説明

プラズマプロセス装置及びプラズマ処理方法

【課題】ホロカソード効果を十分に高めることにより、パウダーの発生を抑制して、成膜した膜の質の向上を図る。
【解決手段】少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスとが上記処理室6へ導入可能に構成し、上記プラズマ放電面18は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部2aと、上記テーパ部2aの上記プラズマ放電面18の底部側に連続して上記プラズマ放電面18の底部を構成する凹溝部2bとにより形成し、上記テーパ部2aの最大の上記間隔w1の大きさをd1とし、最小の上記間隔w2の大きさをd2としたとき、p1×d1の値及びp2×d2の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、上記プラズマ放電面18の溝深さは、上記テーパ部2aの間隔の大きさの上記溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに規定した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマプロセス装置及びプラズマ処理方法に関するものである。
【背景技術】
【0002】
プラズマを使って半導体膜を成膜し、集積回路、液晶ディスプレイ、有機エレクトロルミネッセンス素子、太陽電池などの電子デバイスを製造する方法、いわゆるプラズマ励起化学相成長(Chemical Vapor Deposition 、CVD)法は、その簡便性や操作性に優れているので、さまざまな電子デバイスを製造するのに使用されている。
【0003】
プラズマCVD法を用いる装置の形態(プラズマ化学蒸着装置、以下、「プラズマCVD装置」という)としては、図7及び図8に示すものが一般的である。図7及び図8を参照しながら、プラズマCVD装置について説明する。図7は従来のプラズマCVD装置の概略図であり、図8は、従来のプラズマCVD装置を模式的に示す断面図である。プラズマCVD装置は、処理室(真空容器)6を用いて構成された閉空間と、その中にお互いに電気的に絶縁され、対向する位置に平行に設置された、2枚の導体板からなる電極2、4とを有する。2枚の電極2,4の間にプラズマ12を発生させ、そこに材料ガスを流して材料ガスを解離させる。これにより、一方の電極4に取り付けられた、シリコンやガラスなどからなる被処理基板5の上に、半導体膜等を形成する。
【0004】
成膜用の材料ガスを解離するためのプラズマ12を発生させる手段としては、例えば、周波数が13.56MHzの高周波等の電気的エネルギーが一般に使用されている。一方の導電板電極4は接地電位とし、対向する他方の電極2に電圧を印加して、両電極2,4間に電界を発生させ、その絶縁破壊現象によりグロー放電現象としてプラズマ12を生成する。電圧が印加される側の電極2をカソード電極と呼ぶ。また、接地電位の電極4をアノード電極と呼ぶ。カソード電極2近傍には大きな電界が形成される。そして、その電界で加速されるプラズマ12中の電子が材料ガスの解離を促しラジカルを生成する。図8中の12はラジカルの流れを示している。
【0005】
生成されたラジカルは、アノード電極4上の被処理基板5まで拡散し、被処理基板5の表面に堆積して膜が成長する。このように、互いに平行な2つの電極2,4間でプラズマ12を生成し、アノード電極4上の被処理基板5に成膜する装置を、以下「平行平板型装置」と呼ぶ。
【0006】
しかし、平行平板型装置では、例えば、窒素ガスのみで窒化シリコン膜を成膜する場合、解離しにくい水素ガスや窒素ガスを十分に分解できず、絶縁膜や保護膜性のよい窒化シリコン膜を得ることは困難であった。このことから、平行平板型装置では、材料ガスの解離を十分に促進させることができていなかったといえる。そこで、材料ガスの解離を促進させる技術が求められている。
【0007】
材料ガスの解離を促進させる技術は、例えば、特許文献1等に開示されている。特許文献1に開示されたプラズマプロセス装置では、カソード電極が凹状に形成されており、ホロカソード効果によりプラズマ密度が高められる。これにより、材料ガスの解離が促進され、通常の平行平板型装置と比較して、速い成膜速度が得られる。しかし、この装置では、被処理基板の表面がプラズマに曝されるので、成膜面がプラズマダメージを受けやすい。
【0008】
このようなプラズマダメージは、被処理基板の設定温度を300℃以上にすることによって、熱エネルギーで修復することができる。しかし、基板の耐熱性等により、被処理膜を200℃程度あるいはそれ以下の温度に設定したい場合には、高品質な膜質を維持することが難しい。
【0009】
そこで、例えば、特許文献2等に示すようなプラズマプロセス装置が知られている。特許文献2のプラズマプロセス装置は、被処理基板が内部に配置される処理室と、処理室内に材料ガスを導入するガス導入口と、処理室内に設けられたプラズマ放電発生部とを備えている。プラズマ放電発生部は、第1電極と、上記第1電極よりも被処理基板に接近して設けられた第2電極とを有し、上記第1電極及び第2電極は、上記被処理基板の法線方向から視認できる面のみをプラズマ放電面として機能させている。この構成により、比較的低い被処理基板の温度においても、成膜面のプラズマダメージを抑制しつつ、プラズマによる材料ガスの解離を促進させることができる。また、同文献では、カソード電極のプラズマ放電面を凹面状に形成することによりホロカソード効果を生じさせてより多くの電子を放出させ、これにより、材料ガスを効率的に解離し、膜質を向上させるようにしている。
【特許文献1】特開平1−279761号公報
【特許文献2】特開2004−158839号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
ところで、従来から、材料ガスがプラズマによって十分に解離されていないと成膜処理中の電極周辺に材料ガス中のシラン等の重合体であると考えられるパウダーが発生し、そのパウダーが成膜される膜に取り込まれてその膜質を劣化させることが知られている。また、特許文献2に示されているプラズマプロセス装置であっても、材料ガスの導入条件によっては、ホロカソード効果が十分に高められない場合がある。その結果、成膜処理中のカソード溝構造部分に上記パウダーが発生して、成膜した膜の質が低下してしまう。
【0011】
本発明は、斯かる諸点に鑑みてなされたものであり、その目的とするところは、ホロカソード効果を十分に高めることにより、パウダーの発生を抑制して、成膜した膜の質を高めようとすることにある。
【課題を解決するための手段】
【0012】
本発明者らは、プラズマプロセス装置について鋭意研究を重ねた結果、ある圧力Pで材料ガスを導入した場合にプラズマ放電面の間隔の大きさDがある範囲にあるとき、すなわち、P×Dの値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にある場合には、ホロカソード効果が十分に高められることを経験的に見出した。
【0013】
このことから、この発明では、上記の目的を達成するために、第1電極に溝状に形成されたプラズマ放電面の側壁間の間隔の大きさ及び溝深さを、導入する材料ガスの圧力により規定するようにした。
【0014】
具体的に、本発明に係るプラズマプロセス装置は、被処理基板が内部に配置される処理室と、上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスとが上記処理室へ導入可能に構成され、上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記プラズマ放電面の底部側に連続して上記プラズマ放電面の底部を構成する凹溝部とにより形成され、上記テーパ部の最大の上記間隔の大きさをd1とし、最小の上記間隔の大きさをd2としたとき、p1×d1の値及びp2×d2の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、上記プラズマ放電面の溝深さは、上記テーパ部の間隔の大きさの上記溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに規定されている。
【0015】
すなわち、仮に、導入される材料ガスの圧力の値とプラズマ放電面の側壁間の間隔(以下、単に「間隔」ともいう)の大きさの値との積の値が0.2Pa・mよりも小さい場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが小さすぎる場合には、プラズマ放電面に電圧を印加したとしてもプラズマが発生しにくくなる。
【0016】
一方、仮に、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値が1.0Pa・mよりも大きい場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが大きすぎる場合には、プラズマ放電面の側壁間の電子密度を効果的に高めることが難しい。
【0017】
したがって、上記の構成により、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値、つまり、p1×d1の値及びp2×d2の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にある場合には、プラズマ放電面におけるプラズマの発生が促進されると共にプラズマ放電面の側壁間の電子密度が効果的に高められるため、ホロカソード効果が十分に高められる。
【0018】
また、仮に、プラズマ放電面の溝深さが、テーパ部の間隔の大きさのプラズマ放電面の溝深さ方向(以下、「プラズマ放電面の溝深さ方向」を単に「溝深さ方向」ともいう)における平均値の2倍よりも小さい場合、つまり、プラズマ放電面の溝深さが比較的浅い場合には、プラズマ放電面の面積が小さすぎるため、材料ガスの解離率が低下する。
【0019】
一方、仮に、プラズマ放電面の溝深さが、テーパ部の間隔の大きさの溝深さ方向における平均値の3倍よりも大きい場合、つまり、プラズマ放電面の溝深さが比較的深い場合には、プラズマ放電面の溝深さがテーパ部の間隔の大きさの溝深さ方向における平均値の3倍の大きさである場合に対して材料ガスの解離率が大きくなり難いため、プラズマ放電面が必要以上に大きくなってしまう。
【0020】
したがって、プラズマ放電面の溝深さがテーパ部の間隔の大きさの溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに規定されている場合には、プラズマ放電面において、材料ガスを十分に解離させることが可能になるため、プラズマ放電面を必要以上に大きくすることなく、材料ガスの解離率を向上させることが可能となる。
【0021】
さらに、例えば、第1圧力p1で材料ガスが導入された場合には、p1×d1の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、テーパ部が最大の間隔である領域付近において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0022】
また、例えば、第2圧力p2で材料ガスが導入された場合には、p2×d2の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、テーパ部が最小の間隔である領域付近において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0023】
また、例えば、第1圧力p1よりも高く且つ第2圧力p2未満の圧力で材料ガスが導入された場合には、プラズマ放電面は断面テーパ状に形成されているため、テーパ部の少なくとも一部における間隔の大きさの値と導入された圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、テーパ部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。すなわち、材料ガスが第1圧力p1以上且つ第2圧力p2以下の圧力で導入された場合には、ホロカソード効果が十分に高められる。
【0024】
さらに、上記p1×d1の値及び上記p2×d2の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあることが好ましい。このことによって、ホロカソード効果がより高められる。
【0025】
また、本発明に係るプラズマプロセス装置は、被処理基板が内部に配置される処理室と、上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる平行部と、上記平行部の上記底部側に連続して形成されて上記底部を構成する凹溝部とにより形成されていてもよい。
【0026】
この構成によると、比較的低い圧力で材料ガスが導入された場合には、テーパ部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0027】
また、比較的高い圧力で材料ガスが導入された場合には、平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。すなわち、圧力の異なる材料ガスが導入された場合にも、テーパ部又は平行部においてホロカソード効果が十分に高められる。
【0028】
さらに、少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスとが上記処理室へ導入可能に構成され、上記テーパ部の最大の間隔の大きさをd1とし、上記平行部の間隔の大きさをd2としたとき、p1×d1の値及びp2×d2の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、上記テーパ部の上記プラズマ放電面の溝深さ方向における長さは、上記テーパ部の最大の間隔の大きさd1の2倍以上且つ3倍以下の大きさに規定され、上記平行部と上記凹溝部との上記プラズマ放電面の溝深さ方向における長さの和は、上記平行部の間隔の大きさd2の2倍以上且つ3倍以下の大きさに規定されていることが好ましい。
【0029】
すなわち、仮に、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値が0.2Pa・mよりも小さい場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが小さすぎる場合には、プラズマ放電面に電圧を印加したとしてもプラズマが発生しにくくなる。
【0030】
一方、仮に、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値が1.0Pa・mよりも大きい場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが大きすぎる場合には、プラズマ放電面の側壁間の電子密度を効果的に高めることが難しい。
【0031】
したがって、上記の構成により、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値、つまり、p1×d1の値及びp2×d2の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にある場合には、プラズマ放電面におけるプラズマの発生が促進されると共にプラズマ放電面の側壁間の電子密度が効果的に高められるため、ホロカソード効果が十分に高められる。
【0032】
また、仮に、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の2倍よりも小さい場合、つまり、テーパ部の溝深さ方向における長さが比較的小さい場合には、テーパ部のプラズマ放電面の面積が小さすぎるため、テーパ部における材料ガスの解離率が低下する。
【0033】
一方、仮に、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の3倍よりも大きい場合、つまり、テーパ部の溝深さ方向における長さが比較的大きい場合には、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の3倍の大きさである場合に対してテーパ部における材料ガスの解離率が大きくなり難いため、テーパ部が必要以上に大きくなる結果、プラズマ放電面が必要以上に大きくなってしまう。
【0034】
また、仮に、平行部と凹溝部との溝深さ方向における長さの和が、平行部の間隔の大きさd2の2倍よりも小さい場合、つまり、平行部と凹溝部との溝深さ方向における長さの和が比較的小さい場合には、平行部のプラズマ放電面の面積が小さすぎるため、平行部における材料ガスの解離率が低下する。
【0035】
一方、仮に、平行部と凹溝部との溝深さ方向における長さの和が、平行部の間隔の大きさd2の3倍よりも大きい場合、つまり、平行部と凹溝部との溝深さ方向における長さの和が比較的大きい場合には、平行部と凹溝部との溝深さ方向における長さの和が平行部の間隔の大きさの3倍である場合に対して平行部及び凹溝部における材料ガスの解離率が大きくなり難いため、平行部及び凹溝部が必要以上に大きくなる結果、プラズマ放電面が必要以上に大きくなってしまう。
【0036】
したがって、テーパ部の溝深さ方向における長さが、テーパ部の最大の間隔の大きさの2倍以上且つ3倍以下の大きさに規定され、平行部と狭窄部との溝深さ方向における長さの和が、平行部の間隔の大きさの2倍以上且つ3倍以下に規定されている場合には、テーパ部と、平行部及び凹溝部とが、それぞれ材料ガスを十分に解離させることが可能になるため、プラズマ放電面を必要以上大きくすることなく、材料ガスの解離率を向上させることが可能となる。
【0037】
さらに、例えば、第1圧力で材料ガスが導入された場合には、p1×d1の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、テーパ部が最大の間隔である領域付近において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0038】
また、例えば、第2圧力で材料ガスが導入された場合には、p2×d2の値が、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0039】
また、例えば、第1圧力よりも高く且つ第2圧力未満の圧力で材料ガスが導入された場合にも、テーパ部は断面テーパ形状をしているため、テーパ部の少なくとも一部における間隔の大きさの値と導入された圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、この場合にも、テーパ部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。すなわち、材料ガスが第1圧力以上且つ第2圧力以下の圧力で導入された場合には、ホロカソード効果が十分に高められる。
【0040】
さらに、上記p1×d1の値及び上記p2×d2の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあることが好ましい。このことによって、ホロカソード効果がより高められる。
【0041】
また、本発明に係るプラズマプロセス装置は、被処理基板が内部に配置される処理室と、上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる第1平行部と、上記第1平行部の上記底部側に連続して形成されて上記底部に向かって側壁間の間隔が徐々に狭くなる狭窄部と、上記狭窄部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる第2平行部と、上記第2平行部に連続して形成されて上記底部を構成する凹溝部とにより形成されていてもよい。
【0042】
この構成によると、比較的低い圧力で材料ガスが導入された場合には、テーパ部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0043】
また、比較的高い圧力で材料ガスが導入された場合には、第1平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0044】
また、さらに高い圧力で材料ガスが導入された場合には、第2平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。すなわち、圧力の異なる材料ガスが導入された場合であっても、テーパ部、第1平行部又は第2平行部においてホロカソード効果が十分に高められる。
【0045】
さらに、少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスと、上記第2圧力p2よりも圧力の高い第3圧力p3の上記材料ガスとが上記処理室へ導入可能に構成され、上記テーパ部の最大の間隔の大きさをd1とし、上記第1平行部の間隔の大きさをd2とし、上記第2平行部の間隔の大きさをd3としたとき、p1×d1の値、p2×d2の値及びp3×d3の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、上記テーパ部の上記プラズマ放電面の溝深さ方向における長さは、上記テーパ部の最大の間隔の大きさd1の2倍以上且つ3倍以下の大きさに規定され、上記第1平行部と上記狭窄部との上記プラズマ放電面の溝深さ方向における長さの和は、上記第1平行部の間隔の大きさd2の2倍以上且つ3倍以下の大きさに規定され、上記第2平行部と上記凹溝部との上記プラズマ放電面の溝深さ方向における長さの和は、上記第2平行部の間隔の大きさd3の2倍以上且つ3倍以下の大きさに規定されていることが好ましい。
【0046】
すなわち、仮に、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値が0.2Pa・mよりも小さい値である場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが小さすぎる場合には、プラズマ放電面に電圧を印加したとしてもプラズマが発生しにくくなる。
【0047】
一方、仮に、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値が1.0Pa・mよりも大きい値である場合、つまり、導入される材料ガスの圧力に対してプラズマ放電面の間隔の大きさが大きすぎる場合には、プラズマ放電面の側壁間の電子密度を効果的に高めることが難しい。
【0048】
したがって、上記の構成により、導入される材料ガスの圧力の値とプラズマ放電面の間隔の大きさの値との積の値、つまり、p1×d1の値、p2×d2の値及びp3×d3の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にある場合には、プラズマ放電面におけるプラズマの発生が促進されると共にプラズマ放電面の側壁間の電子密度が効果的に高められるため、ホロカソード効果が十分に高められる。
【0049】
また、仮に、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の2倍よりも小さい場合、つまり、テーパ部の溝深さ方向における長さが比較的小さい場合には、テーパ部のプラズマ放電面の面積が小さすぎるため、テーパ部における材料ガスの解離率が低下する。
【0050】
一方、仮に、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の3倍よりも大きい場合、つまり、テーパ部の溝深さ方向における長さが比較的大きい場合には、テーパ部の溝深さ方向における長さがテーパ部の最大の間隔の大きさd1の3倍である場合に対してテーパ部における材料ガスの解離率が大きくなり難いため、テーパ部が必要以上に大きくなる結果、プラズマ放電面が必要以上に大きくなってしまう。
【0051】
また、仮に、第1平行部と狭窄部との溝深さ方向における長さの和が第1平行部の間隔の大きさd2の2倍よりも小さい場合、つまり、第1平行部の溝深さ方向における長さが比較的小さい場合には、第1平行部のプラズマ放電面の面積が小さすぎるため、第1平行部における材料ガスの解離率が低下する。
【0052】
一方、仮に、第1平行部と狭窄部との溝深さ方向における長さの和が第1平行部の間隔の大きさd2の3倍よりも大きい場合、つまり、第1平行部と狭窄部との溝深さ方向における長さの和が比較的大きい場合には、第1平行部と狭窄部との溝深さ方向における長さの和が第1平行部の間隔の大きさd2の3倍の大きさである場合に対して第1平行部における材料ガスの解離率が大きくなり難いため、第1平行部及び狭窄部が必要以上に大きくなる結果、プラズマ放電面が必要以上に大きくなってしまう。
【0053】
また、仮に、第2平行部と凹溝部との溝深さ方向における長さの和が、第2平行部の間隔の大きさd2の2倍よりも小さい場合、つまり、第2平行部の溝深さ方向における長さが比較的小さい場合には、第2平行部のプラズマ放電面の面積が小さすぎるため、第2平行部における材料ガスの解離率が低下する。
【0054】
一方、仮に、第2平行部と凹溝部との溝深さ方向における長さの和が、第2平行部の間隔の大きさd3の3倍よりも大きい場合、つまり、第2平行部と凹溝部との溝深さ方向における長さの和が比較的大きい場合には、第2平行部と凹溝部との溝深さ方向における長さの和が第2平行部の間隔の大きさd3の3倍の大きさである場合に対して第2平行部における材料ガスの解離率が大きくなり難いため、第2平行部が必要以上に大きくなる結果、プラズマ放電面が必要以上に大きくなってしまう。
【0055】
したがって、テーパ部の溝深さ方向における長さが、テーパ部の最大の間隔の2倍以上且つ3倍以下の大きさに規定され、第1平行部と狭窄部との溝深さ方向における長さの和が、第1平行部の間隔の大きさの2倍以上且つ3倍以下に規定され、第2平行部と凹溝部との溝深さ方向における長さの和が、第2平行部の間隔の大きさの2倍以上且つ3倍以下に規定されている場合には、テーパ部と、第1平行部及び狭窄部と、第2平行部及び凹溝部とが、それぞれ材料ガスを十分に解離させることが可能になるため、プラズマ放電面を必要以上に大きくすることなく、材料ガスの解離率を向上させることが可能となる。
【0056】
さらに、例えば、第1圧力p1で材料ガスが導入された場合には、p1×d1の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、テーパ部が最大の間隔である領域付近において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0057】
また、例えば、第2圧力p2で材料ガスが導入された場合には、p2×d2の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、第1平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0058】
また、例えば、第3圧力p3で材料ガスが導入された場合には、p3×d3の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるため、第2平行部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0059】
また、例えば、第1圧力p1よりも高く且つ第2圧力p2未満の圧力で材料ガスが導入された場合には、テーパ部は断面テーパ状に形成されているため、テーパ部の少なくとも一部における間隔の大きさと導入された圧力との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、テーパ部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0060】
また、例えば、第2圧力p2よりも高く且つ第3圧力p3未満の圧力で材料ガスが導入された場合には、狭窄部は底部に向かって側壁間が徐々に狭くなるため、狭窄部の少なくとも一部における間隔の大きさと導入された圧力との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、狭窄部において、プラズマの発生が促進されると共に電子密度が効果的に高められ、ホロカソード効果が十分に高められる。
【0061】
すなわち、材料ガスが第1圧力p1以上且つ第3圧力p3以下の圧力で導入された場合であっても、テーパ部、第1平行部又は第2平行部においてホロカソード効果が十分に高められる。
【0062】
さらに、上記p1×d1の値、上記p2×d2の値及び上記p3×d3の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあることが好ましい。このことによって、より高いホロカソード効果が得られる。
【0063】
上記第1電極と上記絶縁部と上記第2電極とは、連続する面を構成していることが望ましい。
【0064】
この構成によると、プラズマ放電発生部の一部に材料ガスが滞留することが抑制される。
【0065】
上記プラズマ放電発生部に電気的エネルギーを印加する電源をさらに有し、上記電源の周波数は、300MHzであることが好ましい。
【0066】
この構成によると、第1電極及び第2電極の間に電子が補足されて電子密度が略飽和状態となり、材料ガスの解離が促進される。
【0067】
また、本発明に係るプラズマ処理方法は、上述のプラズマプロセス装置を用いて、基板にプラズマ処理を施す方法であって、上記処理室の内部に上記被処理基板を配置する基板配置工程と、上記被処理基板が配置された上記処理室内に、上記ガス導入口から上記材料ガスを導入するガス導入工程と、上記プラズマ放電発生部によって、プラズマを発生させて、上記被処理基板の表面にプラズマ処理を施すプラズマ処理工程とを含む。
【0068】
基板配置工程では、被処理基板が処理室の内部に配置される。ガス導入工程では、材料ガスがガス導入口から導入される。プラズマ処理工程では、プラズマ放電発生部に電圧を印加することにより、プラズマを発生させる。このプラズマによって、導入された材料ガスが解離し、被処理基板の表面にプラズマ処理が施される。
【0069】
プラズマ処理工程は、周波数が300MHzの電気的エネルギーを上記プラズマ放電発生部に印加することにより行われることが好ましい。
【0070】
このプラズマ処理工程によると、第1電極及び第2電極の間に電子が補足されて電子密度が略飽和状態となり、材料ガスの解離が促進される。
【0071】
上記プラズマ処理工程では、パルス放電によりプラズマを発生させることが好ましい。
【0072】
このプラズマ処理工程によると、パルス放電は電圧の立ち上がりが急峻であるため、電子衝突による材料ガスの解離、すなわち、ラジカルの生成効率が向上する。また、パルス幅が短いほど材料ガスに与えられるエネルギーは最小限となり材料ガスの温度の上昇が抑制される。そうすると、材料ガスの密度が低下することが抑制されるため、材料ガスの解離が促進される。
【発明の効果】
【0073】
本発明によれば、第1圧力p1で材料ガスが導入された場合には、テーパ部が最大の間隔である領域付近において、また、第2圧力p2で材料ガスが導入された場合には、テーパ部が最小の領域付近において、それぞれプラズマの発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0074】
さらに、プラズマ放電面の溝深さは、テーパ部の間隔の大きさの溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに形成されているため、プラズマ放電面を必要以上に大きくすることなく材料ガスの解離を促進することができる。
【0075】
さらに、第1圧力p1よりも高く且つ第2圧力p2未満の圧力で材料ガスが導入された場合であっても、テーパ部において、プラズマの発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0076】
その結果、パウダーの発生を抑制することができ、広い材料ガスの圧力域において成膜した膜の質を向上させることができる。
【0077】
さらに、材料ガスの解離が十分に促進されることにより、材料ガスの解離量が増加するため、プラズマ処理によって成膜する速度が速くなる。その結果、広い材料ガスの圧力域において処理時間を短縮することができる。
【発明を実施するための最良の形態】
【0078】
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。
【0079】
《発明の実施形態1》
図1〜3は、本発明の実施形態1を示している。図1は、本実施形態のプラズマプロセス装置であるプラズマCVD装置を模式的に示す斜視図である。図2は、本実施形態のプラズマプロセス装置であるプラズマCVD装置を示す断面図である。図3は、本実施形態のプラズマ放電発生部16を拡大して示す断面図である。
【0080】
本実施形態のプラズマCVD装置は、被処理基板5が内部に配置される処理室(真空容器)6と、この処理室6内に材料ガスを導入するガス導入口7と、処理室6内に設けられたプラズマ放電発生部16とを備える。典型的には、処理室6内には、被処理基板5を保持する基板ホルダ10が設けられており、被処理基板5は基板ホルダ10に配置される。
【0081】
処理室6の外部には、プラズマ放電発生部16に電力の供給を行う、すなわち、電気的エネルギーを印加する高周波電源1が設けられている。また、材料ガスを処理室6に供給するガス供給部14と、処理室6内の材料ガスを排出するガス排出部11とが設けられ、少なくとも第1圧力p1が、例えば、70Paである材料ガスと、第2圧力p2が、例えば、200Paである材料ガスとが別々に処理室6へ導入可能なように構成されている。ガス排出部11としては、例えば、メカニカル・ブースター・ポンプやロータリーポンプ等が用いられる。高周波電源装置1は、配線9を介してプラズマ放電発生部16に接続されている。
【0082】
プラズマ放電発生部16は、被処理基板5から離間し、被処理基板5に対向して処理室6内に設けられている。また、プラズマ放電発生部16は、第1電極であるカソード電極(陰極)2と、カソード電極2の電極面の一部に形成された絶縁部である電極間絶縁部3と、電極間絶縁部3に形成された第2電極であるアノード電極(陽極)4とを有する。
【0083】
カソード電極2は、複数の溝状に形成されたプラズマ放電面18を有する。電極間絶縁部3は、隣り合うプラズマ放電面18の間に形成されたカソード電極2の突条部分に形成されている。カソード電極2とアノード電極4とは、電極間絶縁部3を介することにより電気的に絶縁された状態にある。また、アノード電極4は、カソード電極2よりも基板ホルダ10側に設けられている。
【0084】
すなわち、プラズマ放電発生部16は、被処理基板5と平行な一方向にストライプ状に延びる複数の電極間絶縁部3と、隣り合う電極間絶縁部3同士の間に設けられて溝状に形成されたカソード電極2のプラズマ放電面18と、各電極間絶縁部3における基板ホルダ10側の端部にカソード電極2と分離した状態で設けられたアノード電極4とを備えている。
【0085】
カソード電極2のプラズマ放電面18は、図3に示すように、テーパ部2aと凹溝部2bとにより構成されている。テーパ部2aは、底部に向かって側壁間の間隔が狭くなる断面テーパ形状に形成されている。テーパ部2aの底部側には、テーパ部2aに連続して凹溝部2bが形成されている。凹溝部2bは、プラズマ放電面18の底部を構成している。すなわち、プラズマ放電面18は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部2aと、テーパ部2aのプラズマ放電面18の底部側に連続してプラズマ放電面18の底部を構成する凹溝部2bとにより形成されている。
【0086】
プラズマ放電面18の側壁間の間隔の大きさ及び溝深さは、導入する材料ガスの圧力により規定している。
【0087】
仮に、導入される材料ガスの圧力に対してプラズマ放電面18の間隔の大きさが小さすぎる場合、すなわち、材料ガスの圧力の値とプラズマ放電面18の間隔の大きさの値との積の値が0.2Pa・mよりも小さい場合には、プラズマ放電発生部16に電圧を印加した際にプラズマ12が発生しにくくなる。そうすると、材料ガスの解離率が低下してしまう。
【0088】
一方、仮に、導入される材料ガスの圧力に対してプラズマ放電面18の間隔が大きすぎる場合、すなわち、材料ガスの圧力の値とプラズマ放電面18の間隔の大きさの値との積の値が1.0Pa・mよりも大きい場合には、カソード電極2とアノード電極4の間の電子密度を効果的に高めることができないために、ホロカソード効果を十分に高めることができない。
【0089】
このことから、テーパ部2aの最大の間隔w1の大きさをd1としたとき、テーパ部2aの最大の間隔w1は、第1圧力p1とその間隔w1の大きさd1との積の値、すなわち、p1×d1の値が、表1に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。
【0090】
【表1】

【0091】
また、テーパ部2aの最小の間隔w2の大きさをd2としたとき、テーパ部2aの最小の間隔w2は、第2圧力p2とその間隔w2の大きさd2との積の値、すなわち、p2×d2の値が、表2に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。
【0092】
【表2】

【0093】
さらに、テーパ部2aの最大の間隔w1及び最小の間隔w2は、p1×d1の値及びp2×d2の値が、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるように形成されていることが、ホロカソード効果をより高める観点で好ましい。
【0094】
一方、仮に、プラズマ放電面18の溝深さh1が浅すぎる場合、すなわち、プラズマ放電面18の溝深さh1がテーパ部2aの間隔の大きさの溝深さ方向における平均値の2倍よりも小さい場合には、プラズマ放電面18の面積が小さいため、材料ガスの解離率が低下する。
【0095】
また、仮に、溝深さh1が深すぎる場合、すなわち、プラズマ放電面18の溝深さh1がテーパ部2aの間隔の大きさの溝深さ方向における平均値の3倍よりも大きい場合には、プラズマ放電面18の溝深さh1がテーパ部2aの間隔の大きさの溝深さ方向における平均値の3倍の大きさである場合に対して材料ガスの解離率が大きくなり難いため、プラズマ放電面18が必要以上に大きくなってしまう。
【0096】
このことから、プラズマ放電面18の溝深さh1は、テーパ部2aの間隔の大きさの溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに形成されている。
【0097】
本実施形態では、テーパ部2aの最大の間隔w1及び最小の間隔w2は、p1×d1の値及びp2×d2の値が、それぞれ0.4Pa・mであるように形成されている。すなわち、p1=70Pa、p2=200Paであることから、テーパ部2aの最大の間隔w1は、例えば、0.0057mに形成される一方、テーパ部2aの最小の間隔w2は、例えば、0.002mに形成されている。
【0098】
また、プラズマ放電面18の溝深さh1は、テーパ部2aの間隔の大きさの溝深さ方向における平均値の、例えば、2倍の大きさに形成されている。すなわち、テーパ部2aの間隔の大きさのプラズマ放電面18の溝深さ方向における平均値は、例えば、0.00385mであることから、プラズマ放電面18の溝深さh1は、例えば、0.0077mに形成されている。
【0099】
各電極間絶縁部3は、例えば、アルミナ等により形成されている。隣り合う電極間絶縁部3の間隔は、それぞれ等しくなっている。各電極間絶縁部3の基板ホルダ10側の面は、アノード電極4により覆われている。つまり、アノード電極4もストライプ状に形成されている。すなわち、カソード電極2とアノード電極4とは、被処理基板5と平行な一方向に交互に並んでストライプ状に形成されている。
【0100】
こうして、プラズマ放電発生部16には、対向する電極間絶縁部3及びアノード電極4の側面と、溝状に形成されたカソード電極2のプラズマ放電面18とにより連続する面が形成されている。すなわち、カソード電極2と電極間絶縁部3とアノード電極4とは、連続する面を構成している。このようにして、溝状のプラズマ放電面18を有するプラズマ放電発生部16が処理室6内に形成されている。
【0101】
また、カソード電極2のプラズマ放電面18の底部、すなわち、凹溝部2bに溝深さ方向に貫通する複数のガス導入口7が所定の間隔で形成されている。本実施形態のプラズマCVD装置では、カソード電極2がアノード電極4よりも被処理基板5から離れている。したがって、ガス導入口7から処理室6内へ材料ガスを導入すると被処理基板5へ向かってスムーズな材料ガスの流れ14が実現する。
【0102】
ガス導入口7は、材料ガスを一旦滞留させるガス滞留部8に接続されている。また、ガス滞留部8は、材料ガスを供給するガス供給部14に接続されている。すなわち、ガス供給部14から供給された材料ガスがガス滞留部8に一旦滞留した後、ガス導入口7を通って処理室6内に導入されるようになっている。このように、プラズマCVD装置は、プラズマ放電発生部16に電圧を印加することによりカソード電極2とアノード電極4との間にプラズマ12を発生させて、材料ガスを解離して処理室6内に配置された被処理基板5にプラズマ処理を施すことができるようになっている。
【0103】
−処理方法−
プラズマ処理方法には、基板配置工程と、ガス導入工程と、プラズマ処理工程とが含まれる。
【0104】
上記プラズマCVD装置を用いてプラズマ処理を施す場合には、基板配置工程では、処理室6内に被処理基板5が配置される。被処理基板5の配置位置は、アノード電極4から上方に、例えば、20mm離れた位置である。被処理基板5は、例えば、厚みが1.1mmのガラス基板等である。
【0105】
次に、ガス導入工程では、被処理基板5が配置された処理室6内に材料ガスが導入される。まず、ガス供給部14から材料ガスがガス滞留部8に供給され、一旦ガス滞留部8に滞留する。その後、材料ガスは、ガス導入口7を通って処理室6内に導入される。
【0106】
材料ガスは、例えば、SiH、H、N等である。例えば、アモルファスシリコン膜を成膜するときの材料ガスには、SiH(60sccm)及びH(120sccm)等が用いられる。このとき、材料ガスは、例えば、70Pa等の圧力で導入される。また、その他に、例えば、窒化シリコン膜を成膜するときの材料ガスには、SiH(20sccm)、NH(40sccm)及びN(100sccm)等が用いられる。このとき、材料ガスは、例えば、200Pa等の圧力で導入される。ここで「sccm」とは、0℃において毎分流れる立方センチメートル単位のガス流量である。
【0107】
次に、プラズマ処理工程では、プラズマ放電発生部16によって、プラズマ12を発生させて被処理基板5の表面にプラズマ処理を施す。まず、アノード電極4とカソード電極2との間に、例えば、パルス電圧を印加することによりパルス放電を生じさせてプラズマ放電発生部16にプラズマ12を発生させる。このプラズマ12は、印加される電圧に応じて発生する。電圧の印加を行う電源としては、例えば、周波数が300MHzの高周波電源装置1が用いられる。そうして、処理室6に導入されてプラズマ放電発生部16に流れてきた材料ガスをプラズマ12により解離させる。これにより、材料ガスからラジカルが生成される。図2中の13はラジカルの流れを示している。
【0108】
このように、生成されたラジカルは、被処理基板5まで拡散し、基板ホルダ10に保持された被処理基板5の表面に付着し堆積する。すなわち、被処理基板5の表面に膜が成長して薄膜が形成される。生成されたラジカルは、次々に薄膜表面に到達して薄膜の厚さが増していく。そうして、設定された膜厚になるまでパルス電圧を印加し続けた後、カソード電極2及びアノード電極4の間への電圧の印加、すなわち、プラズマ放電発生部16への電力の供給を停止する。このようにして、被処理基板5の表面に対してプラズマ処理が施される。
【0109】
−実施形態1の効果−
したがって、この実施形態1によると、70Pa以上且つ200Pa以下の圧力で材料ガスが導入された場合には、ホロカソード効果を十分に高めることができ、プラズマ放電面18を必要以上に大きくすることなく材料ガスの解離を十分に促進させることができる。その結果、パウダーの発生を抑制することができ、広い材料ガスの圧力域において、成膜した膜の質を向上させることができる。また、材料ガスの解離が十分に促進されることにより、材料ガスの解離量が増加するため、プラズマ処理によって成膜する速度が速くなる。その結果、広い材料ガスの圧力域において、処理時間を短縮することができる。
【0110】
すなわち、p1×d1の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p1=70Paであるため、70Paの圧力で材料ガスが導入された場合には、少なくともテーパ部2aが最大の間隔w1である領域付近において、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0111】
さらに、p2×d2の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p2=200Paであるため、200Paの圧力で材料ガスが導入された場合には、少なくともテーパ部2aが最小の間隔w2である領域付近において、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0112】
さらに、プラズマ放電面18は、断面テーパ状に形成されているため、70Paよりも高く且つ200Pa未満の圧力で材料ガスが導入された場合には、テーパ部2aの少なくとも一部における間隔の大きさの値と導入された材料ガスの圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、テーパ部2aにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0113】
さらに、プラズマ放電面18の溝深さh1は、テーパ部2aの間隔の大きさの溝深さ方向の2倍に形成されているため、プラズマ放電面18を必要以上に大きくすることなく材料ガスの解離を促進させることができる。
【0114】
また、特に、p1×d1の値及びp2×d2の値は、0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるため、70Pa以上且つ200Pa以下の圧力で材料ガスが導入された場合には、ホロカソード効果をより高めることができる。その結果、材料ガスの解離をより促進させることができるため、成膜する速度を速くして処理時間をより短縮することができると共に、パウダーの発生をより抑制して成膜した膜の質をより向上させることができる。
【0115】
また、電圧の印加を行う電源として周波数300MHzの高周波電源装置1を用いることにより、カソード電極2とアノード電極4の間に電子が補足されて電子密度が略飽和状態になる。その結果、材料ガスの解離を促進させることができるため、成膜する速度を速くして処理時間を短縮することができると共に、パウダーの発生を抑制して成膜した膜の質を向上させることができる。
【0116】
また、パルス放電によりプラズマ12を発生させてプラズマ処理を行うことにより、電子衝突による材料ガスの解離、すなわち、ラジカルの生成の効率を向上させることができる。また、パルス放電のパルス幅が短いほど材料ガスに与えられるエネルギーは最小限となり材料ガスの温度の上昇を抑制することができる。そうすると、材料ガスの密度が低下することが抑制されるため、材料ガスの解離を促進させることができる。その結果、成膜する速度を速くして処理時間を短縮することができると共に、パウダーの発生を抑制して成膜した膜の質を向上させることができる。
【0117】
《発明の実施形態2》
図4は、本発明の実施形態2を示している。尚、以降の各実施形態では、図1〜3と同じ部分については同じ符号を付して、その詳細な説明を省略する。図4は、本実施形態のプラズマ放電発生部16を拡大して示す断面図である。
【0118】
上記実施形態1では、カソード電極2のプラズマ放電面18は、テーパ部2aと凹溝部2bとにより構成されているのに対し、本実施形態におけるカソード電極2のプラズマ放電面18は、図4に示すように、テーパ部2aと平行部2cと凹溝部2bとにより形成されている。
【0119】
テーパ部2aは、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状に形成されている。テーパ部2aの底部側には、テーパ部2aに連続して平行部2cが形成されている。平行部2cは、側壁が底部に向かって平行に延びている。平行部2cの底部側には、平行部2cに連続して凹溝部2bが形成されている。凹溝部2bは、プラズマ放電面18の底部を構成している。すなわち、プラズマ放電面18は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部2aと、テーパ部2aの上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる平行部2cと、平行部2cの上記底部側に連続して形成されて上記底部を構成する凹溝部2bとにより形成されている。
【0120】
プラズマ放電面18の間隔の大きさ4及び溝深さは、導入する材料ガスの圧力により規定している。すなわち、テーパ部2aの最大の間隔w3の大きさをd3としたとき、テーパ部2aの最大の間隔w3は、上記実施形態1と同様に、p1×d3の値が、表1に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。テーパ部2aの溝深さ方向における長さh2は、テーパ部2aの最大の間隔w3の大きさd3の2倍以上且つ3倍以下の大きさに形成されている。
【0121】
また、平行部2cの間隔w4の大きさをd4としたとき、平行部2cの間隔w4は、第2圧力p2と平行部2cの間隔w4の大きさd4との積の値、すなわち、p2×d4の値が、表2に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。平行部2cと凹溝部2bとの溝深さ方向における長さの和h3は、平行部2cの間隔w4の大きさd4の2倍以上且つ3倍以下の大きさに形成されている。
【0122】
さらに、これらの間隔w3,w4は、p1×d3の値及びp2×d4の値が、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるように形成されていることが、ホロカソード効果を高める観点で好ましい。
【0123】
本実施形態では、テーパ部2aの最大の間隔w3は、p1×d3の値が0.4Pa・mであるように形成されている。すなわち、p1=70Paであることから、テーパ部2aの最大の間隔w3は、上記実施形態1と同様に、例えば、0.0057mに形成されている。テーパ部2aの溝深さ方向における長さh2は、テーパ部2aの最大の間隔w3の大きさd3の、例えば、2倍の大きさに形成されている。すなわち、テーパ部2aの最大の間隔w3の大きさd3が、0.0057mであることから、テーパ部2aの溝深さ方向における長さh2は、例えば、0.0114mに形成されている。
【0124】
また、平行部2cの間隔w4は、p2×d4の値が0.4Pa・mであるように形成されている。すなわち、p2=200Paであることから、平行部2cの間隔w4は、例えば、0.002mに形成されている。平行部2c及び凹溝部2bの溝深さ方向における長さの和h3は、平行部2cの間隔w4の大きさd4の、例えば、2倍の大きさに形成されている。すなわち、平行部2cの間隔w4の大きさd4が、0.002mであることから、平行部2cと凹溝部2bとの溝深さ方向における長さの和h3は、例えば、0.004mに形成されている。
【0125】
−実施形態2の効果−
したがって、この実施形態2によると、70Pa以上且つ200Pa以下の圧力で材料ガスが導入された場合には、ホロカソード効果を十分に高めることができ、プラズマ放電面18を必要以上に大きくすることなく材料ガスの解離を十分に促進させることができる結果、上記実施形態1と同様の効果を得ることができる。
【0126】
すなわち、p1×d3の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p1=70Paであるため、70Paの圧力で材料ガスが導入された場合には、少なくともテーパ部2aが最大の間隔w3である領域付近において、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0127】
さらに、p2×d4の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p2=200Paであるため、200Paの圧力で材料ガスが導入された場合には、少なくとも平行部2cにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0128】
さらに、テーパ部2aは断面テーパ形状に形成されているため、材料ガスが70Paよりも高く且つ200Pa未満の圧力で導入された場合には、テーパ部2aの少なくとも一部における間隔の大きさの値と材料ガスの圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、テーパ部2aにおいて、プラズマの発生を促進させると共に電子密度を効果的に高めることができる。
【0129】
さらに、テーパ部2aの溝深さ方向における長さh2は、テーパ部2aの最大の間隔w3の大きさd3の2倍の大きさに形成されているため、テーパ部2aを必要以上に大きくすることなく、テーパ部2aにおける材料ガスの解離を促進させることができる。
【0130】
さらに、平行部2cと凹溝部2bとの溝深さ方向における長さの和h3は、平行部2cの間隔w4の大きさd4の2倍に形成されているため、平行部2c及び凹溝部2bを必要以上に大きくすることなく、平行部2c及び凹溝部2bにおける材料ガスの解離を促進させることができる。
【0131】
特に、p1×d3の値及びp2×d4の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるため、ホロカソード効果をより高めることができる。したがって、上記実施形態1と同様の効果を得ることができる。
【0132】
また、特に、200Paの圧力で材料ガスが導入された場合には、少なくとも平行部2cにおいてホロカソード効果を十分に高めることができるため、比較的大きい領域においてホロカソード効果を十分に高めることができる。したがって、200Paの圧力で材料ガスが導入された場合には、ホロカソード効果をより高めることができる。その結果、成膜する速度をより速くして処理時間をより短縮することができると共に、パウダーの発生をより抑制して成膜した膜の質をより向上させることができる。
【0133】
《発明の実施形態3》
図5は、本発明の実施形態3を示している。図5は、本実施形態のプラズマ放電発生部16を拡大して示す断面図である。
【0134】
上記実施形態1では、少なくとも第1圧力p1が、例えば、70Paである材料ガスと、第2圧力p2が、例えば、200Paである材料ガスとが別々に処理室6へ導入可能なように構成されているとした。これに対し、本実施形態では、少なくとも第1圧力p1が、例えば、70Paである材料ガスと、第2圧力p2が、例えば、200Paである材料ガスと、第3圧力p3が、例えば、300Paである材料ガスとが別々に処理室6へ導入可能なように形成されている。
【0135】
また、上記実施形態1では、プラズマ放電面18は、テーパ部2aと凹溝部2bとにより形成されている。また、上記実施形態2では、プラズマ放電面18は、テーパ部2aと平行部2cと凹溝部2bとにより形成されている。これに対し、本実施形態におけるプラズマ放電面18は、テーパ部2aと第1平行部2dと狭窄部2eと第2平行部2fと凹溝部2bとにより構成されている。
【0136】
テーパ部2aは、上記実施形態2と同様に、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状に形成されている。テーパ部2aの底部側には、テーパ部2aに連続して第1平行部2dが形成されている。第1平行部2dは、側壁がプラズマ放電面18の底部に向かって平行に延びている。第1平行部2dの底部側には、第1平行部2dに連続して狭窄部2eが形成されている。狭窄部2eは、プラズマ放電面18の底部に向かって側壁の間隔が徐々に狭く形成されている。狭窄部2eの底部側には、狭窄部2eに連続して第2平行部2fが形成されている。第2平行部2fは、側壁がプラズマ放電面18の底部に向かって平行に延びている。第2平行部2fの底部側には、第2平行部2fに連続して凹溝部2bが形成されている。凹溝部2bは、プラズマ放電面18の底部を構成している。
【0137】
すなわち、プラズマ放電面18は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部2aと、テーパ部2aの上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる第1平行部2dと、第1平行部2dの上記底部側に連続して形成されて上記底部に向かって側壁間の間隔が徐々に狭くなる狭窄部2eと、狭窄部2eの上記底部側に連続して形成されて側壁が上記底部に向って平行に延びる第2平行部2fと、第2平行部2fに連続して形成されて上記底部を構成する凹溝部2bとにより形成されている。
【0138】
プラズマ放電面18の間隔の大きさ及び溝深さは、導入する材料ガスの圧力により規定している。すなわち、テーパ部2aの最大の間隔w5の大きさをd5としたとき、テーパ部2aの最大の間隔w5は、上記実施形態1と同様に、p1×d5の値が、表1に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。テーパ部2aの溝深さ方向における長さh4は、上記実施形態2と同様にテーパ部2aの最大の間隔w5の大きさd5の2倍以上且つ3倍以下の大きさに形成されている。
【0139】
また、第1平行部2dの間隔w6の大きさをd6としたとき、第1平行部2dの間隔w6は、第2圧力p2とその間隔w6の大きさd6との積の値、すなわち、p2×d6の値が、表2に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、第1平行部2dの間隔w6の大きさd6の2倍以上且つ3倍以下の大きさに形成されている。
【0140】
また、第2平行部2fの間隔w7の大きさをd7としたとき、第2平行部2fの間隔w7は、第3圧力p3とその間隔w7の大きさd7との積の値、すなわち、p3×d7の値が、表3に示すように、0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されている。第2平行部2fと凹溝部2bとの溝深さ方向における長さの和h6は、第2平行部2fの間隔w7の大きさd7の2倍以上且つ3倍以下の大きさに形成されている。
【0141】
【表3】

【0142】
さらに、これらの間隔w5〜w7は、p1×d5の値、p2×d6の値及びp3×d7の値が、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるように形成されていることが、ホロカソード効果を高める観点で好ましい。
【0143】
本実施形態では、テーパ部2aは上記実施形態2と同様に形成されている。すなわち、テーパ部2aの最大の間隔w5は、例えば、0.0057mに形成されている。テーパ部2aの溝深さ方向における長さh4は、例えば、0.0114mに形成されている。
【0144】
また、第1平行部2dの間隔w6は、p2×d6の値が、例えば、0.4Pa・mであるように形成されている。すなわち、p2=200Paであることから、第1平行部2dの間隔w6は、例えば、0.002mに形成されている。第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、第1平行部2dの間隔w6の大きさd6の、例えば、2倍の大きさに形成されている。すなわち、第1平行部2dの間隔w6は、0.002mであることから、第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、例えば、0.004mに形成されている。
【0145】
また、第2平行部2fの間隔w7は、p3×d7の値が、例えば、0.4Pa・mであるように形成されている。すなわち、p3=300Paであることから、第2平行部2fの間隔w7は、例えば、0.0013mに形成されている。第2平行部2fと凹溝部2bとの溝深さ方向における長さの和h6は、第2平行部2fの間隔w7の大きさd7の、例えば、2倍の大きさに形成されている。すなわち、第2平行部2fの間隔の大きさd7が0.0013mであることから、第2平行部2fと凹溝部2bとの溝深さ方向における長さの和h6は、例えば、0.0026mに形成されている。
【0146】
−実施形態3の効果−
したがって、この実施形態3によると、70Pa以上且つ300Pa以下の圧力で材料ガスが導入された場合には、ホロカソード効果を十分に高めることができ、プラズマ放電面18を必要以上に大きくすることなく材料ガスの解離を十分に促進させることができる。その結果、上記実施形態1よりも広い材料ガスの圧力域において、上記実施形態1と同様の効果を得ることができる。
【0147】
すなわち、p1×d5の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p1=70Paであるため、70Paの圧力で材料ガスが導入された場合には、少なくともテーパ部2aが最大の間隔w5である領域付近において、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0148】
さらに、p2×d6の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p2=200Paであるため、200Paの圧力で材料ガスが導入された場合には、少なくとも第1平行部2dにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0149】
さらに、p3×d7の値が0.2Pa・m以上且つ1.0Pa・m以下の範囲にあり、p3=300Paであるため、300Paの圧力で材料ガスが導入された場合には、少なくとも第2平行部2fにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0150】
さらに、テーパ部2aは、プラズマ放電面18の底部、すなわち、ガス導入口7に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状に形成されているため、70Paよりも高く且つ200Pa未満の圧力で材料ガスが導入された場合には、テーパ部2aの少なくとも一部における間隔の大きさの値と材料ガスの圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、テーパ部2aにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0151】
さらに、狭窄部2eは、ガス導入口7に向かって徐々に側壁間の間隔が狭く形成されているため、200Paよりも高く且つ300Pa未満の圧力で材料ガスが度入された場合には、狭窄部2eの少なくとも一部における間隔の大きさの値と材料ガスの圧力の値との積の値は、0.2Pa・m以上且つ1.0Pa・m以下の範囲にある。したがって、この場合には、狭窄部2eにおいて、プラズマ12の発生を促進させると共に電子密度を効果的に高めることができ、ホロカソード効果を十分に高めることができる。
【0152】
さらに、テーパ部2aの溝深さ方向における長さh4は、テーパ部2aの最大の間隔w5の大きさd5の2倍の大きさに形成されているため、テーパ部2aを必要以上大きくすることなく、テーパ部2aにおける材料ガスの解離を促進することができる。
【0153】
さらに、第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、第1平行部2dの間隔w6の大きさd6の2倍の大きさに形成されているため、第1平行部2d及び狭窄部2eを必要以上に大きくすることなく、第1平行部2d及び狭窄部2eにおける材料ガスの解離を促進させることができる。
【0154】
また、特に、p1×d5の値、p2×d6の値及びp3×d7の値は、0.3Pa・m以上且つ0.5Pa・m以下の範囲にあるため、ホロカソード効果をより高めることができる結果、上記実施形態1よりも広い材料ガスの圧力域において、上記実施形態1と同様の効果を得ることができる。
【0155】
また、特に、200Paの圧力で材料ガスが導入された場合には、少なくとも第1平行部2dにおいてホロカソード効果を十分に高めることができる。また、300Paの圧力で材料ガスが導入された場合には、少なくとも第2平行部2fにおいてホロカソード効果を十分に高めることができる。したがって、これらの場合には、比較的大きいプラズマ放電面18の領域においてホロカソード効果を十分に高めることができる。その結果、成膜する速度をより速くして処理時間をより短縮することができると共に、パウダーの発生をより抑制して成膜した膜の質をより向上させることができる。
【0156】
《その他の実施形態》
上記実施形態1では、テーパ部2aの最大の間隔w1は、例えば、0.0057mに形成され、最小の間隔w2は、例えば、0.002mに形成されているとしたが、本発明はこれに限られず、これらの間隔w1,w2は、第1圧力p1とテーパ部2aの最大の間隔w1の大きさd1との積の値及び第2圧力p2とテーパ部2aの最小の間隔w2の大きさd2との積の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されていればよい。
【0157】
また、上記実施形態1では、プラズマ放電面18の溝深さh1は、例えば、0.0077mに形成されているとしたが、本発明はこれに限られず、この溝深さh1は、テーパ部2aの間隔の大きさの溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0158】
上記実施形態2では、テーパ部2aの最大の間隔w3は、例えば、0.0057mに形成され、平行部2cの間隔w4は、例えば、0.002mに形成されているとしたが、本発明はこれに限られず、これらの間隔w3,w4は、第1圧力p1とテーパ部2aの最大の間隔w3の大きさd3との積の値及び第2圧力p2と平行部2cの間隔w4の大きさd4との積の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されていればよい。
【0159】
また、上記実施形態2では、テーパ部2aの溝深さ方向における長さh2は、例えば、0.0114mに形成されているとしたが、本発明はこれに限られず、この長さh2は、テーパ部2aの最大の間隔w3の大きさd3の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0160】
また、上記実施形態2では、平行部2cと凹溝部2bとの溝深さ方向における長さの和h3は、例えば、0.004mに形成されているとしたが、本発明はこれに限られず、この長さの和h3は、平行部2cの間隔w4の大きさd4の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0161】
上記実施形態3では、テーパ部2aの最大の間隔w5は、例えば、0.0057mに形成され、第1平行部2dの間隔w6は、例えば、0.002mに形成され、第2平行部2fの間隔w7は、例えば、0.0013mに形成されているとしたが、本発明はこれに限られず、これらの間隔w5〜w7は、第1圧力p1とテーパ部2aの最大の間隔w5の大きさd5との積の値、第2圧力p2と第1平行部2dの間隔w6の大きさd6との積の値及び第3圧力p3と第2平行部2fの間隔w7の大きさd7との積の値が、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあるように形成されていればよい。
【0162】
また、上記実施形態3では、テーパ部2aの溝深さ方向における長さh4は、例えば、0.0114mに形成されているとしたが、本発明はこれに限られず、この長さh4は、テーパ部2aの最大の間隔w5の大きさd5の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0163】
また、上記実施形態3では、第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、例えば、0.004mに形成されているとしたが、本発明はこれに限られず、この長さの和h5は、第1平行部2dの間隔w6の大きさd6の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0164】
また、上記実施形態3では、第2平行部2fと凹溝部2bとの溝深さ方向における長さの和h6は、例えば、0.0026mに形成されているとしたが、本発明はこれに限られず、この長さの和h6は、第2平行部2fの間隔w7の大きさd7の2倍以上且つ3倍以下の大きさに形成されていればよい。
【0165】
また、上記実施形態1では、例えば、パルス電圧を印加することによりパルス放電を生じさせてプラズマ放電発生部16にプラズマ12を発生させるとしたが、本発明はこれに限られず、グロー放電等のその他の放電現象を生じさせることによりプラズマ放電発生部16にプラズマ12を発生させてもよい。
【0166】
また、上記実施形態1では、電圧の印加を行う電源としては、例えば、周波数が300MHzの高周波電源装置1が用いられるとしてたが、本発明はこれに限られず、その他の高周波電源装置1が用いられていてもよい。
【0167】
《実施例》
本実施例では、実施例1〜3のプラズマプロセス装置を用いて材料ガスの解離を行い、プラズマ発光分析を行った。試験運転を行った実施例1〜3のプラズマプロセス装置について以下に説明する。
【0168】
実施例1のプラズマプロセス装置として、上記実施形態1に示したプラズマCVD装置において、上記実施形態1とはプラズマ放電面18の間隔w1,w2の大きさd1,d2及び溝深さh1が異なるプラズマプロセス装置を用いた。
【0169】
実施例1のプラズマ放電面18におけるテーパ部2aの最大の間隔w1は、0.012mに形成されている。テーパ部2aの最小の間隔w2は、0.0025mに形成されている。また、プラズマ放電面18の溝深さh1は、0.02mに形成されている。
【0170】
実施例2のプラズマプロセス装置として、上記実施形態2に示したプラズマCVD装置において、上記実施形態2とはプラズマ放電面18の間隔w3,w4の大きさd3,d4及び溝深さh2,h3が異なるプラズマプロセス装置を用いた。
【0171】
実施例2のプラズマ放電面18におけるテーパ部2aの最大の間隔w3は、0.012mに形成されている。テーパ部2aの溝深さ方向における長さh2は、0.024mに形成されている。また、平行部2cの間隔w4は、0.004mに形成されている。平行部2cと凹溝部2bとの溝深さ方向における長さの和h3は、0.008mに形成されている。
【0172】
実施例3のプラズマプロセス装置として、上記実施形態3で示したプラズマCVD装置において、上記実施形態3とはプラズマ放電面18の間隔w5,w6,w7の大きさd5,d6,d7及び溝深さh4,h5,h6が異なるプラズマプロセス装置を用いた。
【0173】
実施例3のプラズマ放電面18のテーパ部2aの最大の間隔w5は、0.012mに形成されている。テーパ部2aの溝深さ方向における長さh4は、0.024mに形成されている。また、第1平行部2dの間隔w6は、0.0036mに形成されている。第1平行部2dと狭窄部2eとの溝深さ方向における長さの和h5は、0.0072mに形成されている。また、第2平行部2fの間隔w7は、0.002mに形成されている。第2平行部2fと凹溝部2bとの溝長さ方向における長さの和h6は、0.004mに形成されている。
【0174】
一方、比較例として、図6に示すプラズマ放電発生部100を有する従来のプラズマプロセス装置についても、同様の試験運転を行った。図6は、比較例のプラズマプロセス装置のプラズマ放電発生部100を拡大して示す断面図である。尚、このプラズマプロセス装置について、プラズマ放電発生部100以外の構成は上記実施形態1に示したプラズマプロセス装置と同様である。
【0175】
比較例のプラズマ放電発生部100は、図6に示すように、カソード電極101と電極間絶縁部102とアノード電極103とから構成されている。カソード電極101のプラズマ放電面104は、凹溝状に形成されている。電極間絶縁部102は、隣り合うカソード電極101のプラズマ放電面104の間の突条部分に形成されている。
【0176】
また、アノード電極103は、電極間絶縁部102に形成され、カソード電極101とアノード電極103とは、電極間絶縁部102を介することにより絶縁した状態となっている。カソード電極101のプラズマ放電面104の側壁は、プラズマ放電面104の底部に向かって側壁間が徐々に狭くなる断面テーパ状に形成されている。
【0177】
テーパ状に形成された側壁間の最大の間隔w8は、0.015mに形成されており、最小の間隔w9は、0.012mに形成されている。また、プラズマ放電面104の溝深さh7は、0.01mmに形成されている。プラズマ放電面104の底部には、溝深さ方向に貫通する複数のガス導入口105が所定の間隔で形成されている。
【0178】
また、材料ガスは、70Pa及び200Paの圧力で別々に処理室内に導入した。70Paで導入する材料ガスには、例えば、アモルファスシリコン等を成膜する際に使用されるSiH(60sccm)及びH(120sccm)を用いた。また、200Paで導入される材料ガスには、例えば、窒化シリコン膜等を成膜する際に使用されるSiH(20sccm)、NH(40sccm)及びN(100sccm)を用いた。
【0179】
材料ガスの導入は、図2に示すように、カソード電極101のプラズマ放電面104の底部に整列したガス導入口105から行った。電気的エネルギーの印加を行うために、周波数27MHzの高周波電源1を使用した。
【0180】
上記実施例1〜3と実施例とについてプラズマ発光分析を行った結果を表4に示す。
【0181】
プラズマ発光分析では、材料ガスがプラズマ12により解離される際に励起して発する発光の強度を一定時間測定する。このようにして測定された発光の強度は、材料ガスの解離の濃度に比例するので、それぞれの装置での発光の強度を比較をすることにより材料ガスの解離率を比較することができる。
【0182】
【表4】

【0183】
表4は、比較例による発光強度を1としたときの上記実施例1〜3についての発光強度を示している。70Paの圧力で材料ガスを導入したときは、発光源が水素原子である発光スペクトルの発光強度を測定した。また、200Paの圧力で材料ガスを導入したときは、発光源が窒素原子である発光スペクトルの発光強度を測定した。
【0184】
実施例1〜3については、70Pa及び200Paのいずれの圧力で材料ガスを導入した場合にも比較例よりも高い発光強度が測定された。このことから、実施例1〜3は、ホロカソード効果を十分に高めることができることがわかった。
【産業上の利用可能性】
【0185】
以上説明したように、本発明は、プラズマプロセス装置及びプラズマ処理方法について有用であり、特に、パウダーの発生を抑制して被処理基板に成膜する場合に適している。
【図面の簡単な説明】
【0186】
【図1】実施形態1のプラズマCVD装置を模式的に示す斜視図である。
【図2】実施形態1のプラズマCVD装置を模式的に示す断面図である。
【図3】実施形態1のプラズマ放電発生部を拡大して示す断面図である。
【図4】実施形態2のプラズマ放電発生部を拡大して示す断面図である。
【図5】実施形態3のプラズマ放電発生部を拡大して示す断面図である。
【図6】比較例のプラズマ放電発生部を拡大して示す断面図である。
【図7】従来のプラズマCVD装置(平行平板型装置)の概略図である。
【図8】従来のプラズマCVD装置(平行平板型装置)を模式的に示す断面図である。
【符号の説明】
【0187】
d1 テーパ部の最大の間隔の大きさ
d2 テーパ部の最小の間隔の大きさ
w1 テーパ部の最大の間隔
w2 テーパ部の最小の間隔
1 高周波電源(電源)
2 カソード電極(第1電極)
2a テーパ部
2b 凹溝部
3 電極間絶縁部(絶縁部)
4 アノード電極(第2電極)
5 被処理基板
6 処理室
7 ガス導入口
16 プラズマ放電発生部
18 プラズマ放電面

【特許請求の範囲】
【請求項1】
被処理基板が内部に配置される処理室と、
上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、
上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、
少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスとが上記処理室へ導入可能に構成され、
上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記プラズマ放電面の底部側に連続して上記プラズマ放電面の底部を構成する凹溝部とにより形成され、
上記テーパ部の最大の上記間隔の大きさをd1とし、最小の上記間隔の大きさをd2としたとき、p1×d1の値及びp2×d2の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、
上記プラズマ放電面の溝深さは、上記テーパ部の間隔の大きさの上記溝深さ方向における平均値の2倍以上且つ3倍以下の大きさに規定されている
ことを特徴とするプラズマプロセス装置。
【請求項2】
請求項1において、
上記p1×d1の値及び上記p2×d2の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にある
ことを特徴とするプラズマプロセス装置。
【請求項3】
被処理基板が内部に配置される処理室と、
上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、
上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、
上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる平行部と、上記平行部の上記底部側に連続して形成されて上記底部を構成する凹溝部とにより形成されている
ことを特徴とするプラズマプロセス装置。
【請求項4】
請求項3において、
少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスとが上記処理室へ導入可能に構成され、
上記テーパ部の最大の間隔の大きさをd1とし、上記平行部の間隔の大きさをd2としたとき、p1×d1の値及びp2×d2の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、
上記テーパ部の上記プラズマ放電面の溝深さ方向における長さは、上記テーパ部の最大の間隔の大きさd1の2倍以上且つ3倍以下の大きさに規定され、
上記平行部と上記凹溝部との上記プラズマ放電面の溝深さ方向における長さの和は、上記平行部の間隔の大きさd2の2倍以上且つ3倍以下の大きさに規定されている
ことを特徴とするプラズマプロセス装置。
【請求項5】
請求項4において、
上記p1×d1の値及び上記p2×d2の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にある
ことを特徴とするプラズマプロセス装置。
【請求項6】
被処理基板が内部に配置される処理室と、
上記処理室内に設けられて複数の溝状に形成されたプラズマ放電面を有する第1電極と、隣り合う上記プラズマ放電面の間に形成された上記第1電極の突条部分に形成された絶縁部と、上記絶縁部に形成されて上記第1電極と電気的に絶縁された第2電極とを有するプラズマ放電発生部と、
上記プラズマ放電面の底部に形成されて上記処理室内に材料ガスを導入するガス導入口とを備え、上記被処理基板にプラズマ処理を施すプラズマプロセス装置であって、
上記プラズマ放電面は、底部に向かって徐々に側壁間の間隔が狭くなる断面テーパ形状のテーパ部と、上記テーパ部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる第1平行部と、上記第1平行部の上記底部側に連続して形成されて上記底部に向かって側壁間の間隔が徐々に狭くなる狭窄部と、上記狭窄部の上記底部側に連続して形成されて側壁が上記底部に向かって平行に延びる第2平行部と、上記第2平行部に連続して形成されて上記底部を構成する凹溝部とにより形成されている
ことを特徴とするプラズマプロセス装置。
【請求項7】
請求項6において、
少なくとも第1圧力p1の上記材料ガスと、上記第1圧力p1よりも圧力の高い第2圧力p2の上記材料ガスと、上記第2圧力p2よりも圧力の高い第3圧力p3の上記材料ガスとが上記処理室へ導入可能に構成され、
上記テーパ部の最大の間隔の大きさをd1とし、上記第1平行部の間隔の大きさをd2とし、上記第2平行部の間隔の大きさをd3としたとき、p1×d1の値、p2×d2の値及びp3×d3の値は、それぞれ0.2Pa・m以上且つ1.0Pa・m以下の範囲にあって、
上記テーパ部の上記プラズマ放電面の溝深さ方向における長さは、上記テーパ部の最大の間隔の大きさd1の2倍以上且つ3倍以下の大きさに規定され、
上記第1平行部と上記狭窄部との上記プラズマ放電面の溝深さ方向における長さの和は、上記第1平行部の間隔の大きさd2の2倍以上且つ3倍以下の大きさに規定され、
上記第2平行部と上記凹溝部との上記プラズマ放電面の溝深さ方向における長さの和は、上記第2平行部の間隔の大きさd3の2倍以上且つ3倍以下の大きさに規定されている
ことを特徴とするプラズマプロセス装置。
【請求項8】
請求項7において、
上記p1×d1の値、上記p2×d2の値及び上記p3×d3の値は、それぞれ0.3Pa・m以上且つ0.5Pa・m以下の範囲にある
ことを特徴とするプラズマプロセス装置。
【請求項9】
請求項1,3及び6のいずれか1項において、
上記第1電極と上記絶縁部と上記第2電極とは、連続する面を構成している
ことを特徴とするプラズマプロセス装置。
【請求項10】
請求項1,3及び6のいずれか1項において、
上記プラズマ放電発生部に電気的エネルギーを印加する電源をさらに有し、上記電源の周波数は、13.56MHz以上且つ300MHz以下である
ことを特徴とするプラズマプロセス装置。
【請求項11】
請求項1,3及び6のいずれか1項に記載のプラズマプロセス装置を用いて、基板にプラズマ処理を施す方法であって、
上記処理室の内部に上記被処理基板を配置する基板配置工程と、
上記被処理基板が配置された上記処理室内に、上記ガス導入口から上記材料ガスを導入するガス導入工程と、
上記プラズマ放電発生部によって、プラズマを発生させて、上記被処理基板の表面にプラズマ処理を施すプラズマ処理工程とを含む
ことを特徴とするプラズマ処理方法。
【請求項12】
請求項11において、
上記プラズマ処理工程は、周波数が300MHzの電気的エネルギーを上記プラズマ放電発生部に印加することにより行われる
ことを特徴とするプラズマ処理方法。
【請求項13】
請求項11において、
上記プラズマ処理工程では、パルス放電によりプラズマを発生させる
ことを特徴とするプラズマ処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−91407(P2008−91407A)
【公開日】平成20年4月17日(2008.4.17)
【国際特許分類】
【出願番号】特願2006−267674(P2006−267674)
【出願日】平成18年9月29日(2006.9.29)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】