説明

微小可動デバイス及びその作製方法

【課題】異物が挟まって可動体が動作しなくなさらには電気的短絡が生じるといった不具合が発生しない微小可動デバイスを提供する。
【解決手段】単結晶シリコン基板61上に、絶縁層62を介して単結晶シリコン層63からなる構造体(固定櫛歯電極51,52等)が固定され、基板板面と平行に変位する単結晶シリコン層からなる可動体(可動ロッド46等)が構造体に保持されてなる微小可動デバイスにおいて、単結晶シリコン基板上面の構造体が存在しない全領域に凹部64が形成され、可動体が絶縁層を具えずに凹部上に位置し、異物が挟まらない十分な空隙が確保され、かつ構造体が凹部上に張り出すオーバーハング部を持ち、このオーバーハング部の下側にあって構造体を単結晶シリコン基板に固定している絶縁層の周縁が凹部上に懸からない位置に在り、これによって単結晶シリコン基板と単結晶シリコン層との間に微小な空隙が形成されて電気的短絡が防止される
【選択図】図11

【発明の詳細な説明】
【技術分野】
【0001】
この発明はフォトリソグラフィやエッチングといったマイクロマシニング技術で作製される微小可動デバイスに関し、特に基板板面と平行に変位する可動体を備える微小可動デバイスとその作製方法に関する。
【背景技術】
【0002】
この種の微小可動デバイスとしては例えば光スイッチや加速度計、リレーデバイス等のデバイスがあり、このような微小可動デバイスは一般に単結晶シリコン基板上に絶縁層を介して単結晶シリコン層が配置されてなる三層構造のSOI(Silicon
on Insulator)基板を用いることによって作製されている。
図19はこのようにSOI基板を用いて作製される微小可動デバイスの従来構成の一例として特許文献1に記載されている光スイッチの構成を示したものであり、図20はその光スイッチの特許文献1に示されている作製方法(作製工程)を示したものである。まず、図19を参照して、この光スイッチの構成を簡単に説明する。
【0003】
板状の基体11上に4本のファイバ溝12a〜12dが十字状に形成され、その互いに直角なファイバ溝12a,12b間の基体11が駆動体形成部11′とされる。駆動体形成部11′にはファイバ溝12a,12bに対しそれぞれ45°をなすスロット13が形成され、このスロット13に可動ロッド14が配されている。
可動ロッド14の一端にはミラー15が設けられており、このミラー15は十字状をなすファイバ溝12a〜12dの中心部16に位置されている。可動ロッド14の延伸方向中間部の両側には支持ビーム17a,17bの一端がそれぞれ連結され、これら支持ビーム17a,17bの他端は板ばねヒンジ18a,18bを介して固定支持部19a,19bに固定されている。同様に、可動ロッド14の延伸方向他端の両側にも支持ビーム17c,17dの一端がそれぞれ連結され、これら支持ビーム17c,17dの他端が板ばねヒンジ18c,18dを介して固定支持部19a,19bに固定され、これにより可動ロッド14はその延伸方向に移動可能に支持されている。
【0004】
可動ロッド14は櫛歯型静電アクチュエータによって駆動されるものとなっており、支持ビーム17a〜17dにはそれぞれ可動櫛歯電極21a〜21dが配列固定され、これらと組み合わされる固定櫛歯電極22a〜22dがそれぞれ駆動体形成部11′に固定配置されている。
可動櫛歯電極21a,21bと固定櫛歯電極22a,22bとの間に電圧を印加することにより静電吸引力が発生し、この静電吸引力により可動ロッド14は中心部16に近づく方向に移動する。一方、可動櫛歯電極21c,21dと固定櫛歯電極22c,22dとの間に電圧を印加すれば静電吸引力により可動ロッド14は中心部16から遠ざかる方向に移動する。従って、このような櫛歯型静電アクチュエータによって可動ロッド14を駆動することにより、ミラー15を中心部16に対して挿抜できるものとなっている。
【0005】
4本のファイバ溝12a〜12dには光ファイバ23a〜23dがそれぞれ配置され、ミラー15が中心部16に挿入されている状態では例えば光ファイバ23aから出射した光はミラー15で反射されて光ファイバ23dに入射し、また光ファイバ23bから出射した光はミラー15で反射されて光ファイバ23cに入射する。一方、ミラー15を中心部16から抜き出した状態では光ファイバ23aから出射した光は光ファイバ23cに入射し、光ファイバ23bから出射した光は光ファイバ23dに入射するものとなり、このようにして光路切り替えが行われるものとなっている。
【0006】
この光スイッチは図20に示したような作製方法によって作製される。即ち、図20(1)に示したように単結晶シリコン基板31上にシリコン酸化膜よりなる絶縁層32を介して単結晶シリコン層33が配置されてなるSOI基板30を用意し、その単結晶シリコン層33上に所要のマスク34をパターニングして形成する。そして、単結晶シリコン層33のマスク34から露出している部分を反応性イオンエッチング(RIE)によりエッチングし、図20(2)に示したように絶縁層32が露出するまで単結晶シリコン層33を除去する。
【0007】
図20(2)における単結晶シリコン層33の幅狭部分35は図19における可動ロッド14、支持ビーム17a〜17d、板ばねヒンジ18a〜18dなどの可動体に相当し、幅広部分36は図19における固定支持部19a,19bなどの固定配置される構造体に相当する。この図20ではそれらを例示的に示している。
次に、図20(2)において、露出した絶縁層32に対し、ウエットエッチングを施し、幅狭部分35の下に位置する絶縁層32がサイドエッチングにより除去されるまでエッチングを行う。これにより幅狭部分35は図20(3)に示したように空隙を介して単結晶シリコン基板31上に位置するものとなり、つまりこのような絶縁層32の除去によって幅狭部分35で構成される可動体が単結晶シリコン基板31から離間されて移動自在とされる。なお、単結晶シリコン層33のミラー15をなす部分には、その側壁面に反射膜が蒸着形成される。
【0008】
このように図20に示した製造方法ではSOI基板30の絶縁層32を犠牲層として用いるものとなっており、単結晶シリコン層33で構成された可動体の下に位置する絶縁層32を、エッチング除去することによって可動体の移動を可能としていた。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第6315462号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
上述したように、単結晶シリコン基板上に、その基板板面と平行に変位する可動体を具備する微小可動デバイスは、一般にSOI基板を使用して形成され、従来においてはその中間絶縁層を犠牲層として用いることにより、可動体をその下に位置する基板から離間させるものとなっていた。
しかしながら、SOI基板の中間絶縁層の厚さは通常厚くても3μm程度であって、可動体下に形成される空隙は極めて狭いことから、わずかでも異物が空隙に入り込むと、異物が挟まって可動体が動作しなくなるといった動作不良が生じ易いものとなっていた。
【0011】
また、可動体の下の絶縁層がサイドエッチングによって消失するのと同時に、固定配置される構造体の下の絶縁層もサイドエッチングされ、可動体下の絶縁層がサイドエッチングされる幅と同程度の幅の空隙が構造体と、その下に位置する基板との間にも形成されることから、この空隙にも異物が入り込んで挟まるといったことが起こりうる。この場合、単結晶シリコン基板と、その上方に位置する単結晶シリコン層とが異物を介して電気的に短絡するといった状況が発生する可能性があり、よって構造体同士が異物及び単結晶シリコン基板を介して短絡するといった状況が起こりうる。
【0012】
従って、例えば櫛歯型静電アクチュエータに電圧を印加するための電極として使用される単結晶シリコン層よりなる2つの構造体がこのようにして短絡してしまう虞れがあり、これによっても可動体の動作が不能となるものとなっていた。
この発明の目的はこのような状況に鑑み、SOI基板を使用して形成することができ、かつ異物が挟まって可動体が動作しなくなるさらには電気的短絡が生じるといった従来の不具合が発生しない構造とした微小可動デバイスを提供することにあり、さらにその作製方法を提供することにある。
【課題を解決するための手段】
【0013】
請求項1の発明は、単結晶シリコン基板上に、可動体と、その可動体以外の構造体とが形成されてなる微小可動デバイスであって、構造体は上記単結晶シリコン基板上にシリコン酸化膜よりなる絶縁層を介して単結晶シリコン層が配置されてなる三層構造を有するSOI基板の単結晶シリコン層からなり、絶縁層を介して単結晶シリコン基板上に固定されており、可動体は上記単結晶シリコン層からなり、構造体によって単結晶シリコン基板の板面と平行に変位可能に保持され、単結晶シリコン基板上面の上記構造体が存在しない全領域に凹部が形成されて、上記可動体が凹部上に位置し、上記構造体は凹部上に張り出すオーバーハング部を持ち、このオーバーハング部の下側にあって上記構造体を単結晶シリコン基板に固定している絶縁層の周縁が凹部上に懸からない位置にあり、これによって、単結晶シリコン基板と単結晶シリコン層との間に微小な空隙が形成されているものとされる。
請求項2の発明は、請求項1記載の微小可動デバイスを作製する方法であって、三層構造のSOI基板の単結晶シリコン層の上面にマスク層を形成し、構造体用のマスクと幅狭パターンの組み合わせよりなる可動体用のマスクとをマスク層をパターニングして形成し、単結晶シリコン層のマスクから露出している部分を上記単結晶シリコン基板に垂直に絶縁層が露出するまでガス反応性のドライエッチングによって除去し、そのドライエッチングによって各マスクの下に形成された単結晶シリコン層の基板板面に垂直な側壁面を側壁保護膜で覆い、絶縁層のドライエッチングによって露出した部分をエッチング除去して単結晶シリコン基板の上面を露出させ、その露出した単結晶シリコン基板の上面に対し、可動体用マスクの下側の上記単結晶シリコン基板の表面領域がエッチング除去されて凹部が形成されるまで晶シリコンの等方性エッチングを施し、これにより、上記単結晶シリコン基板上面の上記構造体が存在しない領域全てに凹部が形成され、上記可動体は凹部上に位置し、上記構造体は凹部上に張り出すオーバーハング部を持ち、その後、マスク及び側壁保護膜を除去し、上記可動体の下側の絶縁層及び上記オーバーハング部の下側の絶縁層をエッチング除去することによって作製される。
【0014】
発明によれば、単結晶シリコン基板上に、その基板板面と平行に変位する可動体と、その可動体以外の構造体とが形成されてなる微小可動デバイスは、構造体が絶縁層を介して単結晶シリコン基板上に固定され、単結晶シリコン基板上面の構造体が存在しない領域に凹部が形成されて、その凹部上に可動体が位置され、上記凹部のうち、部品が設置される部分にはその凹部内に単結晶シリコン基板の上面が残存されてなる設置基準が設けられているものとされる。
発明において、設置基準が格子状をなすものとされる。
発明において、設置基準が2本の平行な条とされ、それら条間にはV溝が存在しているものとされる。
発明において、単結晶シリコン基板の上面が(100)面とされ、設置基準の格子が単結晶シリコン基板の〈110〉方向に構成されているものとされる。
発明において、単結晶シリコン基板の上面が(100)面とされ、設置基準の条が単結晶シリコン基板の〈110〉方向に構成されているものとされる。
【0015】
本発明の微小可動デバイスは、単結晶シリコン基板上に絶縁層を介して単結晶シリコン層が配置されてなる三層構造のSOI基板の単結晶シリコン層の上面にマスク層を形成し、構造体用のマスクと設置基準用のマスクと可動体用のマスクとを、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が、最も広いものから順に構造体用、設置基準用、可動体用のマスクの順となるようにしてマスク層をパターニングして形成し、単結晶シリコン層のマスクから露出している部分を絶縁層が露出するまでガス反応性のドライエッチングによって除去し、そのドライエッチングによって形成された基板板面に垂直な単結晶シリコン層の側壁面を側壁保護膜で覆い、絶縁層のドライエッチングによって露出した部分をエッチング除去して単結晶シリコン基板の上面を露出させ、その露出した単結晶シリコン基板の上面に対し、可動体となる部分の下がエッチング除去されるまで単結晶シリコンの等方性エッチングを施し、マスク及び側壁保護膜を除去した後、絶縁層を設置基準となる部分の上が除去されるまでエッチングすることによって作製される。
【0016】
発明において、絶縁層及びマスク層が共にシリコン酸化膜よりなり、マスク層の膜厚が絶縁層の膜厚より大とされる。
本発明の微小可動デバイスは、上面が(100)面をなす単結晶シリコン基板上に絶縁層を介して単結晶シリコン層が配置されてなる三層構造のSOI基板の単結晶シリコン層の上面にマスク層を形成し、単結晶シリコン基板の〈110〉方向と平行な線で外形が構成される設置基準用のマスクと、その〈110〉方向と平行でない線を用いて外形が構成される可動体用のマスクと、構造体用のマスクとを、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が、最も狭いのが設置基準用のマスクとなるようにしてマスク層をパターニングして形成し、単結晶シリコン層のマスクから露出している部分を絶縁層が露出するまでガス反応性のドライエッチングによって除去し、絶縁層のドライエッチングによって露出した部分及びマスクを除去し、ドライエッチングによって設置基準用マスク下に形成された幅狭構造体全体が熱酸化されるまで単結晶シリコンを熱酸化し、単結晶シリコン基板の上面の熱酸化膜をエッチング除去して単結晶シリコン基板の上面を露出させ、その露出した単結晶シリコン基板の上面に対し、可動体となる部分の下がエッチング除去されるまで単結晶シリコンの異方性エッチングを施し、その後、上記熱酸化された部分をエッチング除去することによって作製される。
【0017】
請求項の発明、請求項記載の微小可動デバイスを作成する方法であって、上面が(100)面をなす単結晶シリコン基板上に絶縁層を介して単結晶シリコン層が配置されてなる三層構造のSOI基板の単結晶シリコン層の上面にマスク層を形成し、単結晶シリコン基板の〈110〉方向と平行でない線を用いて外形が構成される可動体用のマスクと、構造体用のマスクとを、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が、広いものから順に構造体用、可動体用の各マスクとなるようにしてマスク層をパターニングして形成し、単結晶シリコン層のマスクから露出している部分を単結晶シリコン基板に垂直に絶縁層が露出するまでガス反応性のドライエッチングによって除去し、絶縁層のドライエッチングによって露出した部分及びマスクを除去し、単結晶シリコンの露出している表面を熱酸化し、単結晶シリコン基板の上面の熱酸化膜を単結晶シリコン基板に垂直にエッチング除去して単結晶シリコン基板の上面を露出させ、その露出した単結晶シリコン基板の上面に対し、可動体となる部分の下がサイドエッチングによって除去され、凹部が形成されるまで単結晶シリコンの異方性エッチングを施し、その後、絶縁層及び側壁上の熱酸化膜を除去することによって作製される。
【発明の効果】
【0018】
この発明による微小可動デバイスによれば、従来と同様、SOI基板を用いることができ、かつ凹部を形成したことによって、従来問題となっていた単結晶シリコン基板と、その上に位置する可動体との間の空隙に異物が挟まって可動体が動作しなくなるといった不具合を解消することができ、さらには単結晶シリコン基板と、その上に固定配置される構造体とが異物を介して電気的に短絡してしまうといった不具合を解消することができる。
従って、良好な動作性能を有し、信頼性に優れた微小可動デバイスを得ることができる。
【0019】
しかも、発明の微小可動デバイスによれば、単結晶シリコン基板の上面が残存されてなる設置基準が設けられているため、凹部に左右されることなく、高い高さ精度をもって部品を搭載設置することができる。
また、この発明による作製方法によれば、上記のような微小可動デバイスを例えば市販のSOI基板を用いて良好に製造することができる。
なお、本発明の1つの作製方法では単結晶シリコンの等方性エッチングによって凹部と設置基準とを同時に形成することができるものとなっており、一方本発明の他の作製方法では単結晶シリコンの異方性エッチングによって凹部と設置基準とを同時に形成することができるものとなっており、いずれにしても簡便なプロセスで凹部と設置基準を具備する微小可動デバイスを作製できるものとなっている。
【図面の簡単な説明】
【0020】
【図1】発明による微小可動デバイスの一実施例として光スイッチの構成を示した平面図。
【図2】Aは図1のA−A断面図、Bは図1のB−B断面図、Cは図1のC−C断面図。
【図3】図1の光スイッチの動作を説明するための図。
【図4】図1の光スイッチの動作を説明するための図。
【図5】本発明による微小可動デバイスの作製方法を説明するための図。
【図6】発明による微小可動デバイスの一実施例として光スイッチの構成を示した平面図。
【図7】図6の部分拡大図。
【図8】Aは図6のA−A断面図、Bは図6のB−B断面図、Cは図6のC−C断面図。
【図9】図6に示した光スイッチの作製方法を説明するための図。
【図10】図9においてファイバ溝内に設ける設置基準用のマスクパターンを示す図、Aは連続パターンとした場合、Bは島状パターンとした場合を示す。
【図11】結露による短絡発生を説明するための図、Aは凹部がない場合(従来例)を示し、Bは凹部がある場合を示す。
【図12】図6に示した光スイッチの他の作製方法を説明するための図。
【図13】短絡発生をより確実に防止するための構成、作製方法を説明するための図。
【図14】微小可動デバイスの一例として設置基準を具えた光スイッチの構成を示した平面図。
【図15−1】図14に示した光スイッチの作製方法を説明するための図。
【図15−2】図14に示した光スイッチの作製方法を説明するための図。
【図16】微小可動デバイスの他の一例として設置基準を具えた光スイッチの構成を示した平面図。
【図17】図16に示した光スイッチの作製方法を説明するための図。
【図18−1】図16に示した光スイッチの他の作製方法を説明するための図。
【図18−2】図16に示した光スイッチの他の作製方法を説明するための図。
【図19】微小可動デバイスの従来例を示す平面図。
【図20】図18に示した微小可動デバイスの作製方法を示す図。
【発明を実施するための形態】
【0021】
この発明を光スイッチに適用した実施形態を図面を参照して説明する。
図1は光スイッチの平面図であり、板状の基体41の上面41aに4本のファイバ溝42a〜42dが十字状に形成され、これらファイバ溝42a〜42dにより4分割された1つの領域が駆動体形成部41′とされる。駆動体形成部41′にはこれを2分するようにファイバ溝42a〜42dの中心部43と連通したロッド溝44が形成され、さらに凹部45がこのロッド溝44の他端と連通して形成されている。
ロッド溝44には可動ロッド46が配され、可動ロッド46の中心部43側の一端にはミラー47が設けられている。可動ロッド46の凹部45内に位置する延伸方向中間部の両側には板ばねヒンジ48a,48bが連結され、さらに延伸方向他端の両側にも板ばねヒンジ48c,48dが連結され、これら板ばねヒンジ48a〜48dにより、可動ロッド46はその延伸方向に移動自在に駆動体形成部41′に支持されている。
【0022】
板ばねヒンジ48a,48bと48c,48dとの間において、櫛歯型静電アクチュエータが設けられ、その可動櫛歯電極49が可動ロッド46の両側に固定されている。可動櫛歯電極49はその両側に、つまり可動ロッド46の延伸方向両側に櫛歯を有するものとなっている。
可動櫛歯電極49に対し、板ばねヒンジ48c,48d側と48a,48b側にはそれぞれ可動櫛歯電極49と組み合わされる第1固定櫛歯電極51と第2固定櫛歯電極52とが配置され、これらは凹部45底面に固定されている。
【0023】
図2A,B,Cはそれぞれ図1におけるA−A断面、B−B断面、C−C断面を示したものであり、基体41は単結晶シリコン基板61上にシリコン酸化膜よりなる絶縁層62を介して単結晶シリコン層63が配置されてなる三層構造を有するものとされ、単結晶シリコン基板61上に、その基板板面と平行に変位する可動ロッド46、ミラー47、板ばねヒンジ48a〜48d、可動櫛歯電極49といった可動体が単結晶シリコン層63によって構成されている。
また、可動体以外の、第1、第2固定櫛歯電極51,52を含め、ファイバ溝42a〜42d、ヒンジ溝44、凹部45を規定する構造体が可動体と同様に単結晶シリコン層63によって構成されており、これら構造体は絶縁層62を介して単結晶シリコン基板61上に固定配置されている。なお、この例では可動体の下部にも絶縁層62が存在するものとなっている。
【0024】
単結晶シリコン基板61上面の、可動体以外の各構造体間には図2に示したように凹部64が設けられており、この凹部64によって可動体は単結晶シリコン基板61と離間され、つまり可動体が変位する範囲にこのように凹部64が形成されていることによって、この例では可動体と単結晶シリコン基板61との空隙が十分に確保されている。
図3は図1に示した構成に対し、4本のファイバ溝42a〜42dにそれぞれ光ファイバ71a〜71dが配置された状態を示したものであり、この初期状態(第1安定状態)ではミラー47は中心部43に位置しており、例えば光ファイバ71aから出射された光はミラー47によって反射されて光ファイバ71dに入射し、光ファイバ71bから出射された光は同様にミラー47によって反射されて光ファイバ71cに入射する。
【0025】
可動ロッド46、板ばねヒンジ48a〜48dを介して可動櫛歯電極49と電気的につながれている駆動体形成部41′及び第2固定櫛歯電極52をそれぞれアースとした状態で第1固定櫛歯電極51に電圧を印加すれば、第1固定櫛歯電極51と可動櫛歯電極49との間に静電吸引力が働き、その力が第1安定状態の保持力よりも大きい場合、板ばねヒンジ48a〜48dは図4に示したように第2安定状態へと反転し、その電圧の印加を絶ってもその状態で自己保持される。この時、ミラー47は図4に示したように中心部43
から退避した状態となり、光ファイバ71a,71bからの各出射光は直進して光ファイバ71c,71dにそれぞれ入射される。
【0026】
上記における第1安定状態及び第2安定状態は板ばねヒンジ48a〜48dの形状をその延伸方向に適切なS字形状とすることで得ることができる。なお、駆動体形成部41′及び第1固定櫛歯電極51をアースとした状態で第2固定櫛歯電極52に電圧を印加すれば、第2固定櫛歯電極52と可動櫛歯電極49との間に静電吸引力が働き、その力が第2安定状態の保持力よりも大きい場合には再び図3の第1安定状態へと戻る。
第1または第2固定櫛歯電極51または52と可動櫛歯電極49との間にそれぞれ電圧を印加するには、例えば第1、第2固定櫛歯電極51,52にそれぞれボンディングワイヤを接続しておき、それらボンディングワイヤと駆動体形成部41′との間に電圧を印加すればよい。
【0027】
上記のような構造とされた光スイッチによれば、単結晶シリコン基板61の板面と平行に変位する可動体(可動ロッド46、ミラー47、板ばねヒンジ48a〜48d、可動櫛歯電極49)と単結晶シリコン基板61とは凹部64の存在により、大きく離間されており、つまり従来の3μm程度といった空隙に比し、凹部64を設けることによって空隙を大幅に広くすることができ、よって異物が空隙に入り込んで挟まり、可動体が動作しなくなるといった不具合を解消することができる。
次に、上述した光スイッチのように、単結晶シリコン基板上に、その基板板面と平行に変位する可動体と、その可動体以外の構造体とを備え、単結晶シリコン基板上面の可動体が変位する部分に凹部が形成されてなる構造の微小可動デバイスを作製する方法について説明する。図5(1)〜(5)は作製方法を工程順に示したものであり、以下各工程(1)〜(5)について説明する。
【0028】
(1)単結晶シリコン基板61上にシリコン酸化膜よりなる絶縁層62を介して単結晶シリコン層63が配置されてなる三層構造のSOI基板60を用意する。単結晶シリコン層63の上面にレジストを塗布してマスク層を形成し、フォトリソグラフィ技術を用い、マスク層をパターニングして単結晶シリコン基板61上に固定配置される構造体用のマスク65と可動体用のマスク66とを形成する。
可動体は図1の光スイッチの平面図に示されているように、個々の要素で見た場合、つまり可動ロッド46、ミラー47、板ばねヒンジ48a〜48d、可動櫛歯電極49を個々に見た場合、基板板面の面内方向において少なくとも一方向が幅狭とされ、よって可動体用のマスク66は全体として幅狭パターンの組み合わせによって構成される。これに対し、構造体用のマスク65は幅広とされる。
【0029】
(2)単結晶シリコン層63の、マスク65,66から露出している部分を絶縁層62が露出するまで深掘りのガス反応性ドライエッチングによって除去する。このエッチングにはICP(Inductively Coupled Plasma)−RIE装置を用い、その際、形成される側壁面の垂直性を高めるために、エッチング工程とポリマー析出工程とを交互に繰り返して垂直掘りを進めてゆく技術を用いるのが好ましい。このような両工程の実施はICP装置のプラズマ室に、エッチング工程には6弗化硫黄(SF6)とアルゴンの混合ガスを、ポリマー析出工程にはオクタフルオロシクロブタン(C4F8)とアルゴンの混合ガスをそれぞれ供給することで行うことができる。
【0030】
なお、単結晶シリコン層63のエッチングの交互に繰り返す工程を終了すると、その工程のサイクルごとに残留堆積したポリマー層が側壁面に形成されているので、これをそのまま側壁面を覆う側壁保護膜67として利用する。
(3)絶縁層62の露出した部分をエッチング除去して単結晶シリコン基板61の上面を露出させる。このエッチングは50%程度の弗素酸(HF)溶液によるウエットエッチ
ングでもよいが、ここではRIE(Reactive Ion
Etching)装置によりトリフルオロメタン(CHF3)とアルゴンの混合ガスを用いたドライエッチングを行う。
【0031】
(4)露出した単結晶シリコン基板61の上面に対し、単結晶シリコンの等方性エッチングを行う。ここではRIE装置により6弗化硫黄(SF6)とアルゴンの混合ガスを用いた等方性のドライエッチングを行う。
等方性エッチングは横方向にも進行するので適切なエッチング時間を選ぶことで、単結晶シリコン層63及び絶縁層62の構造体となる幅広部分の下は単結晶シリコンが残り、幅狭部分の下は単結晶シリコンが完全にエッチング除去されるようにする。このように等方性エッチングを行うことにより、単結晶シリコン基板61の上面に凹部64が形成され、この凹部64により可動体となる幅狭部分と単結晶シリコン基板61との間には十分な空隙が形成される。一方、凹部64は幅広部分の下にも若干入り込んで形成されるものの、残留する単結晶シリコンによって幅広部分は単結晶シリコン基板61上に固定されている。なお、凹部64の深さは例えば10μm程度は確保する。
【0032】
(5)マスク65,66及び側壁保護膜67を除去する。これにより、可動体81以外の構造体82は絶縁層62を介して単結晶シリコン基板61上に固定され、可動体81は凹部64によって単結晶シリコン基板61との間に大きな空隙が設けられた構造が完成する。溝83は図1に示した光スイッチにおけるファイバ溝42a(42b〜42d)に対応する。
レジストよりなるマスク65,66及びポリマー析出物よりなる側壁保護膜67の除去はO2プラズマによるドライエッチングまたは硫酸によって同時に行うことができる。
【0033】
なお、図1に示した光スイッチのミラー47においてそのミラー面に反射膜の形成が必要なように、可動体81もしくは構造体82の面(側壁面)に所要の膜形成を要する場合は、その膜形成を最後に行う。
上述したような作製方法によれば、SOI基板60としては市販のものを従来と同様に使用することができる。但し、その三層構造の中間の絶縁層62は従来のように可動体形成用の犠牲層としては用いず、上方の単結晶シリコン層63のエッチングストップ層及び電気的な絶縁に使用される。
【0034】
工程(4)における単結晶シリコン基板61の上面への凹部64形成のためのエッチングは本質的に等方性エッチングであればよいので、上記ドライエッチングに限定されず、例えば硝弗酸をエッチャントとしたウエットエッチングを用いてもよい。但し、上記のように工程(3)における絶縁層62のエッチング及びこの工程(4)における単結晶シリコンのエッチングを共にRIE装置によるドライエッチングとすることにより、ガスのみ置換してこれら2つの工程を連続して行うことができ、その点で使用装置及び工程の簡素化を図ることができる。
【0035】
また、工程(2)における側壁保護膜67の形成は上記のようにポリマー析出層を利用するのが最も好都合だが、これ以外の方法としては単結晶シリコン層63の異方性エッチングが終了した段階で、別途、シリコン酸化物を側壁面に蒸着したり、あるいは基板を高温水蒸気にさらして側壁面を熱酸化し、表面に酸化膜を形成する方法でシリコン酸化物の側壁保護膜67を設けることも可能である。
但し、この場合は側壁保護膜67がSOI基板60の中間絶縁層62と同じシリコン酸化膜となるので、工程(3)の絶縁層62除去工程においては側壁保護膜67を残して、露出している絶縁層62を選択的に除去しなければならない。これは例えば次のようにして行うことができる。
【0036】
即ち、RIE装置内に一対の平行平板電極を設け、その電極間に図5(2)の状態の基
板を、基板板面を電極に平行に設置する。そして、装置のプラズマ室にトリフルオロメタン(CHF3)などを含む反応性ガスを供給して、電極表面のイオンシースによって発生する直流電界によってプラズマ中の粒子のうちのイオンを加速し、大きなエネルギで単結晶シリコン層63のエッチング溝の底部に露出している絶縁層62を衝撃し、イオン促進化学反応を起こす。これによってエッチングをイオンの入射方向にのみ進行させ、側壁保護膜67を維持したまま、絶縁層62のみを効果的に除去することができる。
【0037】
なお、このようにシリコン酸化物で側壁保護膜67を形成した場合はその除去は弗酸を使用して行う。この場合、垂直側壁面上の側壁保護膜67と可動体81下部の絶縁層62とは同時に除去されるが、構造体82下部の絶縁層62は、側壁保護膜67が非常に速く除去されるので、同時に絶縁層62に生じる横方向のエッチングはわずかであり、問題にならない。
上述した例では可動体81及び構造体82の凹部64上に位置する辺縁部(オーバーハング部)は図5(5)のように単結晶シリコン層63と絶縁層62との二層で構成されており、特に構造体82のオーバーハング部に絶縁層62が具備されていることで、その下の空隙に入り込んだ導電性の異物によって単結晶シリコン層63が単結晶シリコン基板61と電気的に短絡してしまうといったことを防止することができる。
【0038】
しかしながら、凹部64の深さを10μm程度確保し、加えてオーバーハング部の絶縁層(例えば3μm厚)を除去すると、構造体82の下面から凹部64の底まで合わせて13μm程度の深さを形成することになる。そこで、例えばこれだけの空隙を短絡するような寸法の異物の侵入自体、あり得ないと判断できる環境下でデバイスを使用する場合であれば、空隙の大きさだけで短絡を防ぐという目的も十分達成されるのでオーバーハング部の絶縁層は必ずしも必要ではない。
加えて、例えば可動体81をより柔軟にするとか、あるいは二層構造によって界面に生じる応力等が可動体81において問題となる場合には図5(5)の状態からさらに可動体81及び構造体82オーバーハング部の絶縁層62を弗酸によって除去してもよい。
【0039】
ところで、上述した例では凹部64は可動体81の下のみならず、可動体81以外の固定配置された各構造体82間に形成されており、つまり単結晶シリコン基板61の上面の構造体82が存在しない領域全てに凹部64が形成されるものとなっており、よって光ファイバ71a〜71dが設置されるファイバ溝42a〜42dにも凹部64が存在している。
しかるに、エッチングによって形成される凹部64の底面の高さを高精度に制御するのは一般に容易ではなく、また複数の凹部64が単結晶シリコン基板61上に存在する場合に、それら凹部64の底面の高さをばらつきなく、一致させることも容易ではない。
従って、このような凹部64上に設置される光ファイバ71a〜71dはその高さ精度の悪化及び高さのばらつきは避けられず、光軸ずれによる光結合効率の悪化を招くことになる。
【0040】
次に、このような問題を解決すべく、凹部64の形成状態によらず、高精度な高さ精度をもって部品を搭載設置できるようにした構成について説明する。
図6はこのような構成を有する微小可動デバイスを光スイッチを例に示したものであり、図7A,Bはその部分拡大図を示す。また、図8A〜Cは図6におけるA−A断面、B−B断面、C−C断面をそれぞれ示す。なお、図1,2に示した光スイッチと対応する部分には同一符号を付し、その詳細な説明を省略する。
この例では図8Cに例示したように、各ファイバ溝42a〜42dの凹部64内に設置基準91が設けられており、この設置基準91上に光ファイバ71a〜71dが設置されるものとなっている。設置基準91は凹部64内において単結晶シリコン基板61の上面がエッチングされることなく、残存されてなるもので、極めて高い面精度を有しており、
よって各光ファイバ71a〜71dの高さを高精度に一致させることができ、かつ単結晶シリコン層63によって構成されるミラー47と光ファイバ71a〜71dとの相対高さも、両者とも単結晶シリコン基板61の上面を基準として高さ制御できるので高精度に制御できるものとなる。
【0041】
一方、この例では図6に示したように第1固定櫛歯電極51及び第2固定櫛歯電極52とそれぞれ連結されて駆動体形成部41′の周縁側に至る導電路53,54が形成されており、これら導電路53,54を横切る駆動体形成部41′の周縁部分(図6中、二点鎖線で囲んだ部分)が電極パッド形成領域55とされ、この電極パッド形成領域55に図8Aに示したように電極パッド56が形成されている。電極パッド56は例えばTi膜を下地としたAu/Pt/Ti膜よりなり、スパッタにより成膜形成される。なお、図7Aにおける57はファイバ押圧ばねを示し、ファイバ溝42a〜42dに設置された光ファイバ71a〜71dはこのファイバ押圧ばね57により押圧位置決めされるものとなっている。
【0042】
図9は上記のような構造を有する光スイッチの作製方法を工程順に示したものであり、図6のA−A断面、B−B断面、C−C断面の3箇所について示している。以下、各工程(1)〜(6)について説明する。
(1)SOI基板60を用意する。
(2)単結晶シリコン層63の上面にレジストを塗布してマスク層を形成し、フォトリソグラフィ技術を用い、マスク層をパターニングして単結晶シリコン基板61上に固定配置される構造体用のマスク65と可動体用のマスク66とを形成する。この際、ファイバ溝内に形成される設置基準用のマスク68も同時に形成する。
構造体用のマスク65と可動体用のマスク66と設置基準用のマスク68は、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が、最も広いものから順に構造体用のマスク65、設置基準用のマスク68、可動体用のマスク66の順となるようにされている。
【0043】
設置基準用のマスク68は図10Aに示したようなファイバ溝の延伸方向に沿った連続パターンであっても、図10Bに示したような島状のパターンであってもよい。なお、島状のパターンとした場合には、後述する工程(4)において単結晶シリコン基板61の上面に島と島との間に凹部ができるため、この凹部により光ファイバの下に接着剤を注入することができ、光ファイバの固定強度を増すことができるものとなる。
続いて、単結晶シリコン層63の、マスク65,66,68から露出している部分を絶縁層62が露出するまで深掘りのガス反応性ドライエッチングによってエッチング除去する。この際、図には示していないが、エッチング側壁には前述の図5(2)の場合と同様、膜が堆積し、側壁保護膜が形成される。
【0044】
(3)絶縁層62の露出した部分をエッチング除去して単結晶シリコン基板61の上面を露出させる。
(4)露出した単結晶シリコン基板61の上面に対し、可動体となる部分の下がエッチング除去されるまで単結晶シリコンの等方性エッチングを行う。これにより、凹部64が形成される。なお、(3),(4)の工程はウエットエッチングでもよいが、ドライエッチングとすれば(2)〜(4)の工程を同一装置内で連続的に行うことができ、都合がよい。
(5)マスク65,66,68及び側壁保護膜を除去した後、絶縁層62を設置基準91となる部分の上が除去されるまでエッチングし、設置基準91上の単結晶シリコン層63を取り除く。
(6)電極パッド形成領域55及びミラー47領域にメカマスクを用いてAu/Pt/Ti膜をスパッタにより成膜する。これにより、図6〜8に示した光スイッチが完成する

【0045】
なお、ファイバ溝42a〜42dの幅が例えば百数十μmあるとすれば、設置基準91の幅は例えば50μm程度に設定される。この場合、凹部64の深さを10μmとすれば、凹部64形成の際の等方性エッチングは横方向にも深さ方向と同寸法進行するので、設置基準用のマスク68の幅は70μmとなる。
設置基準91の形状を島状とすることにより、島と島との間にできる凹部によって光ファイバの固定強度を増すことができると上述したが、これに加え、図10Aに示したように設置基準用のマスク68を連続パターンにした場合、ファイバ溝内の凹部64が2つに分離されるのに対し、それら2つの凹部64が連通されることになるため、例えば光ファイバ搭載後に充填されるUV硬化型接着剤などの接着剤の流れが良くなり、ファイバ溝の全体にわたって接着剤の均等な液面高さを即座に得られるものとなる。
【0046】
このような設置基準91は構造体の中に取り囲まれ、つまり凹部64に囲まれた状態で形成されてもよいし、上記ファイバ溝の例のように基板辺縁に到達して凹部64や構造体に囲まれない辺部を有してもよい。
設置基準91はこの例のように光ファイバを搭載する面の他に、例えばレンズや半導体発光素子、半導体光変調器などのチップ素子を搭載する面として使用される。なお、チップ素子を搭載する場合には設置基準91の表面に電極パッドとなるメタル層を他の部分の電極パッドと同じ工程で成膜形成するようにする。
凹部64を設けることにより、異物の挟まりによって可動体が動作しなくなる、あるいは電気的な短絡が生じるといった不具合を解消できることは前述した通りであるが、ここで結露(広義の異物に含む)による短絡について説明する。
【0047】
図11Aは凹部64がない場合の結露の様子を比較例(従来例)として示したものであり、図中、75は結露を示す。結露75はシリコンとメタル(Au)の境界付近に選択的に発生する傾向がある。メカマスクを用いた電極パッド56の成膜形成においては、単結晶シリコン層63の側壁面及び露出している単結晶シリコン基板61の上面にもメタル層56a,56bが形成されるため、図11Aに示したように結露75が発生し、これにより電極パッド56−1と56−2とが短絡するといった状態が生じる。
これに対し、図11Bは凹部64がある場合であって、凹部64の存在により結露75が生じても短絡を防止できることがわかる。
なお、光スイッチに限らず、この種のSOI基板を用いて作製される微小可動デバイスは一般にパッケージに格納されるが、完全な密閉構造の実現は難しく、水蒸気が経時的に徐々に侵入し、温度環境の変化によってデバイス表面に結露が生じうるものとなっている。
【0048】
次に、図6〜8に示した光スイッチの他の作製方法について説明する。図12は作製方法を図9と同様に工程順に示したものであり、以下、各工程(1)〜(6)について説明する。
(1)SOI基板60を用意する。
(2)単結晶シリコン層63の上面にシリコン酸化膜を形成し、フォトリソグラフィ技術を用い、シリコン酸化膜をパターニングして図9(2)の場合と同様に構造体用のマスク65と可動体用のマスク66と設置基準用のマスク68を形成する。なお、マスク層をなすシリコン酸化膜の膜厚は同じくシリコン酸化膜よりなる絶縁膜62の膜厚より大とする。
続いて、単結晶シリコン層63のマスク65,66,68から露出している部分を絶縁層62が露出するまで深掘りのガス反応性ドライエッチングによってエッチング除去する。この際、エッチング側壁には図には示していないが、側壁保護膜が形成される。
(3)絶縁層62の露出した部分をエッチング除去して単結晶シリコン基板61の上面
を露出させる。この時、マスク65,66,68も同様にエッチングされるが、絶縁層62より厚いため、残存する。
(4)露出した単結晶シリコン基板61の上面に対し、図9(4)と同様に、単結晶シリコンの等方性エッチングを行う。
(5)側壁保護膜を除去した後、絶縁層62を図9(5)と同様にエッチングし、設置基準91上の単結晶シリコン層63を取り除く。この際、マスク65,66,68も同時にエッチングされて除去される。
(6)電極パッド形成領域55及びミラー47領域にAu/Pt/Ti膜をスパッタにより成膜して、光スイッチが完成する。
【0049】
上述した作製方法ではレジストに替えてシリコン酸化膜によってマスク65,66,68を形成するものとなっており、そのパターニングのために工程が増えることになるが、ドライエッチングにおけるエッチング耐性の点ではレジストよりも強く、信頼性が高いという利点がある。
なお、図9及び12に示した二つの作製方法では工程(2)におけるガス反応性のドライエッチングで側壁に堆積した膜(ポリマー析出層)を工程(4)のエッチングの際の側壁保護膜として利用しているが、図12に示した作製方法では工程(2)の後に熱酸化を行うことで、側壁保護膜をシリコン酸化膜とすることもできる。
【0050】
このように側壁保護膜をシリコン酸化膜とした場合には、
a)単結晶シリコン基板61のエッチング工程における保護膜としての信頼性がポリマー析出層よりも高い
b)ミラー面などの平滑な垂直面(側壁面)を要する場合、酸化膜生成工程における垂直面の平坦化作用が副次的に有効である
c)所望のポリマー析出層を生成残留させる必要のないことから、深掘りのガス反応性ドライエッチングにおけるエッチングとポリマー析出とを交互に繰り返すといった工程条件の自由度が拡大する
といった利点がある。
【0051】
ところで、図9や図12に示した作製方法では工程(5)における絶縁層62のエッチングによって設置基準91の上の単結晶シリコン層63を取り除くことができるものの、このエッチングによって構造体下の絶縁層62も周縁部分がエッチングされ、よって図11Bに点線76で示したように単結晶シリコン基板61と単結晶シリコン層63との間に微小な空隙が形成される。
このような空隙が存在すると、空隙に結露75が捕獲される可能性があり、また結露75以外の異物がはまり込む可能性があり、それにより単結晶シリコン基板61と単結晶シリコン層63とが短絡するといった状況が発生しうる。図13はこのような空隙の存在による短絡を防止できるようにした構成、作製方法を示したものであり、以下、図13に示した作製工程について説明する。
【0052】
工程(1)〜(5)は図9もしくは図12に示した工程(1)〜(5)のいずれかにより実施する。
(5′)露出した単結晶シリコン表面全域を熱酸化により酸化してシリコン酸化膜69を形成する。
(5″)電極パッド形成領域55の単結晶シリコン層63上のシリコン酸化膜69をパターニングして導通用の窓70を形成する。
(6)電極パッド形成領域55及びミラー47領域にAu/Pt/Ti膜をスパッタにより成膜する。
このような工程を採用し、熱酸化によるシリコン酸化膜69を形成することにより、前述の空隙部分における短絡を確実に防止することができるものとなる。
【0053】
以上、光スイッチを例に、短絡や可動体の動作不良を防止する凹部64を備えた構成及び単結晶シリコン基板61の上面が残存されてなる設置基準91を凹部64内に設けることにより優れた高さ精度をもって部品を搭載設置できるようにした構成について説明し、さらにそのような凹部64、設置基準91を単結晶シリコンの等方性エッチングによって作製する方法について説明したが、次にこのような凹部や設置基準が単結晶シリコンの異方性エッチングによって作製された構成及びその作製方法について説明する。
【0054】
図14はこのような構成を有する微小可動デバイスを光スイッチを例に示したものであり、図1,2に示した光スイッチと対応する部分には同一符号を付し、その詳細な説明を省略する。
この例では光スイッチは上面(表面)が(100)面をなす単結晶シリコン基板61上にシリコン酸化膜よりなる絶縁層62を介して単結晶シリコン層63が配置されてなるSOI基板60を用いて作製されるものとなっており、4本のファイバ溝42a〜42dは単結晶シリコン基板61の〈110〉方向に沿って形成されている。
一方、ミラー47、可動ロッド46、板ばねヒンジ48a,48b及び可動櫛歯電極49といった可動体は〈110〉方向と平行でない線を主に用いて構成されており、可動ロッド46はこの例では一対の板ばねヒンジ48a,48bによって支持されている。なお、可動体の太い部分にはくりぬき58が設けられており、このくりぬき58も〈110〉方向と平行でない線を主に用いて構成されている。但し、これらはいずれもその外形の細部において一部〈110〉方向に平行な線部分を含んでもよい。
【0055】
静電アクチュエータはこの例では1組の可動櫛歯電極49と固定櫛歯電極51とで構成されており、この固定櫛歯電極51及び可動ロッド46が位置するロッド溝44、そのロッド溝44に続く凹部45も〈110〉方向と平行でない線を主に用いて構成されている。なお、この例では初期状態においてミラー47が中心部43に位置しており、可動櫛歯電極49と固定櫛歯電極51との間に電圧を印加することによりミラー47が中心部43から退避し、その電圧を印加している間、退避状態が維持されるものとなっている。
各ファイバ溝42a〜42d内には単結晶シリコン基板61の上面が残存されてなる設置基準101が設けられており、設置基準101はこの例では格子状をなし、その格子は単結晶シリコン基板61の〈110〉方向に構成されている。光ファイバはこの格子状をなす設置基準101上に搭載設置される。
【0056】
図15−1,15−2は上記のような構造を有する光スイッチの作製方法を工程順に模式的に示したものであり、以下、各工程について説明する。
(1)上面が(100)面をなす単結晶シリコン基板61上に絶縁層62を介して単結晶シリコン層63が配置されてなるSOI基板60を用意する。単結晶シリコン層63の上面を酸化してシリコン酸化膜を形成し、フォトリソグラフィ技術を用い、このシリコン酸化膜よりなるマスク層をパターニングして単結晶シリコン基板61上に固定配置される構造体用のマスク65と可動体用のマスク66と設置基準用のマスク111とを形成する。
設置基準用のマスク111は単結晶シリコン基板61の〈110〉方向と平行な線で外形が構成され、可動体用のマスク66はその〈110〉方向と平行でない線を主に用いて外形が構成される。また、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が最も狭いのが設置基準用のマスク111となるようにされ、具体的には設置基準用のマスク111のパターン幅は1〜2μm程度とされて格子状をなすものとされるが、ただしそのマスク111の幅は絶縁層62の厚みよりは大きく設計される。
【0057】
(2)単結晶シリコン層63の、マスク65,66,111から露出している部分を絶縁層62が露出するまで深掘りのガス反応性ドライエッチングによってエッチング除去す
る。これにより、可動体81及び構造体82が形成され、さらに設置基準用のマスク111下には幅狭の構造体112が形成される。
(3)絶縁層62の露出した部分をエッチング除去して単結晶シリコン基板61の上面を露出させる。このエッチングはフッ酸水溶液を用い、短時間で行われる。例えば50wt%のフッ酸水溶液なら3分程度である。ここで幅狭構造体112下部の絶縁層62が完全に消失しないよう、エッチング時間が長くなりすぎないようにする。この工程は下記工程(5)のRIEによる酸化膜除去を必要最小限にするために行われ、同時にシリコン酸化膜よりなるマスク65,66,111もエッチング除去される。
(4)単結晶シリコンを熱酸化する。酸化量は幅狭構造体112全体が酸化される量以上とする。単結晶シリコンの表面には熱酸化膜113が形成され、可動体81及び構造体82の側壁に形成された熱酸化膜113は下記工程(6)の異方性エッチングの際の可動体81及び構造体82の側壁保護膜として機能する。
【0058】
(5)単結晶シリコン基板61の上面及び単結晶シリコン層63の上面の熱酸化膜113をエッチング除去して単結晶シリコン基板61の上面及び単結晶シリコン層63の上面を露出させる。このエッチングは例えばCHF3とArの混合ガスによるRIEにて行う。RIEにはイオンの入射方向と平行な面に対するエッチング作用がほとんどないため、可動体81及び構造体82の側壁の熱酸化膜113は除去されない。
(6)KOH水溶液を用いて単結晶シリコンの異方性エッチングを行う。熱酸化膜113が除去されて露出された単結晶シリコン基板61の上面及び単結晶シリコン層63の上面がエッチングされる。エッチングは可動体81となる部分の下がエッチング除去されるまで行う。可動体81下では(100)面、(110)面、(311)面等によるサイドエッチングが発生し、凹部64が形成される。
【0059】
一方、ファイバ溝内では幅狭構造体112が単結晶シリコン基板61の〈110〉方向と平行な格子形状をなしているため、(111)面による逆ピラミッド型の穴102が形成されるが、幅狭構造体112下はサイドエッチングが発生しないため、単結晶シリコン基板61の表面が残ったままとなる。これにより、逆ピラミッド型の穴102の集合よりなる凹部64と、その凹部64内において格子状をなす設置基準101が形成される。
(7)工程(4)で熱酸化されて残っている部分、即ち可動体81、構造体82の側壁の熱酸化膜113や幅狭構造体112をフッ酸で除去する。そして、図には示していないが、電極パッドを成膜形成し、同時にミラーにも金属を成膜する。金属の表面はAuが望ましい。
【0060】
上記のような作製工程により、図14に示した光スイッチが完成する。なお、図15−2の(8)は光ファイバ71がファイバ溝に搭載設置された状態を示したものであり、光ファイバ71の高さ位置は単結晶シリコン基板61の上面が残存されてなる格子状の設置基準101により高精度に決定されるものとなる。なお、図には示していないが、光ファイバ71は接着剤により固定される。
このように、この例によれば単結晶シリコンの異方性エッチングによって単結晶シリコン基板61上に固定配置される各構造体間に凹部64を形成することができ、かつ光ファイバ71が設置される部分には単結晶シリコン基板61の上面が残存されてなる格子状の設置基準101を凹部64内に設けることができるものとなっている。
【0061】
上述した例では格子状をなす設置基準101の上面が搭載面とされて光ファイバ71が搭載されるものとなっているが、次に設置基準を2本の平行な条とし、かつそれら条間にV溝を形成して、そのV溝によって光ファイバを高精度に搭載できるようにした構成について説明する。
図16はこのような構成を有する光スイッチを示したものであり、図14と対応する部分には同一符号を付してある。
この例では各ファイバ溝42a〜42d内には単結晶シリコン基板61の上面が残存されてなる2本の平行な条103よりなる設置基準104が設けられており、これら条103はそれぞれファイバ溝42a〜42dと平行に延伸され、つまり単結晶シリコン基板61の〈110〉方向に構成されている。設置基準104をこのような2本の条103とすることにより、2本の条103間にはV溝が形成されるものとなる。
【0062】
図17(ア)はこのV溝が形成される様子を図15−2の工程(6)と対応させて示したものであり、この例ではファイバ溝内に2本の平行な幅狭構造体112′が図15−1,15−2における工程(1)〜(5)と同様の工程を経て形成されており、単結晶シリコンの異方性エッチングにより、これら幅狭構造体112′間において単結晶シリコン基板61の上面に(111)面よりなるV溝105が形成されるものとなる。なお、両幅狭構造体112′の互いの外側にもV溝106が形成されている。
【0063】
図17(イ)は設置基準104を2本の平行な条103としたことにより、それら条103間に形成されたV溝105に光ファイバ71が搭載設置された状態を示したものであり、V溝105によって光ファイバ71を高精度に位置決めできるものとなる。なお、V溝105によって高さ方向だけでなく、横方向も正確に位置決めでき、かつV溝105の設計により、つまり単結晶シリコン基板61の上面が残存されてなる2本の条103の間隔を選定することにより、光ファイバ71の光軸高さの調整も容易に行えるものとなる。
なお、設置基準104を2本の条103として、それら条103間にV溝105を設ける形態の作製方法は、上記図17を参照して説明した方法の他に、マスクパターン幅の広狭の順序を設置基準用と可動体用とで入れ替え、つまり設置基準用マスクのパターン幅を可動体用マスクのパターン幅より広くして、設置基準用マスク下に形成される幅狭構造体もその全体ではなく、表面だけが熱酸化されるようにし、その下の絶縁層部分をエッチング除去して上部の幅狭構造体部分を離脱除去するといった方法も採用することができる。図18−1,18−2はこの作製方法を図15−1,15−2と対応させて工程順に示したものである。
【0064】
この例では図18−1の工程(1)に示したように設置基準用のマスク111のパターン幅は可動体用のマスク66のパターン幅より大とされ、工程(4)における単結晶シリコンの熱酸化によって幅狭構造体112′はその表面が熱酸化されるものとなる。工程(1)〜(6)は図15−1,15−2における工程(1)〜(6)と同様の工程とされ、2本の幅狭構造体112′間にはV溝105が形成される。工程(6)における単結晶シリコンの異方性エッチングはV溝105を所望の大きさに形成することにより完了する。
工程(7)では設置基準104をなす2本の条103上の絶縁層62が除去されるまで絶縁層62がエッチング除去され、同時に熱酸化膜113もエッチング除去される。絶縁層62をこのようにエッチング除去することにより幅狭構造体112′も同時に離脱除去される。なお、この例では図17の場合と異なり、可動体81下の絶縁層62もエッチング除去される。
以上、光スイッチを例に、単結晶シリコン基板61の異方性エッチングによって凹部64を形成し、かつその凹部64の形成と同時に凹部64内に部品設置用の単結晶シリコン基板61の上面が残存されてなる設置基準101や104を設ける作製方法について説明したが、前述の等方性エッチングによる凹部64及び設置基準91の形成に比べ、形成される形状の安定性及び正確性の点においては異方性エッチングを用いる方が好ましい。

【特許請求の範囲】
【請求項1】
単結晶シリコン基板上に、可動体と、その可動体以外の構造体とが形成されてなる微小可動デバイスであって、
上記構造体は上記単結晶シリコン基板上にシリコン酸化膜よりなる絶縁層を介して単結晶シリコン層が配置されてなる三層構造を有するSOI基板の単結晶シリコン層からなり、絶縁層を介して上記単結晶シリコン基板上に固定され、
上記可動体は上記単結晶シリコン層からなり、構造体によって単結晶シリコン基板の板面と平行に変位可能に保持され、
上記単結晶シリコン基板上面の上記構造体が存在しない全領域に凹部が形成されて、上記可動体が凹部上に位置し、
上記構造体は凹部上に張り出すオーバーハング部を持ち、このオーバーハング部の下側にあって上記構造体を単結晶シリコン基板に固定している絶縁層の周縁が凹部上に懸からない位置にあり、これによって、単結晶シリコン基板と単結晶シリコン層との間に微小な空隙が形成されていることを特徴とする微小可動デバイス。
【請求項2】
請求項1記載の微小可動デバイスを作製する方法であって、
上記三層構造のSOI基板の上記単結晶シリコン層の上面にマスク層を形成し、
上記構造体用のマスクと、幅狭パターンの組み合わせよりなる上記可動体用のマスクとを上記マスク層をパターニングして形成し、
上記単結晶シリコン層の、上記マスクから露出している部分を上記単結晶シリコン基板に垂直に上記絶縁層が露出するまでガス反応性のドライエッチングによって除去し、
そのドライエッチングによって各マスクの下に形成された各上記単結晶シリコン層の上記単結晶シリコン基板板面に垂直な側壁面を側壁保護膜で覆い、
上記絶縁層の、上記ドライエッチングによって露出した部分をエッチング除去して上記単結晶シリコン基板の上面を露出させ、
その露出した上記単結晶シリコン基板の上面に対し、上記可動体用マスクの下側の上記単結晶シリコン基板の表面領域がエッチング除去されて凹部が形成されるまで単結晶シリコンの等方性エッチングを施し、これにより、上記単結晶シリコン基板上面の上記構造体が存在しない領域全てに凹部が形成され、上記可動体は凹部上に位置し、上記構造体は凹部上に張り出すオーバーハング部を持ち、
その後、上記マスク及び側壁保護膜を除去し、上記可動体の下側の絶縁層及び上記オーバーハング部の下側の絶縁層をエッチング除去することを特徴とする微小可動デバイスの作製方法。
【請求項3】
請求項記載の微小可動デバイスを作製する方法であって、
上面が(100)面をなす単結晶シリコン基板上に絶縁層を介して単結晶シリコン層が配置されてなる三層構造のSOI基板の上記単結晶シリコン層の上面にマスク層を形成し、
上記単結晶シリコン基板の〈110〉方向と平行でない線を用いて外形が構成される上記可動体用のマスクと、上記構造体用のマスクとを、各マスクパターンのそれぞれにおける最も幅狭の部分の幅が、広いものから順に上記構造体用、上記可動体用の各マスクとなるようにして、上記マスク層をパターニングして形成し、
上記単結晶シリコン層の、上記マスクから露出している部分を上記単結晶シリコン基板に垂直に上記絶縁層が露出するまでガス反応性のドライエッチングによって除去し、
上記絶縁層の、上記ドライエッチングによって露出した部分及び上記マスクを除去し、
単結晶シリコンの露出している表面を熱酸化し、
上記単結晶シリコン基板の上面の熱酸化膜を上記単結晶シリコン基板に垂直にエッチング除去して単結晶シリコン基板の上面を露出させ、
その露出した上記単結晶シリコン基板の上面に対し、上記可動体となる部分の下がサイドエッチングによって除去され、凹部が形成されるまで単結晶シリコンの異方性エッチングを施し、
その後、上記絶縁層及び側壁上の熱酸化膜を除去することを特徴とする微小可動デバイスの作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15−1】
image rotate

【図15−2】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18−1】
image rotate

【図18−2】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2010−52134(P2010−52134A)
【公開日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2009−239001(P2009−239001)
【出願日】平成21年10月16日(2009.10.16)
【分割の表示】特願2005−10514(P2005−10514)の分割
【原出願日】平成17年1月18日(2005.1.18)
【出願人】(000231073)日本航空電子工業株式会社 (1,081)
【Fターム(参考)】