説明

Fターム[4G072MM38]の内容

珪素及び珪素化合物 (39,499) | 反応、分離系操作 (4,111) | 溶融 (547)

Fターム[4G072MM38]に分類される特許

21 - 40 / 547


【課題】高品質な多結晶シリコンインゴットを作製する。
【解決手段】坩堝20の周囲に配置された3n個(nは自然数)の抵抗加熱ヒータに3相交流を供給し、3相交流によって生じる回転磁場を作用させつつ、坩堝20内のシリコンを加熱して溶解させる加熱工程と、上記回転磁場を作用させつつ、坩堝20の底部から上部に向けて冷却してシリコンを凝固させる冷却工程と備える。 (もっと読む)


【課題】シリコンインゴット中への酸素の溶け込みを抑制可能なシリコンインゴット鋳造用積層ルツボを提供する。
【解決手段】鋳型2の内側に設けられた、500〜1500μmの粗大溶融シリカ砂31をシリカで結合した外層スタッコ層30を少なくとも1層含む外層シリカ層3と、外層シリカ層3の内側に設けられた、50〜300μmの微細溶融シリカ砂41をシリカで結合した内層スタッコ層40を少なくとも1層含む内層シリカ層4と、を備え、内層シリカ層4の最表面の内層スタッコ層40’が、平均粒径0.1〜0.01μmの水酸化バリウム又は炭酸バリウムを含有することを特徴とするシリコンインゴット鋳造用積層ルツボ1を選択する。 (もっと読む)


【課題】均質なシリコンインゴットを歩留よく鋳造するために、離型性に優れ、かつ、鋳型内面の剥離や脱落を防止することができ、シリコンインゴットのクラック発生も防止することができ、しかも、形成が容易である離型層を備えたシリコン鋳造用鋳型を提供する。
【解決手段】シリコン鋳造用鋳型1の内表面に形成される離型層3を、鋳型1内に充填されるシリコン融液面4aとの接触部及びそれよりも上部3Aが、イミド熱分解法により製造された窒化珪素粉末の熱酸化による焼結体からなり、シリコン融液面4aとの接触部よりも下部3Bが、直接窒化法により製造された窒化珪素粉末の熱酸化による焼結体からなるような構成とする。 (もっと読む)


【課題】シリコンインゴット中への酸素の溶け込みを低減可能なシリコンインゴット鋳造用積層ルツボを提供する。
【解決手段】シリコン原料を溶解し、鋳造してシリコンインゴットを製造するためのシリコンインゴット鋳造用積層ルツボであって、鋳型2の内側に設けられた、50〜300μmの微細溶融シリカ砂31をシリカ5で結合した内層スタッコ層30を少なくとも1層含む内層シリカ層3と、内層シリカ層3の内側に設けられ、0.2〜4.0μmの窒化ケイ素粉末41を75〜90重量%含有するとともに残部が10〜6000ppmのナトリウムを含有するシリカ5から構成される混合体素地層40を少なくとも1層含む窒化ケイ素コーティング層4と、を備え、窒化ケイ素コーティング層4の最表面の混合体素地層40’が、平均粒径0.01〜0.1μmの水酸化バリウム又は炭酸バリウムを含有するシリコンインゴット鋳造用積層ルツボ1を選択する。 (もっと読む)


【課題】残留応力の発生を十分に抑制でき、転位の発生を抑制できる電磁誘導を利用したシリコンインゴットの連続鋳造方法を提供する。
【解決手段】無底冷却ルツボの下方に複数段の保温ヒーターと複数段の均熱ヒーターを連続して配置する構成とし、冷却ルツボの下端位置を原点として鉛直下方を正とする座標系に従い、最上段の保温ヒーターの温度監視用温度計の鉛直方向の設置位置を第1位置Z0とし、この第1位置Z0でのヒーター温度をT0で表すとともに、最上段の均熱ヒーターの温度監視用温度計の鉛直方向の設置位置を第2位置Z1とし、この第2位置Z1でのヒーター温度をT1で表した場合、第1位置Z0と第2位置Z1との間の各保温ヒーターの温度監視に用いられる各温度計の鉛直方向の設置位置をZとし、各位置Zでのヒーター温度Tが下記(1)式の条件を満たすように、各保温ヒーターの出力を制御する。
(もっと読む)


【課題】人工水晶育成時の結晶の成長速度が大幅に向上するとともに、不純物及びインクルージョン含有量の少ない高品質の水晶を低原価で製造することができる人工水晶の製造装置を提供する。
【解決手段】人工水晶育成炉本体容器21の下部領域21bにおいてアルカリ溶液で溶融した原料水晶30を、また、該本体容器21の上部領域21aにおいて育成枠8に配設した種子水晶3に原料水晶30を再結晶させて人工水晶を育成する人工水晶の製造方法及び装置20において、該種子水晶3を前記容器21の鉛直線を中心として所定角度傾け、かつ、反時計回り、または時計回りに回転らせん状に配設し、さらに前記種子水晶3を製品用種子水晶と、該製品用種子水晶と異なるカットの種子水晶から構成して、同じ前記人工水晶育成炉本体容器21内に同時に配置して人工水晶を育成することを特徴とする人工水晶の製造方法及び装置。 (もっと読む)


【課題】炭素や酸素等の不純物を含有するシリコン粉末から、それを放電プラズマ焼結法によって焼結するだけでは達成できない高純度なシリコン材料を得ることができるシリコン製造方法を提供する。
【解決手段】放電プラズマ焼結法によりシリコン粉末を焼結させた後(ステップS02〜ステップS04)、その焼結したシリコン粉末を容器内で溶融させて(ステップS11〜ステップS12)、高純度なシリコン材料の溶融体(例えば、不純物濃度がppmオーダーの溶融シリコン)を生成する。 (もっと読む)


【課題】粉体の凝集・付着を抑制する球状無機物粉体の製造方法の提供。
【解決手段】金属からなる原料無機物粉体にHMDSを接触させて処理済原料無機物粉体にする表面処理工程とその処理済原料無機物粉体をキャリヤガスと共に搬送する搬送工程とを有する。その後、溶融法を採用する場合には、搬送された処理済原料無機物粉体を高温火炎中に分散させて加熱溶融する溶融工程と高温火炎中から取り出して冷却凝固させる凝固工程とを有する。そしてVMC法を採用する場合には、搬送された処理済原料無機物粉体を高温火炎中に分散させて燃焼させる燃焼工程と高温火炎中から取り出して冷却凝固させる凝固工程とを有する。つまり、本発明の球状無機物粉体の製造方法は、HMDSにて表面処理を行うことで原料無機物粉体の粉体特性を向上し、粉体間の凝集防止や、粉体が輸送路に付着することを防止している。 (もっと読む)


【課題】金属シリコンから速い速度でボロンを除去する方法を提供する。
【解決手段】本発明は、ボロンを含有する金属シリコン多孔質体にプラズマを照射して溶融し、非酸化性雰囲気で冷却することを特徴とする金属シリコンからのボロン除去方法である。前記金属シリコン多孔質体は、充填率が60%以上であること、金属シリコン粉末を還元性ガス雰囲気下で焼結することによって調製されること、又は金属シリコン粉末を800℃以上で焼結することによって調製されること、などが好ましい。 (もっと読む)


【課題】金属シリコンから速い速度でボロンを除去する方法を提供する。
【解決手段】本発明は、水素、水蒸気、二酸化炭素及び酸素から選択される少なくとも1種と不活性ガスとの混合ガスをプラズマ化することによってジェット流を形成しておき、このジェット流にボロンを含有する金属シリコン粉末を供給することを特徴とする金属シリコンからのボロン除去方法である。本発明において、水素と不活性ガスとの混合ガスをプラズマ化することによって形成されるジェット流の中流に、水蒸気、二酸化炭素及び酸素から選択される少なくとも1種を供給することも好ましい。 (もっと読む)


【課題】金属シリコンからボロンを除去する方法を提供する。
【解決手段】本発明は、ボロンを含有する金属シリコン粉末を還元性雰囲気下、1300℃以上で熱処理することを特徴とする金属シリコンからのボロン除去方法である。前記金属シリコン粉末は、例えば(a)ボロンを含有する金属シリコンを非酸化性雰囲気下でアトマイズすることにより調製されるか、又は(b)表面が1300℃以上で酸化された金属シリコン粉末であることが好ましい。また、前記還元性雰囲気での熱処理温度が1414℃以下であることが好ましい。前記(a)の場合において、非酸化性雰囲気は、不活性ガスであることが好ましい。 (もっと読む)


【課題】Si溶融析出反応器の下部に配置されるポリシリコン受け容器であって、収容されたポリシリコンに表面変質を生じせしめないポリシリコン受け容器を提供する。
【解決手段】Si溶融析出反応器1の下部に配置され、該反応器1の内面から溶融落下したポリシリコンを受けるための受け容器15であって、該受け容器15の少なくとも内面に、水分の吸脱湿を防止する表面処理層が形成されていることを特徴とする。 (もっと読む)


【課題】より結晶成長に適した温度勾配を形成でき、品質の高い結晶を製造できる結晶成長装置を提供する。
【解決手段】上端に開口31を有し、下端に底部32を有するるつぼ3と、るつぼ3を包囲し、るつぼ3の上下方向に沿って第1の位置と第2の位置の間を移動できる加熱装置2とを有しており、加熱装置2が稼動すると、るつぼ3の底部32の側から開口31の側に向かう順に、第1の温度域201と、第1の温度域201よりも温度が高い第2の温度域202とがそれぞれ画成され、加熱装置2が前記第1の位置にあるときに、るつぼ3は第2の温度域202にあり、加熱装置2が前記第2の位置にあるときに、るつぼ3は第1の温度域201にあることを特徴とした結晶成長装置。 (もっと読む)


【課題】電気伝導性および安全性を高めると共に、組成や粒径を良好に制御できる二次電池用正極活物質の製造方法を提供する。
【解決手段】Aabcd1e1(AはLi、Na、K、MはFe、Mn、Co、Ni、XはSi、P、S、B、Al、V、Mo、W、As、Ge、Sb、Zはハロゲン、0.8≦a≦2.7、0.6≦b≦1.4、0.9≦c≦1.1、d1はa、b、c、e1、Mの価数、Xの価数に依存する数、e1≦a、0≦e1≦2.2)組成を有する溶融物を冷却して固化物を得る。固化物を粉砕した後に不活性ガス中または還元ガス中で加熱し、Aabcde組成を有する化合物の表面の少なくとも一部が導電材で被覆された被覆粒子を得る。被覆粒子と溶媒と、該溶媒に分散または溶解した含フッ素ポリマーとを混合した後、溶媒を除去し、次に加熱して二次電池用正極活物質を得る。 (もっと読む)


【課題】 高温の気相で行う反応を用いず、低温の液相で行う反応を採用することにより、シリコンを多量で安定的に連続生成させる多結晶シリコンの製造方法を提供すること。
【解決手段】 溶融金属亜鉛中においてクロルシランと金属亜鉛を反応させ多結晶シリコンと塩化亜鉛とを反応生成物として生じさせる還元反応部分の位置が、反応生成物である塩化亜鉛を電気分解することによって塩素と金属亜鉛を生成させる電解部分の位置より下部にある。還元反応部分でクロルシランと金属亜鉛とを反応させ多結晶シリコンと塩化亜鉛を反応生成物として生じさせる。反応生成物である多結晶シリコンを分離し、塩化亜鉛を電気分解することによって塩素と金属亜鉛を生成させこの塩素はクロルシランの製造用に使用する。金属亜鉛はクロルシランとの反応に使用する。 (もっと読む)


【課題】MgSi1−xSn系多結晶体であって、性能指数が高い、熱電変換素子および、熱電変換モジュールの提供。
【解決手段】Sb、P、As、Bi、Alから選択される少なくとも1種のドーパントAでドーピングされたMgSi1−xSn中に、Sc、Ti、V、Y、Zr、Nb、Mo、Hf、Ta、Wから選択される少なくとも1種の遷移金属Bの元素および/または遷移金属Bのシリサイドが分散していることを特徴とする下記式(1)で表されるMgSi1−xSn・Aa・Bb多結晶体。MgSi1−xSn・Aa・Bb、式(1)[ただし、式(1)中のxは0〜1、aはMgSi1−xSnに対するドーパントAの含有量であって0.01〜5mol%であり、bはMgSi1−xSnに対する遷移金属Bの含有量であって0.01〜5mol%である。] (もっと読む)


【解決手段】一方向凝固法により金属ケイ素を精製する方法であって、溶融した金属ケイ素を撹拌翼により最大線速50cm/sec以下で撹拌しながら一方向凝固する金属ケイ素の精製方法。
【効果】遠心法や沈降法等の他の工程を特に行わないで一方向凝固法だけでも金属ケイ素中の炭化ケイ素、酸化アルミニウム、酸化カルシウム等の不純物を効率よく低減することができる。 (もっと読む)


【課題】本発明は、容器内に収容された溶融シリコンに高周波誘導加熱を施したり、容器の底部から溶融シリコンに不活性ガスを吹き込んだり、または、溶融シリコンの浴面近傍に酸化性ガスとは別にさらに水素を吹き付けたりせずとも、溶融シリコン中のボロンの除去速度を向上させることが可能な溶融シリコン中のボロン除去方法を提供することを目的とする。
【解決手段】容器としてのルツボ1内に収容された溶融シリコン3の浴面3aにAr−5.0%HOガスを吹き付けてプラズマアーク溶解しながら溶融シリコン3中のBを除去する方法であって、ルツボ1内に収容された溶融シリコン3を、プロペラ2を用いて周方向に250rpmの速度で攪拌する。 (もっと読む)


【解決手段】不純物としてPを含有するシリコンとスラグを加熱してそれぞれを溶融し、シリコンとスラグを溶融状態で接触させてシリコン中のPをスラグに吸収させ、次いでこれらを冷却・固化し、Pを吸収させたスラグをシリコンから分離除去する第一工程を少なくとも1回行った後、得られたシリコンを解砕し、これを無機酸を含む水溶液にて処理する第二工程を行うことによりシリコン中に含まれるPを除去するシリコンの精製方法であって、スラグの組成が、少なくとも1種の塩基性酸化物を含み、この塩基性酸化物と、中性酸化物、酸性酸化物、アルカリ金属ハロゲン化物、及びアルカリ土類金属ハロゲン化物から選ばれる混合物からなり、かつ酸性酸化物を含む場合は、酸性酸化物の含有量が塩基性酸化物の含有量よりも少ない組成であるシリコンの精製方法。
【効果】従来の精製方法よりも安価に効率よくシリコン中のPを除去することができる。 (もっと読む)


【課題】溶融シリコンの異物汚染を抑制できるシリコンインゴットの電磁鋳造方法の提供。
【解決手段】チャンバー1内を真空引きする際、シャッター30によって無底冷却ルツボ10の上端開口を遮蔽し、不活性ガス導入管4の遮断弁5を閉にし、通気管20、真空引き用配管23の各遮断弁21、25を開にした状態で、排気管7の排気ポンプ8を作動させることなく、真空引き用配管23の真空ポンプ24を作動させ、その後にチャンバー1内を不活性ガスで満たす際、ガス導入管4の遮断弁5を開に切り換えた状態にし、その後にシリコン原料14を溶解しながら連続鋳造する際、シャッター30を退避させてルツボ10の上端開口を開放し、通気管20、真空引き用配管23の各遮断弁21、25を閉に切り換えた状態で、排気ポンプ8を作動させ、その後にチャンバー1内でインゴット19を冷却する際、通気管20の遮断弁21を開に切り換えた状態にする。 (もっと読む)


21 - 40 / 547