説明

半導体装置の製造方法及びTEG素子

【課題】TEGの被検査配線に非接触で電位を印加し、非接触で被検査配線の欠陥の有無及び位置を迅速に特定する。
【解決手段】半導体基板1の上面に光起電力素子2を形成し、光起電力素子2上に形成された絶縁層3上面に、一端が光起電力素子2の正電極2−1に接続されかつ他端が光起電力素子2の負電極2−2に接続された被検査配線4tを形成し、半導体基板1下面から光11を入射して光起電力素子2を励起して被検査配線4tの両端に電位差を発生させ、非接触走査型表面電位顕微鏡を用いて被検査配線4tの表面電位分布を測定する工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は非接触の走査型表面電位顕微鏡を用いてTEG(Test Element Group)内の配線の欠陥、例えば断線又は短絡を検出することで、半導体装置の配線形成工程を監視する半導体装置の製造方法及びその短絡位置の特定が容易なTEG素子に関する。
【背景技術】
【0002】
半導体装置の素子内配線の開発あるいは量産工程では、製造条件と配線の欠陥との関連、例えば配線形状又はパターニング条件等の配線製造条件と、断線又は短絡の発生箇所、発生頻度及びこれらの欠陥の形態との統計的な関連を調査し、その結果を早期に製造条件へフィードバックすることで半導体装置の製造歩留りを向上させている。
【0003】
かかる配線の欠陥に関する調査では、製造条件と配線の欠陥との関連が明瞭になるように、被検査配線として単純な配線パターン、例えば配線を間隔を設けて複数本平行に配置したいわゆるラインアンドスペースの配線パターンを有するTEGがしばしば用いられている。このようなTEGを用いて欠陥を検出し、欠陥の位置を特定し、さらに必要ならば欠陥の直接観測がなされる。これにより、欠陥の発生要因を統計的に把握するとともに、直接観測によりその原因を特定することもできる。
【0004】
TEG内の配線の欠陥は、配線の電気的導通の有無により検出することができる。例えは、ラインアンドスペースの配線の両端間の導通の有無により断線が検出され、また絶縁されるべき隣接する配線との間の導通の有無により隣接配線間の短絡が検出される。さらに、導通が途切れる位置を検出することで、断線箇所を特定することができる。
【0005】
従来、このような配線の導通検査は、配線の表面に接触針を当接させ、接触針間の導通を検出することでなされていた。しかし、接触針を用いる検査で欠陥の有無及び発生箇所を特定するには、時間がかかり早急な製造条件へのフィードバックが難しい。また、接触針の当接により配線表面の傷又は塵埃が発生することもあり、インラインでの検査に用いるには適さない。
【0006】
かかる難点を解消するために、電子顕微鏡のVC(ボルテージコントラスト)を利用した検査方法が開発されている。この方法では、電子ビームをTEGの表面に照射して配線を帯電させ、帯電した配線の電圧分布を電子顕微鏡像のコントラストとして観測する。従って、配線への電圧印加及び電圧分布の観測が非接触でなされるので、検査時間が短く、かつ配線の傷や塵埃も発生しないので、インラインでの検査が可能である。また、配線の欠陥箇所及び欠陥形状を直接観測することも容易である。
【0007】
しかし、このVCを利用する方法で配線像のコントラストを明瞭にするには、高電流密度の電子ビームを照射して配線の電圧差を大きくしなければならない。ところが、45nm以下の細い配線が用いられ、機械的強度が劣るポーラスな低誘電率絶縁材料が絶縁層として利用されるようになると、これらの細い配線及び低誘電率絶縁層は高密度電流の電子ビームの照射により破壊されるおそれがある。このため、将来使用されるような微細配線あるいは低誘電率絶縁層上に形成された配線では明瞭な配線像を観測しにくく、欠陥の検出が困難になっている。
【0008】
非接触で配線の電位差を観測する手段として、ケルビン力顕微鏡(KFM)が知られている。ケルビン力顕微鏡は走査型プローブ顕微鏡の一つであり、TEG表面の電圧分布を非接触で観測することができる。
【0009】
しかし、ケルビン力顕微鏡を用いて配線の電圧分布を観測するには、配線に電圧を印加しなければならない。従来、TEGの配線への電圧印加は、配線に電源電圧が印加された接触針を接触する方法、あるいはコロナ放電によりTEG表面の配線へ電荷を供給する方法が採用されていた。しかし、接触針を用いては完全な非接触検査はできず、またコロナ放電による電荷供給は不安定であり、安定した電圧を印加することができない。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2001−318127号公報
【特許文献2】特開2007−303852号公報
【特許文献3】特開2000−068345号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
上述したように、TEG内の配線の表面に接触針を当接して配線の断線及び短絡を検査する従来の半導体装置の製造方法では、検査時間が長く、製造条件への迅速なフィードバックをかけ難いという問題があった。
【0012】
従来の電子顕微鏡を用いた検査方法は、電子ビームで配線に電荷を供給するため非接触で迅速に検査することができる。しかし、明瞭なコントラストの配線像を得るには高電流密度の電子ビームを照射しなければならず、細い配線あるいは機械強度が弱い絶縁層が破壊されるという問題がある。
【0013】
また、ケルビン力顕微鏡を用いて配線の断線及び短絡を検査する従来の半導体装置の製造方法では、接触針を配線へ接触させて電圧を印可するので、完全な非接触の検査がなされず、検査時間が長くなってしまう。また、コロナ放電により配線へ電荷を供給する方法では、安定した電圧を印加することができず、再現性に優れた検査をすることが難しい。
【0014】
本発明は、走査型表面電位顕微鏡を用い、非接触でTEGの被検査配線の欠陥を検出することができる半導体装置の製造方法及びTEG素子を提供することを目的とする。
【課題を解決するための手段】
【0015】
上記課題を解決するために、本発明の第1の構成は、半導体基板の上面に光起電力素子を形成する工程と、前記半導体基板上に前記光起電力素子を被覆する絶縁層を形成する工程と、前記絶縁層の上面に、一端が前記光起電力素子の正電極に接続されかつ他端が前記光起電力素子の負電極に接続された複数の被検査配線を形成する工程と、前記半導体基板の下面から光を入射して前記光起電力素子を励起し、前記被検査配線の両端に電位差を発生させる工程と、非接触で表面電位を測定する走査型表面電位顕微鏡を用いて、前記被検査配線の表面電位分布を測定する工程と、前記表面電位分布に基づき、前記被検査配線の断線を検出する工程とを有する半導体装置の製造方法として構成する。
【発明の効果】
【0016】
本発明によれば、TEGの被検査配線の両端に、半導体基板に形成された光起電力素子から電圧が供給されるので、配線に電圧を印加するために外部から配線へ電圧を供給する必要がない。このため、非接触型の走査型表面電位顕微鏡を用いて完全な非接触による被検査配線の欠陥検査することができるので、検査が早く検査結果を迅速に製造条件へフィードバックすることができる。
【図面の簡単な説明】
【0017】
【図1】本発明の第1実施形態の配線パターン平面図
【図2】本発明の第1実施形態の配線パターン断面図
【図3】本発明の第1実施形態の配線製造工程断面図
【図4】本発明の第1実施形態での検査工程を説明するための配線パターン平面図
【図5】本発明の第1実施形態での配線電位図
【図6】本発明の第1実施形態での欠陥検出方法を説明するための表面電位分布図
【図7】本発明の第2実施形態の配線パターン平面図
【図8】本発明の第2実施形態の配線パターン断面図
【図9】本発明の第3実施形態の配線パターン平面図
【図10】本発明の第3実施形態の配線パターン断面図
【図11】本発明の第4実施形態の配線パターン平面図
【図12】本発明の第4実施形態の配線パターン断面図
【図13】本発明の第5実施形態の配線パターン平面図
【図14】本発明の第5実施形態の配線パターン断面図
【図15】本発明の半導体ウエーハ平面図
【図16】ケルビン力顕微鏡の斜視図
【図17】本発明のケルビン力顕微鏡の主要部断面図。
【発明を実施するための形態】
【0018】
本発明の第1実施形態は、TEG内に形成された被検査配線の断線及び短絡を検出する欠陥検査工程を有する半導体装置の製造方法に関する。なお、本第1実施形態では、半導体ウエーハ、例えばシリコンウエーハからなる半導体基板上面に、集積回路からなる半導体装置及び被検査配線を備えたTEGを混載して形成している。
【0019】
図1は本発明の第1実施形態の配線パターン平面図であり、TEGの配線パターンを表している。図2は本発明の第1実施形態の配線パターン断面図であり、図2(a)は図1のAA’断面を、図2(b)は図1のBB’断面を表している。
【0020】
まず、TEGの配線パターンを説明する。
【0021】
図1を参照して、本第1実施形態にかかるTEGの配線4は、互いに平行に配置された直線状の複数の被検査配線4tと、被検査配線4tに平行にかつ被検査配線4tに隣接して配置された直線状の複数のフローテング配線4fとを含む。なお、これらの被検査配線4t及びフローテング配線4fは、必要に応じて互いに平行な曲線状(間隔が一定の曲線状)あるいは互いに平行な折曲線状(直線部の間隔が一定の折曲線状)とすることもできる。
【0022】
TEGの配線4は、さらに被検査配線4tの延在方向(図1の紙面左右方向)に直交する方向(図1の紙面上下方向)に互いに平行に延在する2本の直線状配線からなるn型接続部6n及びp型接続部6pを含む。このn型接続部6n及び接続部6pはそれぞれ被検査配線4tの両端に配置される。そして、被検査配線4tの一端がn型接続部6nに接続され、被検査配線4tの他の一端がp型接続部6pに接続されている。従って、被検査配線4tは、2本のn型及びp型接続部6n、6pの間を繋ぐように配置される。なお、n型接続部6n及びp型接続部6pは、被検査配線4tと一体に形成することができる。
【0023】
これに対して、フローテング配線4fは、他の配線から絶縁されて配置される。このフローテング配線4t及び被検査配線4tは、例えば、同一配線幅を有し、配線幅と同一の配線間隔を有するラインアンドスペースのパターンとして形成される。
【0024】
以下、本第1実施形態のTEGの構造を説明する。
【0025】
図2を参照して、半導体基板1上面に、p型半導体基板1をp型領域2pとし、半導体基板1の上面に形成されたn型領域2nとを有するpn接合型の光電池からなる光起電力素子2が形成されている。この光起電力素子2のn型領域2n及びp型領域2p(半導体基板1)の表面には、それぞれシリサイド層からなる正電極2−1及び負電極2−2が形成されている。
【0026】
半導体基板1上面に、光起電力素子2を被覆して絶縁膜3が形成され、この絶縁膜3上面に配線4、例えばダマシン構造の銅配線4(被検査配線4t、フローテング配線4f及びn型及びp型接合部6n、6p)が埋設されている。さらに、n型及びp型接合部6n、6pの下面に、絶縁層3を貫通し、n型接合部6nと正電極2−1とを接続するピア5及びp型接合部6pと負電極2−2とを接続するピア5が設けられている。従って、被検査配線4tの両端はそれぞれ、n型接続部6n、p型接続部6p及びビア5を介して、光起電力素子2の正電極2−1及び負電極2−2に接続される。
【0027】
次に、本発明の第1実施形態の半導体装置の製造工程について説明する。
【0028】
図3は本発明の第1実施形態の配線製造工程断面図であり、製造途中のTEGの断面構造(図1のAA’断面)を表している。
【0029】
図3(a)を参照して、本第1実施形態の半導体装置の製造方法では、まず、半導体基板1の上面に、半導体装置のトランジスタ形成工程と同時に光起電力素子2を形成する。もちろん、必要ならばトランジスタの形成工程とは別工程で光起電力素子2を形成してもよい。光起電力素子2は、p型半導体基板1上面にイオン注入によりn型領域2nを形成した後、n型領域2n及びp型半導体基板1上面にサリサイド工程によりシリサイド層からなる正及び負電極2−1、2−2を形成することで製造される。なお、半導体基板1は、光起電力素子2を励起する波長の光(図2中の光11)を透過し、後述する被検査配線4tの検査に必要な光起電力を生ずる程度の厚さと光透過率とを有するものであればよく、例えばシリコン基板又はGaAs等の化合物半導体を用いることができる。
【0030】
次いで、図3(b)を参照して、半導体基板1上に、絶縁層3の下層を構成する下層絶縁膜3aとなる、例えば厚さ100nmの低誘電体絶縁膜を形成する。そして、この下層絶縁層3aをエッチングして、下層絶縁層3aを貫通し底面に正電極2−1の上面を表出するビアホール及び負電極2−2の上面を表出するビアホールを形成し、これらのビアホールをタングステンプラグで埋込みビア5を形成する。
【0031】
次いで、図3(c)を参照して、絶縁層3の上層を構成する上層絶縁膜3bとなる、ビア5及び下層絶縁層3a上面を被覆する例えば厚さ100nmの低誘電体絶縁膜を形成する。この下層絶縁層3a及び上層絶縁層3bは、低誘電体膜からなる絶縁層3を構成する。
【0032】
次いで、上層絶縁層3bの上面に、被検査配線4t、フローテング配線4f、n型及びp型接続部6n、6pからなる配線4パターンを画定する溝を形成する。このとき、n型及びp型接続部6n、6pを画定する溝の底にビア5の上端面が表出される。次いで、溝を配線金属、例えば銅で埋込み、n型及びp型接続部6n、6pを含むダマシン構造の銅配線4を形成する。
【0033】
このTEG内の被検査配線4t及びフローテング配線4fは、例えば幅が45nm、間隔が45nmのラインアンドスペースとして形成される。通常はこれに加えて、その前後の幅と間隔を有するラインアンドスペースからなる配線パターンを有する複数のTEGを含めて形成される。
【0034】
上述の工程を経て、第1実施形態のTEGが製造された。なお、上記TEGの各製造工程、例えば下層絶縁層3b、上層絶縁層3a、ビア5及び配線4の形成工程は、半導体装置の製造工程と同時に形成することが、半導体装置の配線製造工程を正確に評価するという観点から好ましい。
【0035】
次いで、被検査配線4tの欠陥検査工程を行う。
【0036】
図16はケルビン力顕微鏡の斜視図であり、走査型表面電位顕微鏡として用いられるケルビン力顕微鏡の主要な構成を表している。また、図17は本発明のケルビン力顕微鏡の主要部断面図であり、本発明に使用された走査型表面電位顕微鏡の探針37及びXYステージ33の構造を表している。
【0037】
図16及び図17を参照して、ケルビン力顕微鏡(KFM)は、半導体基板1を載置するXYステージ33と、アーム32と、XYステージを駆動する制御部34と、計測部35とを備える。
【0038】
アーム32は、その下端に探針37をカンチレバーを介して保持する探針駆動部31を有し、探針37を半導体基板1上に支持する。この探針37は、計測部35又は制御部34から探針駆動部31に印加される制御電圧により、XY面内の所定方位に走査される。
【0039】
XYステージ33は、少なくとも中央部に透明な透明部33aが設けられ、XYステージ33の中央直下に設けられた光源36からの光11をXYステージ33上面に透過させる。従って、XYステージ33上に載置された半導体基板1の裏面(下面)に、光源36からの光11が下方から入射される。
【0040】
また、XYステージ33の周縁部にXYステージ33を上下に貫通する貫通穴33bが設けられ、その貫通穴33bに緩挿する接触針38が上下可動に設けられる。この接触針38の上端は半導体基板1の裏面に接触し、下端は計測部35から所定電位が供給されているリード線35bに接続される。従って、半導体基板1は、接触針38を介して計測部35から供給される所定電位に保持される。
【0041】
計測部35は、リード線35aを介して探針37に交流電圧を印加し探針37を上下振動させるとともに、探針37の上下振動が抑制されるように探針37と半導体基板1表面との間の電位差を制御する。そして、このときの探針37と半導体基板1表面との間の電位差に基づき、半導体基板1の表面電位を測定する。
【0042】
本第1実施形態の欠陥検査工程では、まず、TEGの配線4パターンが形成された半導体基板1をXYステージ上に載置する。そして、制御装置34はリード線34bを介してXYステージ33を駆動し、検査すべきTEGが探針37直下にくるように半導体基板1を位置決めする。さらに、探針37を半導体基板1の表面に所定の距離まで近接させるために、リード線34aを介してアーム32を下降する。
【0043】
次に、再び図2及び図16を参照して、半導体基板1の下面から光源36からの光11を入射し、半導体基板1に形成された光起電力素子2を励起して正負電極2−1、2−2間に電位差を生じさせる。この正負電極2−1、2−2の電位は、それぞれビア5を介して配線4のn極接続部6n及びp極接続部6pに印加される。その結果、n極接続部6n及びp極接続部6p間に、正負電極2−1、2−2間の電位差と等しい電圧(電位差)が発生する。このため、被検査配線4tの両端に正負電極2−1、2−2間の電位差と等しい電圧が印可されるので、被検査配線4tに電流が流れ、被検査配線4tの延在方向に沿って電圧(電位)勾配が生ずる。これにより、被検査配線4tが形成された半導体基板1の表面に電位分布が発生する。
【0044】
次いで、探針37が半導体基板1表面を所定の走査方向に移動するように、XYテーブルを駆動し、又は、探針駆動部31を用いて探針37を駆動する。これにより、半導体基板1の走査方向の表面電位分布が測定される。
【0045】
次に、本第1実施形態での配線4の欠陥検出工程を詳細に説明する。
【0046】
図4は本発明の第1実施形態での検査工程を説明するための配線パターン平面図であり、欠陥7として短絡部7s及び断線部7cを有する被検査配線4tを含む配線4を表している。なお、図4に示した配線4パターンは、欠陥7以外は図1に示した配線4パターンと同一である。
【0047】
図4を参照して、直線CC’に沿って延在する被検査配線4tは、x座標Xcの位置に断線部7cが形成されており、その位置で断線している。なお、本明細書ではx軸を被検査配線4tの延在方向に採り、y軸を半導体基板1上面に含まれるx軸に直交する方向に採っている。また、直線DD’に沿って延在するフローテング配線4fに隣接する(図4の紙面下側に隣接する)被検査配線4tは、x座標Xsの位置に短絡部7sが形成されており、その位置で隣接するフローテング配線4fに短絡している。
【0048】
欠陥検出工程では、ケルビン力顕微鏡30の探針37を、被検査配線4tの延在方向に直交する(y軸に平行な)走査線12に沿って半導体基板1表面を走査させ、走査線12に沿う半導体基板1の表面電位分布を測定した。この走査線12は、例えばx座標X0を通る直線とする。
【0049】
図5は本発明の第1実施形態での配線電位分布図であり、被検査配線4t及びフローテング配線4fの延在方向に沿う電圧分布を表している。なお、図5(a)は、図4中の直線AA’及び直線BB’に沿う電圧分布を、図5(b)は、図4中の直線CC’に沿う電圧分布を、及び、図5(c)は、図4中の直線DD’に沿う電圧分布を表している。また、比較を容易にするために、図5(b)及び図5(c)中に図5(a)に示す電圧分布を破線A及び破線Bで表示している。
【0050】
図5(a)を参照して、直線Aで示すように、被検査配線4tの電位は、n極接続部6nに接続するx座標Xnの位置で、n極接続部6nの電位Vn、即ち光起電力素子2の正電極2−1の電位Vnに保持される。一方、p極接続部6pに接続するx座標Xpの位置で、p極接続部6pの電位Vp、即ち光起電力素子2の負電極2−2の電位Vpに保持される。従って、欠陥7が存在しない正常な被検査配線4t、例えは直線AA’に沿う被検査配線4tでは、その表面電位は、被検査配線の延在方向(直線AA’)に沿って電位Vnから電位Vpまで一定の電圧勾配で降圧する電位分布を形成する。その結果、被検査配線34tと走査線12とが交差するx座標X0の位置では、被検査配線4tの電位Voは電位Vnと電位Vpとの中間値をとり、
Vo=(Vn−Vp)×(X0−Xp)/(Xn−Xp)+Vp (1)
で与えられる。例えば、走査線12が被検査配線4tの中央を通る場合、Vo=(Vn+Vp)/2となる。
【0051】
他方、断線及び隣接する被検査配線4tへの短絡がない正常なフローテング配線4fは、直線Bで示すように、そのときの各種条件で定まるフローテング電位Vfに保持されている。従って、フローテング配線4tの全長にわたり常に電位Vfが観測される。
【0052】
図6は本発明の第1実施形態での欠陥検出方法を説明するための表面電位分布図であり、走査線12に沿う半導体基板1の表面電位分布と欠陥との関係を表している。なお、図6(a)は図4に示した配線4パターンの一部分を、図6(b)は正常な被検査配線4t(短絡部7s及び断線部7c等の欠陥7がない被検査配線4t)で観測された表面電圧分布を、及び、図6(c)は図6(a)に示した短絡部7s及び断線部7cを有する被検査配線4tで観測された表面電位分布を表している。なお、図6(b)及び図6(c)とも、ケルビン力顕微鏡を用いて走査線12に沿って観察した表面電位分布を表している。
【0053】
図6(b)を参照して、欠陥がない配線4パターンにおいて観測された表面電位分布は、最大電位が被検査配線4t直上で観測される電位Voを有し、及び、最小電位がフローテング配線4f直上で観測される電位Vfを有する正弦波形状であった。この表面電位分布は、図5(a)を参照して、走査線12と交差する位置(x座標Xo)における被検査配線4t及びフローテング配線4fの電位がそれぞれ、電位Vo及び電位Vfであることに由来している。かかる表面電位分布を走査距離(走査線12の延在方向への走査距離)を時間軸と見做してスペクトル分析すると、被検査配線4t及びフローテング配線4fの周期(ピッチ)に対応する周期及びその倍数周期のスペクトルが観測された。
【0054】
なお、既述したように、被検査配線4tの電位Vo及びフローテング配線4tの電位Vfは、それぞれ走査線12と交差する位置(x座標Xo)及びフローテング電位Vfに寄与する諸条件に依存する。従って、被検査配線4tの電位Vo及びフローテング配線4tの電位Vfの高低は、走査線12の位置及びフローテング電位の付与条件によって逆転することもある。また、必要ならば、走査線12のx座標Xoを適切に調整して、表面電位分布を観測に適した振幅、例えばスペクトル分析に適した振幅にすることもできる。
【0055】
次に、図6(c)及び図5を参照して、短絡部7s及び断線部7cからなる欠陥7を有する配線4パターンにおいて観測される表面電位分布を説明する。
【0056】
まず断線部7cを有する被検査配線4tでは、図5(b)中の折曲線Cを参照して、断線部7cよりn極接続部6nよりの間(x座標Xcからx座標Xnまで)の電位はn極接続部6nの電位Vnに保持され、他方、断線部7cよりp極接続部6pよりの間(x座標Xcからx座標Xpまで)の電位はp極接続部6pの電位Vpに保持される。従って、破談部7cが走査線12位置(x座標Xn)よりn極接続部6nに近い側にある場合、観測される被検査配線4tの電位はp極接続部6pの電位Vpに等しく、逆に、破談部7cが走査線12位置(x座標Xn)よりp極接続部6pに近い側にある場合、観測される被検査配線4tの電位はn極接続部6nの電位Vnに等しい。なお、これらの電位Vn、Vpは、直線A及び直線Cを参照して、正常な被検査配線4tで観測される電位Voと異なる電位を有する。このため、容易に断線部7cの有無を検出することができる。
【0057】
図6(c)を参照して、観測された表面電位分布は、断線部7cが存在する被検査配線4tの位置で電位Vpまで低下している。このように、被検査配線4tの電位がp極接続部6pの電位Vpまで低下すした場合は、この被検査配線4tは断線部7cを有し、かつ断線部7cが走査線12よりn極接続部6n側に存在すると判定する。逆に、被検査配線4tの電位がn極接続部6nの電位Vnまで上昇した場合は、この被検査配線4tは断線部7cを有し、かつ断線部7cが走査線12よりp極接続部6p側に存在すると判定する。このように、表面電位分布から、断線部7cの有無と、そのおおよその位置(走査線12を挟むいずれかの側)とが検出される。
【0058】
次に、短絡部7aを有する被検査配線4tでは、図5(c)中の直線Dを参照して、短絡部7sを介して隣接する被検査配線4tと短絡するフローテング配線4fの電位は、短絡部7s位置(x座標Xs)における被検査配線4tの電位Vsに等しくなる。この電位Vsは、フローテング配線4fの電位勾配を一定として、
Vs=(Vn−Vp)×(Xs−Xp)/(Xn−Xp)+Vp (2)
となる。これから、短絡部7sのx座標Xsは、
Xs=(Vs−Vp)×(Xn−Xp)/(Vn−Vp)+Xp (3)
として求めることができる。ここで、光起電力素子2の起電力(Vn−Vp)は既知であり、Xn、Xpも既知であるから、電位Vsを測定することで短絡部7sのx座標Xsを算出することができる。
【0059】
図6(c)を参照して、観測された表面電位分布の中で、短絡部7sが存在するフローテング配線4fの位置の表面電位が、上述した電位Vsまで上昇している。このように、フローテング配線4fの位置で、正常のフローテング配線4fのフローテング電位Vfと異なる電位Vsが観測された場合、この電位Vsが観測されたフローテング配線4fに隣接する被検査配線4tが短絡部7sを有すると判定する。上述したように、フローテング配線4tの電位を観測することで、短絡部7sの有無を判定することができる。さらに、観測された電位Vsを式2に代入して、短絡部7sのx座標Xsを算出することもできる。
【0060】
上述した短絡部7sの検出において、短絡したフローテング配線4fであっても、その電位Vsが正常なフローテング配線4fのフローテング電位Vfに等しい場合は、正常な配線4の表面電位分布と同一になるため短絡部7sを検出することができない。かかる事態は、異なるx座標Xoを有する2本の走査線12に沿って2回の表面電位分布の観測を行うことで、あるいは放電又は電荷供給によりフローテング電位Vfを変動させて表面電位分布を観測することで回避することがてきる。
【0061】
上述した断線部7c及び短絡部7sの欠陥検出工程において、観測された表面電位分布の周波数解析、例えばスペクトル分析を初めになすことが好ましい。断線部7c及び短絡部7sは、正常な配線4の表面電位分布に、基本周期又は1/2周期ずれた位置に欠陥起因の電位Vs、Vcを追加する。かかる表面電位分布の変化はスペクトル分布に鋭敏に反映されるから、極めて迅速かつ容易に欠陥の有無を判定することができる。
【0062】
上記欠陥検出工程に続けて、短絡部7s及び断線部7cの直接観測を行った。この直接観測は、まず短絡部7s及び断線部7cのx座標Xs、Xcを特定し、必要ならばその部分の絶縁膜を譲許して、走査型電子顕微鏡を用いで観察した。短絡部7sのx座標Xsは上述したように電圧Vsから容易に算出することができる。これに対して、断線部7cのx座標Xcは、断線部7cの存在が選出された被検査配線4tに沿って、その延在方向(x軸方向)に探針37を走査し、表面電位が急変する位置を検出し、この位置を断線部7cのx座標Xcとすることで特定することができる。
【0063】
上述した本発明の第1実施形態の半導体製造方法によれば、被検査配線4tへの電位が半導体基板1に形成された光起電力素子2から供給されるので、完全な非接触による迅速な欠陥検出がなされる。また、短絡部7sのx座標Xsを、表面電位分布の観測のみで容易にかつ迅速に特定することができる。従って、接触針による配線4の破壊及び塵埃の発生がないのでインラインでの観測が可能であり、かつ検査が迅速なので容易に迅速な製造工程へのフィードバックがなされる。
【0064】
本発明の第2実施形態は、ビアチェーンを構成する被検査配線の断線部の検出方法に関する。
【0065】
図7は本発明の第2実施形態の配線パターン平面図であり、TEG内の配線4の形状を表している。、図8は本発明の第2実施形態の配線パターン断面図であり、図7中の直線AA’断面を表している。
【0066】
図7及び図8を参照して、本第2実施形態の配線4は、n極接続部6nとp極接続部6pとの間に、互いに平行にx軸方向(図面の左右方向)に延在する被検査配線4tを配したものである。
【0067】
各被検査配線4tは、絶縁層3中に埋設された2本の下層被検査配線4st−1、4st−2と、前縁層3表面に形成されたダマシン構造を有する3本の上層被検査配線4t−1、4t−2、4t−3と、下層被検査配線4st−1、4st−2と上層被検査配線4t−1、4t−2、4t−3とを接続するビア8とから構成される。なお、これら配線の分割数は必要に応じて任意の数に設定することができる。
【0068】
これら上層被検査配線4t−1、4t−2、4t−3及び下層被検査配線4st−1、4st−2は、同一直線上に配置され、その延在方向(前記同一直線の伸長方向)に互いに分離されて配置されている。そして、上層被検査配線4t−1、4t−2、4t−3が分離する隙間(平面視したときの隙間)に、下層被検査配線4st−1、4st−2が位置するように配置される。このとき、上層被検査配線4t−1、4t−2、4t−3及び下層被検査配線4st−1、4st−2の端部が重なるように配置される。ビア8は、この重なる端部を接続するよに形成される。このように形成された被検査配線4tは、上層被検査配線4t−1、ビア8、下層被検査配線4st−1、ビア8、上層被検査配線4t−2、ビア8、下層被検査配線4st−2、ビア8、上層被検査配線4t−3の順で直列接続されたビアチェーン構造を有する直線状の配線として構成される。
【0069】
この被検査配線4tを構成する両端に位置する上層被検査配線4t−1、4t−3は、それぞれn極接続部6n及びp極接続部6pと一体に形成され、これらn極接続部6n及びp極接続部6pに接続される。
【0070】
本第2実施形態のTEGは、以下の工程により形成された。
【0071】
まず、第1実施形態と同様の工程で半導体基板1上面に光起電力素子2を形成する。ついで、下層絶縁膜3aを形成し、下層絶縁膜3aを貫通してそれぞれ正電極2−1及び負電極2−2に接続するビア5下部形成する。次いで、下層絶縁膜3a上面にダマシン構造のCu下層被検査配線4st−1、4st−2を形成する。同時に、ビア8下部の上端に接続するビア接続用配線5sを形成する。
【0072】
次いで、下層被検査配線4st−1、4st−2及びビア接続用配線5sを埋め込む上層絶縁層3bを形成する。次いで、上層絶縁層3bを貫通して下層被検査配線4st−1、4st−2の両端に接続するビア8を形成する。同時に、上層絶縁層3bを貫通してビア接続用配線5sに接続するビア5上部を形成する。これにより、ビア下部、ビア接続用配線5s及びビア上部からなるビア5が形成される。次いで、上層絶縁層3a上面にダマシン構造のCu上層被検査配線4t−1、4t−2、4t−3、及び、n極及びp極接続部6n、6pを形成する。かかる工程を経て本第2実施形態のTEGが形成された。
【0073】
本第2実施形態では、ケルビン力顕微鏡を用いた第1実施形態の欠陥検出工程と同様の工程により被検査配線4tの欠陥を検出する。但し、フローテング配線4fを備えていないので、短絡部7sの検出はなされず、専ら断線部7cのみを検出する。半導体製造工程の配線形成条件を決定する際に、とくに注目すべき欠陥を他の多様な欠陥から分離して傑出することが望ましい場合がある。本第2実施形態によれは、短絡部7sの有無に拘わらず断線部7cのみを検出することができる。
【0074】
さらに、本第2実施形態では、被検査配線4tは多数のビア8により直列に接続されている。従って、とくにビアの接続不良が問題とされる場合に、ビアの接続不良を効果的に調査できる点で有効である。
【0075】
上述した本第2実施形態での断線線部7cの検出は、既述のように第1実施形態と同様に被検査配線4tの表面電位分布を観測することでなされる。しかし、絶縁層3に埋設されている下層被検査配線4t配線の表面電位は難しい。このため、表面電位分布の観測では、被検査配線4tが絶縁層3上に表出する部分、例えば上層被検査配線4t−2を横切るように走査線12を設定する。
【0076】
本発明の第3実施形態は、第1実施形態の被検査配線4t及びフローテング配線4fをビアチェーン構造としたTEG配線に関する。
【0077】
図9は本発明の第3実施形態の配線パターン平面図であり、被検査配線4t及びフローテング配線4fを含む配線4パターンを表している。、図10は本発明の第3実施形態の配線パターン断面図であり、図10(a)及び(b)はそれぞれ、図9中の直線AA’断面及び直線BB’断面を表している。
【0078】
図9を参照して、第3実施形態の配線4パターンは、ビアチェーン構造を除くと、他はほぼ第1実施形態と同様である。
【0079】
図9及び図10(a)を参照して、第3実施形態の被検査配線4tは第2実施形態の被検査配線4tと同様のビアチェーン構造、即ち直線上に分割して配置された上層被検査配線4t−1〜4t−5と、その分割部分の隙間に配置され、かつ、絶縁層3中に埋設された下層被検査配線4st−1〜4st−4と、その両配線間を接続するビア8とから構成されるビアチェーン構造を有する。
【0080】
他方、フローテング配線4fは、図9及び図10(b)を参照して、被検査配線4tと同様のビアチェーン構造をなし、絶縁層3上に形成され、直線上に分割して配置された上層フローテング配線4f−1〜4f−3と、その分割部分の隙間及びフローテング配線4fの両端部分に配置された下層フローテング配線4sf−1〜4sf−4と、上層フローテング配線4f−1〜4f−3と下層フローテング配線4sf−1〜4sf−4とを接続してビアチェーン構造を形成するピア8とから構成される。なお、フローテング配線4tは被検査配線4の間に配置され、両者によりラインアンドスペース構造を構成する。また、下層フローテング配線4sf−1〜4sf−4は下層被検査配線4st−1〜4st−4と同様にして同時に形成される。
【0081】
本第3実施形態では、配線4の欠陥検出は第1実施形態と同様の方法でなされる。但し、表面電位分布の測定は、第2実施形態と同様に被検査配線4tが絶縁層3上面に表出している部分、例えば上層被検査配線4t−3を横切る走査線上でなされる。
【0082】
本第3実施形態によると、フローテング配線4fを備えるため、被検査配線4tの断線部7c及び短絡部7sの両方の欠陥を検出することができる。しかも、多数のビア8を含むビアチェーン構造の配線4を用いるので、ビア8部分の接続不良及びビア8部分の短絡が効率よく検出される。従って、ビア8の接続不良及び短絡の発生頻度等を調べる場合にとくに適している。
【0083】
本発明の第4実施形態は、上下層間を複数のビアにより接続した2層構造の被検査配線4tを有するTEGに関する。
【0084】
図11は本発明の第4実施形態の配線パターン平面図であり、2層構造の配線4パターンを表している。図12は本発明の第4実施形態の配線パターン断面図であり、図12(a)及び(b)はそれぞれ、図11中の直線AA’断面及び直線BB’断面を表している。
【0085】
図11を参照して、本第4実施形態の配線4パターンは、二層配線構造を除く他は第1実施形態と同様である。図12(a)を参照して、被検査配線4t及びフローテング配線4fは、第1実施形態と同様に、絶縁層3の上面に形成されたダマシン構造のCu配線からなる。
【0086】
本第4実施形態では、図12(b)を参照して、被検査配線4t及びフローテング配線4fと同一パターンを有する下層被検査配線4st及び下層フローテング配線4sfがそれぞれの配線直下の絶縁層3中に埋設されている。そして、被検査配線4t及びフローテング配線4fは、それぞれその直下に埋設された下層被検査配線4st及び下層フローテング配線4stと、延在方向に沿って設けられた多数のビア8により接続されている。即ち、被検査配線4t及びフローテング配線4fは、それぞれビアで接続された2層の配線構造をなす。
【0087】
この2層配線構造を有する本第4実施形態によれば、2層構造の一方の層の配線が断線しても、他方の層の配線とビアとにより断線部分を迂回する線路が形成されるため、断線により表面電位分布が変化する機会が減少する。このため、断線に対する検出感度が低下する。断線の検出は、他の欠陥、例えば短絡部7sの検出に対する妨害となるが、その感度が低下するから、他の欠陥、例えば短絡部7sを高感度で検出することができる。
【0088】
本発明の第5実施形態は、ゲート電極を接続するビアチェーン構造の配線に関する。
【0089】
図13は本発明の第5実施形態の配線パターン平面図である。図14は本発明の第5実施形態の配線パターン断面図であり、図13中の直線AA’に沿う断面を表している。
【0090】
図13及び図14を参照して、本第5実施形態は、下層被検査配線4st−1、4st−2がゲート絶縁膜9上に形成されたゲート電極から構成される他は、第2実施形態と同様である。
【0091】
図14を参照して、第5実施形態では、半導体基板1上面に、p型半導体基板1をp型領域とし、p型半導体基板1上面に形成されたnウエルをn型領域2nとする光起電力素子2を形成する。次いで、n型領域2nの一部上面にゲート絶縁膜9を形成し、そのゲート絶縁膜8上に複数の、例えば2個の下層被検査配線4st−1、4st−2を形成する。この下層被検査配線4st−1、4st−2は、半導体装置のトランジスタのゲート電極と同時に形成される。もちろん、必要ならば、異なる製造条件の下で形成してもよい。なお、通常は、同一TEG内に異なるゲート長の下層被検査配線4st−1、4st−2を複数組形成する。
【0092】
さらに、半導体基板1上に、下層被検査配線4st−1、4st−2を被覆する絶縁層3を形成した後、第2実施形態と同様にして、絶縁層3を貫通して下層被検査配線4st−1、4st−2に接続するビア6、n型及びp型接続部6n、6pに接続するビア5、及び、絶縁層3上面にダマシン構造を有するCu配線からなる上層被検査配線4t−1〜4t−3を形成する。このビア6、8及び上層被検査配線4t−1〜4t−3の形成工程は第2実施形態と(即ち第1実施形態と)同様である。
【0093】
これにより、ゲート絶縁膜9上に形成されたゲート電極を下層被検査配線4st−1、4st−2とする、第2実施形態と同様のビアチェーン構造の配線4が形成された。なお、必要ならば、光起電力素子2とn型及びp型接続部6n、6p層とを接続するビア5の下端面にシリサイド層からなる正及び負電極を形成することもできる。
【0094】
本段5実施形態によれば、ビアチェーン構造のゲート電極配線の断線を選択的に検出することができる。
【0095】
上述した第1〜第5実施形態のTEGは、以下に説明するように、半導体装置の開発段階に応じてその中から適切な一つ又は複数のTEGを選択して用いることが好ましい。
【0096】
図15は本発明の半導体ウエーハ平面図であり、半導体基板(半導体ウエーハ)上に配置されたTEG及び半導体装置の形成領域を表している。なお、図1(a)〜(c)は、それぞれ第1〜第3実施例の半導体ウエーハを表している。
【0097】
図15を参照して、本発明に係る半導体装置の製造方法では、半導体ウエーハ1(半導体基板1)の主面に、集積回路からなる半導体装置が形成れさるべき矩形の半導体装置形成領域20が行列状に配置されている。以下、説明を簡明にするため、半導体装置形成領域20が、半導体ウエーハ1主面に上に3行、3列に配置された例について説明する。
【0098】
図15(a)を参照して、第1実施例は、半導体ウエーハ1の主面に配置された全ての半導体形成領域20をTEGの形成領域として使用する。即ち、本来は半導体装置が形成されるべき各半導体形成領域20内に、複数のTEG21〜24が形成され、半導体ウエーハ1主面上には半導体装置は形成されない。
【0099】
これら複数のTEG21〜24は、第1〜第5実施形態のTEGの中から、調査対象として最も重要とされる欠陥を容易に検出し、製造条件との関連を容易に分析し得るTEGを選択して用いる。このとき、複数のTEG21〜24のそれぞれを異なるものとして複数種類の欠陥についての関連を調査してもよく、全てを同一として多数のデータ収集に基づく調査の精密化を図ることもできる。
【0100】
かかる第1実施例は、多種類かつ多量のデータを収集可能であるから、欠陥発生の状況が未知の段階、例えば半導体装置の開発初期の段階、あるいは半導体装置の配線パターン又はその製造条件の大幅な変更があった段階に用いて、実際に発生する欠陥の概略を把握するに適している。
【0101】
図15(b)を参照して、第2実施例は、半導体ウエーハ1の主面に配置された半導体形成領域20のうち、一部の複数領域、例えば2個の半導体形成領域20をTEGの形成領域として使用する。例えば、2個の半導体形成領域20内に複数のTEG21〜24を形成し、残りの7個の半導体形成領域20内に集積回路(半導体装置)を形成する。
【0102】
この第2実施例では、半導体製造工程の中で発生する特定の欠陥に関する調査を効果的に行うことができる。このため、半導体装置の量産初期の段階に用いることで、重要となる特定の欠陥と製造条件との関連を調べるのに適している。
【0103】
図15(c)を参照して、第3実施例のTEG25は、半導体ウエーハ1の主面に配置された半導体形成領域20の間、例えばスライスラインに配置される。従って、半導体装置形成領域20には半導体装置(集積回路)が形成され、TEGは形成されない。このTEG25は、特定の欠陥を選択的に検出できることが望ましく、かかる適切なTEGを第1〜第5実施形態の中から選択して用いられる。
【0104】
この第3実施形態は、同一半導体ウエーハ1上に形成される半導体装置の個数が、TEG形成に影響されず、常に最大にすることができる。このため、半導体装置の量産段階における製造条件の監視に適している。
【産業上の利用可能性】
【0105】
本発明を半導体装置の開発又は量産における製造条件と欠陥との関連の調査に適用することで、製造条件と配線の欠陥との調査結果を迅速に製造条件へフィードバックすることができるのて、半導体装置の開発及び量産工程における製造条件の調整を迅速に行うことができる。
【符号の説明】
【0106】
1 半導体基板(半導体ウエーハ)
2 光起電力素子
2p p型領域
2n n型領域
2−1正電極
2−2負電極
3 絶縁層
3a 下層絶縁層
3b 上層絶縁層
4 配線
4t 被検査配線
4t−1〜4t〜5 上層被検査配線
4f フローテング配線
4f−1〜4f−3 上層フローテング配線
4st、4st−1〜4st−4 下層被検査配線
4sf、4sf−1〜4sf−4 下層フローテング配線
5、8 ビア
5s ビア接続用配線
6n n極接続部
6p p極接続部
7 欠陥
7s 短絡部
7c 断線部
9 ゲート絶縁膜
11 光
12 走査線
20 半導体装置形成領域
21〜24、25 TEG
30 ケルビン力顕微鏡(KFM)
31 探針駆動部
32 アーム
33 XYステージ
33a 透明部
33b 貫通穴
34 制御部
34a、34b、35a、36b リード線
35 計測部
36 光源
37 探針
38 接触針

【特許請求の範囲】
【請求項1】
半導体基板の上面に光起電力素子を形成する工程と、
前記半導体基板上に、前記光起電力素子を被覆する絶縁層を形成する工程と、
前記絶縁層の上面に、一端が前記光起電力素子の正電極に接続されかつ他端が前記光起電力素子の負電極に接続された複数の被検査配線を形成する工程と、
前記半導体基板の下面から光を入射して前記光起電力素子を励起し、前記被検査配線の両端に電位差を発生させる工程と、
走査型表面電位顕微鏡を用いて、前記被検査配線の表面電位分布を測定する工程と、
前記表面電位分布に基づき、前記被検査配線の断線を検出する工程とを有する半導体装置の製造方法。
【請求項2】
前記複数の被検査配線は互いに並行に形成され、
前記表面電位分布を測定する工程は、前記被検査配線の延在方向に直交する走査方向に沿う表面電位を測定することを特徴とする請求項1記載の半導体装置の製造方法。
【請求項3】
前記走査方向に沿う前記表面電位分布の周期の乱れから、前記被検査配線の欠陥を検出することを特徴とする請求項2記載の半導体装置の製造方法。
【請求項4】
前記被検査配線の形成と同時に、前記絶縁層の上面に、前記被検査配線に沿い並行に延在しフローテング電位を有するフローテング配線を形成する工程を有し、
前記表面電位分布に基づき、前記被検査配線の断線及び前記被検査配線と前記フローテング配線間の短絡を検出する工程とを有することを特徴とする請求項1記載の半導体装置の製造方法。
【請求項5】
前記被検査配線は、前記絶縁層の上面に延在方向に分離されて形成された複数の上層被検査配線と、
前記絶縁層に埋設された下層被検査配線と、
前記下層被検査配線と前記上層被検査配線とを接続するビアとを有し、
分離されて形成された複数の前記上層被検査配線が、前記ビア及び前記下層被検査配線を介して直列接続されていることを特徴とする請求項1記載の半導体装置の製造方法。
【請求項6】
半導体基板の上面に形成され、前記半導体基板の下面から入射する光により励起される光起電力素子と、
前記半導体基板上に形成され、前記光起電力素子を被覆する絶縁層と、
前記絶縁層の上面に形成され、一端が前記光起電力素子の正電極に接続されかつ他端が前記光起電力素子の負電極に接続された複数の被検査配線と、
を備えたTEG素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−192521(P2010−192521A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−32734(P2009−32734)
【出願日】平成21年2月16日(2009.2.16)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】