベース領域12が一部で重畳している場合には、その重畳部分の縦幅および当該重畳部分の不純物イオン濃度、等で決まる。
【0043】
次いで、ベース領域12内に、上記ブレークダウン時にベース領域12との間で静電気が流れるN型のエミッタ領域10をイオン注入によって形成する(ステップS6)。
【0044】
次いで、コレクタ端子接続領域9およびエミッタ領域10が形成されている位置を除いて、活性層7の上に層間絶縁膜(図示せず)を活性層7上に形成する(ステップS7)。
【0045】
次いで、コレクタ端子接続領域9の上にコレクタ端子(図示せず)を形成し、エミッタ領域10の上にエミッタ端子(図示せず)を形成する(ステップS8)。
以上により、ESD保護素子1を製造することができる。
【0046】
第1実施形態によれば、活性層7と埋込拡散層6の総厚tを測定し、測定した総厚tから活性層7の厚さt1を求め、求めた活性層7の厚さt1に応じてベース領域12を形成する際のイオン加速エネルギーを変化させる。よって、活性層7の厚さt1にばらつきがあっても、活性層7の厚さt1に応じてイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質のESD保護素子1を提供することができる。
【0047】
なお、上記第1実施形態では、ESD保護素子1がNPN型トランジスタにより構成されている例を示したが、ESD保護素子1がPNP型トランジスタにより構成されてもよい。また、上記第1実施形態では、ベース領域12の下端部が埋込拡散層6に重畳しているが、他の実施形態では、重畳していなくてもよい。
【0048】
また、上記第1実施形態では、ESD保護素子を例にとって説明したが、他の実施形態においては、第1実施形態と同様の製造方法をESD保護素子以外のトランジスタに適用してもよい。例えば、内部回路2としてのバイポーラ型トランジスタにおいて、第1実施形態と同様の製造方法を適用してもよい。
【0049】
(第2実施形態)
本発明の第2実施形態について、図面を参照しつつ説明する。
図3は、本発明の第2実施形態に係る半導体素子を示す図である。第2実施形態においては、半導体素子として、ESD(Electrostatic Discharge)保護素子を例に挙げて説明する。なお、図3は、ESD保護素子を被保護回路(内部回路)とともに示している。
【0050】
第2実施形態に係るESD保護素子20は、静電気による内部回路2の破壊を抑制するものである。以下の実施形態では、ESD保護素子20がダイオードにより構成されている例について説明する。なお、第1実施形態と同様の構成については、同じ参照符号を付してその説明を省略する。
【0051】
入力パッド8から静電気による過大な電圧が内部回路2へ印加されることを防ぐべく、ESD保護素子20は、入力パッド8に対して内部回路2と並列に接続される。図3に示される例では、図示しないカソード端子を介してカソード端子接続領域22が入力パッド8に接続される。また、図示しないアノード端子を介してアノード端子接続領域24が接地される。
【0052】
ESD保護素子20は、支持基板4、BOX酸化膜5、埋込拡散層6、活性層7、カソード領域21、カソード端子接続領域22、アノード領域23、およびアノード端子接続領域24を備えている。
【0053】
カソード領域21は、N型不純物イオンを高濃度で含むN+領域である。カソード領域21は、活性層7の表面部より、下端部が埋込拡散層6に重畳するように縦方向に形成されている。カソード領域21は、活性層7の表面からN型不純物イオンを注入することにより形成される。カソード領域21は、静電気によりESD保護素子20がブレークダウンした時に埋込拡散層6との間で静電気が流れる領域である。
【0054】
カソード端子接続領域22は、カソード領域21よりもN型不純物イオンをさらに高濃度で含むN+領域である。カソード端子接続領域22は、カソード領域21の表面からN型不純物イオンを注入することにより形成される。なお、図示はしないが、カソード端子接続領域22の上にはコレクタ端子が設けられる。ブレークダウンの際、静電気は、図3に示されるように、カソード端子接続領域22からカソード領域21を介して埋込拡散層6へ流れる。埋込拡散層6へ流れた電流は、埋込拡散層6内で、アノード領域23の方へ流れる。
【0055】
アノード領域23は、P型不純物イオンを高濃度で含むP+領域である。アノード領域23は、活性層7の表面部より、下端部が埋込拡散層6に重畳するように縦方向に形成されている。アノード領域23は、カソード領域21から横方向に離れた位置に形成される。アノード領域23は、活性層7の表面からP型不純物イオンを注入することにより形成される。アノード領域23は、静電気によりESD保護素子20がブレークダウン時に埋込拡散層6との間で静電気が流れる領域である。
【0056】
アノード端子接続領域24は、アノード領域23よりもP型不純物イオンをさらに高濃度で含むP+領域である。アノード端子接続領域24は、アノード領域23の表面からP型不純物イオンを注入することにより形成される。なお、図示はしないが、アノード端子接続領域24の上にはアノード端子が設けられる。ブレークダウンの際、静電気は、図3に示されるように、埋込拡散層6からアノード領域23を介してアノード端子接続領域24へ流れる。
【0057】
次に、ESD保護素子20の製造方法について、図4を参照しつつ説明する。図4は、第2実施形態に係るESD保護素子の製造工程を示すフローチャートである。
まず、N型の活性層7の下にN型の埋込拡散層6を有する半導体基板3を準備する(ステップS1)。半導体基板3は、例えば、支持基板4、BOX酸化膜5、埋込拡散層6、活性層7が順に積層されたSOI基板とすることができる。
【0058】
次いで、活性層7と埋込拡散層6の総厚tを測定する(ステップS2)。総厚tは、従来公知の方法で測定することができる。次いで、総厚tから埋込拡散層6の厚さt2を減算することにより、活性層7の厚さt1を求める(ステップS3)。埋込拡散層6の厚さt2は、比較的正確に制御することができるので、t2には設計値を用いればよい。
【0059】
次いで、活性層7に、静電気によりESD保護素子20がブレークダウンした時に埋込拡散層6との間で静電気が流れるN型のカソード領域21およびカソード端子接続領域22をイオン注入によって形成する(ステップS4)。
【0060】
次いで、活性層7に、上記ブレークダウン時に埋込拡散層6との間で静電気が流れるP型のアノード領域23をイオン注入によって形成する(ステップS5)。ステップS5においては、第1実施形態と同様、活性層7にイオン注入する深さを調整するべく活性層7の厚さt1に応じてイオン加速エネルギーを変化させる。
【0061】
次いで、アノード領域23内に、上記ブレークダウン時にアノード領域23との間で静電気が流れるP型のアノード端子接続領域24をイオン注入によって形成する(ステップS6)。
【0062】
次いで、カソード端子接続領域22およびアノード端子接続領域24が形成されている位置を除いて、活性層7の上に層間絶縁膜(図示せず)を活性層7上に形成する(ステップS7)。
【0063】
次いで、カソード端子接続領域22の上にカソード端子(図示せず)を形成し、アノード端子接続領域24の上にアノード端子(図示せず)を形成する(ステップS8)。
以上により、ESD保護素子20を製造することができる。
【0064】
第2実施形態によれば、活性層7と埋込拡散層6の総厚tを測定し、測定した総厚tから活性層7の厚さt1を求め、求めた活性層7の厚さt1に応じてベース領域12を形成する際のイオン加速エネルギーを変化させる。よって、活性層7の厚さt1にばらつきがあっても、活性層7の厚さt1に応じてイオン注入深さを最適な深さに調節することができ、コストアップをすることなく高品質のESD保護素子20を提供することができる。
【0065】
なお、上記第2実施形態では、アノード領域23の下端部が埋込拡散層6に重畳しているが、他の実施形態では、重畳していなくてもよい。
【0066】
また、上記第2実施形態では、ESD保護素子を例にとって説明したが、他の実施形態においては、第2実施形態と同様の製造方法をESD保護素子以外のダイオードに適用してもよい。
【産業上の利用可能性】
【0067】
本発明は、半導体ウエハの厚さ(特に、ウエハ中の活性層の厚さ)にばらつきがあっても、そのばらつきに対応した加速エネルギーでイオン注入をすることで、コストアップをすることなく高品質の半導体素子、特にESD保護回路(保護素子)を提供する方法等に利用可能である。
【符号の説明】
【0068】
1、20 ESD保護素子
2 内部回路(被保護回路)
3 SOI基板
4 支持基板
5 BOX酸化膜
6 埋込拡散層
7 活性層
8 IC入力パッド
9 コレクタ端子接続領域
10 エミッタ領域
11 コレクタ領域
12 ベース領域
21 カソード領域
22 カソード端子接続領域
23 アノード領域
24 アノード端子接続領域

【特許請求の範囲】
【請求項1】
半導体素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
前記活性層と前記埋込拡散層の総厚を測定し、測定した総厚から前記活性層の厚さを求めるステップと、
前記活性層に、前記埋込拡散層との間で電流が流れる第1導電型のコレクタ領域をイオン注入によって形成するステップと、
前記活性層に、前記埋込拡散層との間で電流が流れる第2導電型のベース領域をイオン注入によって形成するステップと、
前記ベース領域内に、前記ベース領域との間で電流が流れる第1導電型のエミッタ領域をイオン注入によって形成するステップとを備え、
前記ベース領域を形成するステップは、前記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、半導体素子の製造方法。
【請求項2】
半導体素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
前記活性層と前記埋込拡散層の総厚を測定し、測定した総厚から前記活性層の厚さを求めるステップと、
前記活性層に、前記埋込拡散層との間で電流が流れる第1導電型のカソード領域をイオン注入によって形成するステップと、
前記活性層に、前記埋込拡散層との間で電流が流れる第2導電型のアノード領域をイオン注入によって形成するステップとを備え、
前記アノード領域を形成するステップは、前記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、半導体素子の製造方法。
【請求項3】
前記半導体基板は、絶縁層上に前記埋込拡散層および前記活性層が積層されたSOI(Silicon on Insulator)基板であることを特徴とする、請求項1または2に記載の半導体素子の製造方法。
【請求項4】
前記ベース領域を形成するステップは、前記ベース領域の下端部が前記埋込拡散層の上部と重畳するように形成するステップであることを特徴とする、請求項1または2に記載の半導体素子の製造方法。
【請求項5】
静電気による内部回路の破壊を抑制するESD(Electrostatic Discharge)保護素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
前記活性層と前記埋込拡散層の総厚を測定し、測定した総厚から前記活性層の厚さを求めるステップと、
前記活性層に、静電気により前記ESD保護素子がブレークダウンした時に前記埋込拡散層との間で静電気が流れる第1導電型のコレクタ領域をイオン注入によって形成するステップと、
前記活性層に、前記ブレークダウン時に前記埋込拡散層との間で静電気が流れる第2導電型のベース領域をイオン注入によって形成するステップと、
前記ベース領域内に、前記ブレークダウン時に前記ベース領域との間で静電気が流れる第1導電型のエミッタ領域をイオン注入によって形成するステップとを備え、
前記ベース領域を形成するステップは、前記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、ESD保護素子の製造方法。
【請求項6】
静電気による内部回路の破壊を抑制するESD(Electrostatic Discharge)保護素子の製造方法であって、
第1導電型の活性層の下に第1導電型の埋込拡散層を有する半導体基板を準備するステップと、
前記活性層と前記埋込拡散層の総厚を測定し、測定した総厚から前記活性層の厚さを求めるステップと、
前記活性層に、静電気により前記ESD保護素子がブレークダウンした時に前記埋込拡散層との間で静電気が流れる第1導電型のカソード領域をイオン注入によって形成するステップと、
前記活性層に、前記ブレークダウン時に前記埋込拡散層との間で静電気が流れる第2導電型のアノード領域をイオン注入によって形成するステップとを備え、
前記アノード領域を形成するステップは、前記活性層の厚さに応じてイオン加速エネルギーを変化させるステップであることを特徴とする、ESD保護素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−26335(P2013−26335A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−158069(P2011−158069)
【出願日】平成23年7月19日(2011.7.19)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】