説明

プラズマ処理装置

【課題】誘電体バリア放電方式の放電部の耐久性を向上させる。
【解決手段】プラズマ処理装置は、誘電体バリア放電方式のプラズマ源の近傍に、コロナ放電方式のプラズマ源を設置し、コロナ放電によって生成されるプラズマを補助プラズマとして用いて、誘電体バリア放電によって生成される主プラズマの放電維持電圧を低下させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はプラズマ処理装置に係り、特に、プラズマを用いて成膜、改質、洗浄、滅菌等を行うのに適したプラズマ処理装置に関する。
【背景技術】
【0002】
近年、大気圧でプラズマを生成する技術の検討が進み、ダイヤモンドライクカーボン(DLC)等の機能性膜の生成や、材料表面の有機物除去、プラズマ滅菌、材料表面やガス・気体・気液混合体の改質等が広く検討されるようになった。大気圧である一定以上の面積でプラズマを生成する場合は、誘電体バリア放電が広く用いられている。誘電体バリア放電は大きく2つの方式がある。1つは例えば特許文献1に記載のプラズマ処理装置に採用されている方式であり、2枚の平行に配置させた金属製電極板の間に固体誘電体を挿入し、電極板への給電により放電空間にグロー放電を生起させる平行平板方式である。
もう1つは、例えば特許文献2に記載のプラズマ処理装置に採用されている方式であり、2つの櫛形状の電極を1つの誘電体の面内に配置している。この放電電極パターンは面放電方式として、古くからプラズマディスプレーパネルで採用されているものである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−135892号公報
【特許文献2】特開2006−331664号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
誘電体バリア放電では数kV以上の電圧の高周波電力を印加して放電を行う。
【0005】
発明者等の研究によれば、特許文献1に記載されたような平行平板方式では、放電空間にグロー放電を連続、かつ、安定して発生させるために、大きな高周波電力を供給する必要がある。特許文献2に記載の面放電方式でも、同様に誘電体の表面にグロー放電を連続、かつ、安定して発生させるために、大きな高周波電力を供給する必要がある。
【0006】
一方、電極を覆う誘電体膜の厚さは一般に1mm程度以下であり、当然、放電中に少しずつ消耗することが予測される。大きな高周波電力を印加すれば、それに応じて、誘電体膜の消耗は早くなる。誘電体膜の厚さが薄いため、放電部の寿命を長くするには何らかの工夫が必要である。また、放電電圧が誘電体の絶縁破壊電圧に近い場合もあり、この場合は、誘電体膜が一気に破損する可能性もあり、何らかの対策が必要である。
【0007】
本発明の解決課題は、プラズマ処理装置における誘電体バリア放電方式の放電部の耐久性を向上させることにある。
【課題を解決するための手段】
【0008】
本発明の代表的なものの一例を示すと次の通りである。本発明のプラズマ処理装置は、第1の高周波電源と放電用の第1の電極とを有し、補助プラズマを生成する補助プラズマ源と、第2の高周波電源と放電用の第2の電極とを有し、主プラズマを生成する主プラズマ源とを備え、前記補助プラズマ源の第1の電極は、前記主プラズマ源のプラズマ生成領域の近傍に配置されており、前記第1の高周波電源の周波数は前記第2の高周波電源の周波数よりも高いことを特徴とする。
【発明の効果】
【0009】
本発明によれば、誘電体バリア放電の放電電圧を下げることが可能となるため、プラズマ処理装置の放電部の寿命を長くすることが可能となる。
【図面の簡単な説明】
【0010】
【図1A】本発明の第1の実施例になる、プラズマ処理装置の放電モジュールの構成を示す側面図である。
【図1B】第1の実施例になる、放電モジュールの構成を示す平面図である。
【図2A】本発明における、補助プラズマPL1と主プラズマPL2の距離Sについて説明する図である。
【図2B】本発明における、第1の高周波電源(RFP1)と第2の高周波電源(RFP2)の関係の一例を示す図である。
【図3A】第1の実施例における放電モジュールの動作を説明する図である。
【図3B】第1の実施例における放電モジュールの動作を説明する図である。
【図3C】第1の実施例における放電モジュールの動作を説明する図である。
【図4】本発明の第2の実施例になる、プラズマ処理装置の放電モジュールの概略を示す図である。
【図5A】本発明の第3の実施例になる、プラズマ処理装置の放電モジュールの構成を示す平面図である。
【図5B】第3の実施例になる放電モジュールを側面から見た、動作説明図である。
【図6】本発明の第4の実施例になる、プラズマ処理装置の放電モジュールの構成を示す側面図である。
【図7A】第4の実施例になる放電モジュールの、主プラズマ源の構成を示す平面図である。
【図7B】第4の実施例になる放電モジュールの、補助プラズマ源の構成を示す側面図である。
【図7C】第4の実施例になる放電モジュールの、補助プラズマ源の構成を示す平面図である。
【図8A】第4の実施例における放電モジュールの動作を説明する図である。
【図8B】第4の実施例における放電モジュールの動作を説明する図である。
【図9】本発明の第5の実施例になる、プラズマ処理装置の概略を示す平面図である。
【図10】本発明の第6の実施例になる、プラズマ処理装置の概略を示す側面図である。
【図11】本発明の第7の実施例になる、プラズマ処理装置の概略を示す側面図である。
【発明を実施するための形態】
【0011】
本発明では、誘電体バリア放電に基づく主プラズマを生成するための主プラズマ源の放電部に対して、その近傍に、前記誘電体バリア放電に用いる周波数よりも高い周波数で駆動され、誘電体バリア放電部、またはコロナ放電等の放電方式で補助プラズマを生成する補助プラズマ源を備えた、放電モジュールを設置する。これによって、主プラズマの放電に必要な電圧を低下させ、主プラズマ源の放電部の寿命を長くできるようにした。
【0012】
本発明の代表的な実施例によれば、プラズマ処理装置は、2種類の電極(アンテナとアース)が1枚の誘電体内に形成されている誘電体バリア放電方式によってプラズマを生成する放電プレートの近くに、例えば針状の1対の金属電極に高周波電力を印加して放電を行うコロナ放電方式の放電モジュールを補助プラズマ生成ユニットとして設置することにより、誘電体バリア放電におけるプラズマ生成維持電圧を低下させ、誘電体膜の消耗を抑制する。
【0013】
以下、図面を参照しながら、本発明を具体的に適用したプラズマ放電モジュール及び、プラズマ処理装置の実施例について詳細に説明する。
【実施例1】
【0014】
まず、本発明の第1の実施例になるプラズマ処理装置について、図1A乃至図3Cを参照しながら、説明する。図1Aは、プラズマ処理装置の放電モジュールを側面から見た図、図1Bは上方から見た図を示している。平板型の放電モジュール100は、主プラズマ源1と、補助プラズマ源10とを有している。
【0015】
この実施例では、2種類の電極(アンテナとアース)が1枚の誘電体内に形成されている誘電体バリア放電方式によって主プラズマを生成する放電プレート2の近くに、針状の1対の金属電極に高周波電力を印加して放電を行いコロナ放電方式により補助プラズマを生成している。
【0016】
すなわち、主プラズマ源1は、放電プレート2と、第2の高周波電源(RFP2)3−2とを備えている。放電プレート2は、例えば石英ガラス、またはアルミナやイットリアなどのセラミック材料からなる誘電体内5の内部に、お互いに絶縁された一対の櫛形状の電極(第2の電極)4―1と4−2とが交互に平行に複数本配列された構造となっている。第2の電極は、第2の高周波電源3−2に接続されており、電極4―1と4−2に、互いに極性が異なるか、または片方が接地された状態で高周波が印加されることにより、誘電体内5の表面近傍に誘電体バリア放電(主プラズマPL2)を生成する。
【0017】
補助プラズマ源10は、先端の尖ったコロナ放電用の一対の金属製電極(第1の電極)11−1と11−2、及び第1の高周波電源(RFP1)3−1とを備えている。一対の金属製電極の先端の間隙Gは、1mm〜2mm程度である。補助プラズマ源10では、第1の電極11の尖った先端の領域付近でコロナ放電による補助プラズマPL1が形成される。第1の電極、第2の電極は、各々、それらの機能が同じものであれば他の形状でも良く、図に示した形状に限定されるものでないことは言うまでもない。
【0018】
なお、主プラズマ源1の電極4―1、4−2は、誘電体層5の片側(図1Aでは上側)表面の近傍に配置されている。電極4−1と4−2の距離、すなわち電極間距離Lは1mm以下である。主プラズマ源1による誘電体バリア放電は、電極4―1、4−2から見て誘電体層5の薄い方、すなわち図1Aで誘電体層5の上側表面の誘電体バリア放電面に生成される。第2の電極を覆う誘電体の厚さ、すなわち電極4−1、4−2と誘電体層5の上側表面の誘電体バリア放電面との距離をTとすると、Tは100μm〜1mm程度が望ましい。櫛形状の電極表面が誘電体で覆われているために、誘電体に電荷がチャージされることにより電極間の電位差が小さくなり、高い電圧を印加しても誘電体バリア放電からアーク放電に移行することはない。
【0019】
また、補助プラズマPL1と主プラズマPL2の2つのプラズマ間の距離、換言すると、コロナ放電用の一対の電極11−1、11−2の中心と、誘電体層5の上側の誘電体バリア放電面との距離Sは、補助プラズマ、ここではコロナ放電により発生したイオン、電子などの荷電粒子や励起状態の粒子が十分な量だけ主プラズマの生成領域へ拡散し得る、換言すると荷電粒子などの輸送が確実に行われる、所定の値以下にする必要がある。
【0020】
プラズマ処理装置は、放電モジュール100の放電プレート2の上側のプラズマ生成領域に、空気などの被処理流体を連続的に供給するために、ポンプやダクト(図示略)を備えている。
【0021】
図2Aに、大気雰囲気における、プラズマ密度(電子密度:m−3)ηeと放電部からの距離Xの関係を示す。プラズマの拡散距離をLとしたとき、主プラズマ生成のアシストが期待できる密度のプラズマが到達する距離Sは、10L程度となる。プラズマの拡散距離Lが1mmのとき、距離Sは10mmとなる。このように、補助プラズマPL1と主プラズマPL2の距離Sは、10mm以下が望ましく、この範囲であれば、コロナ放電によりその近傍の誘電体バリア放電が容易に着火する。
【0022】
なお、コロナ放電用の一対の電極11−1、11−2の位置は、図1Aでは、誘電体層5の上側の誘電体バリア放電面の中央付近にあるが、この位置に限定されるものではなく、電極11−1、11−2の位置は主プラズマ源のプラズマ生成領域の近傍であれば、周辺部であっても良い。
【0023】
また、本発明では、放電モジュール100が大気圧雰囲気(大気圧±10%程度)において使用されるのが好ましいが、1/10気圧〜2気圧程度の圧力雰囲気であっても、使用可能である。
【0024】
次に、第1の高周波電源3−1と第2の高周波電源3−2の関係について述べる。補助プラズマは、主プラズマPL2を発生させるための放電のトリガーとなるのに足りる荷電粒子や励起状態の粒子を供給できるものであればよく、その体積は少量、すなわち、主プラズマPL2の体積の1/10以下で足りる。換言すると、第1の高周波電源の電力は、電力第2の高周波電源の電力の1/10以下で良い。例えば、第2の高周波電源の電力が100Wのとき、第1の高周波電源の電力は10W、あるいはそれ以下とする。
【0025】
一方、ミクロの時間スケールで見たとき、コロナ放電が消失している時に、誘電体バリア放電を行おうとすると、そのタイミングでは誘電体バリア放電が着火不良を起こす可能性が高くなる。そこで、補助プラズマはほぼ連続的に発生していることが望ましい。そのため、コロナ放電用の第1の高周波電源の周波数f1は、誘電体バリア放電用の第2の高周波電源の周波数f2よりも、少なくとも2倍以上、高いことが望ましい。一例として、第1の高周波電源の周波数f1が10KHzのとき、第2の高周波電源の周波数f2は100KHzとする。図2Bに示したように、第1の高周波電源(RFP1)の周波数f1が、誘電体バリア放電用の第2の高周波電源(RFP2)の周波数f2よりも高い場合、電極4―1、4−2に印加される電圧が高くなって誘電体バリア放電が発生するタイミング(破線の丸印)で、常に第1の高周波電源の電圧の高い状態が出現しそれによるコロナ放電が存在しているため、それによるイオン、電子などの荷電粒子や励起状態の粒子を、実質上連続して供給できる。これにより、第2の高周波電源の電力を有る程度低くしても、誘電体バリア放電が着火不良を起こす可能性は極めて低くなる。
【0026】
図3A〜3Cに、本発明の実施例における補助プラズマPL1と、それにより生起される主プラズマPL2の関係を示す。まず、図3Aに示したように、第1の高周波電源から高周波電力が印加されプラズマ源10でコロナ放電により補助プラズマPL1が生成される、一方、電極4―1、4−2間に、第2の高周波電源から高周波電圧が印加されると、電極4―1、4−2やその近傍の誘電体に図に示したような極性の電力が印加される。この状態で、図3Bに示したように、コロナ放電により生成された補助プラズマPL1の中の荷電粒子や励起粒子が、補助プラズマPL1の近傍、ここでは櫛形状電極の中央部の領域の電極4―1、4−2間の電荷に作用し、その位置において誘電体バリア放電が発生し、主プラズマPL2−1が生成される。主プラズマPL2−1の発生に伴い、櫛形状電極の中央部の領域の電極4―1、4−2間の電荷は放出されるが、図3Cに示したように、中央部よりも外側の中間の領域に誘電体バリア放電が移行し、主プラズマPL2−2が継続する。そして、この櫛形状電極の中間の領域の電荷が放出された後、さらに、櫛形状電極の周辺領域の電極4―1、4−2間で誘電体バリア放電が起こり、主プラズマが継続する。このように、補助プラズマPL1中の荷電粒子や励起粒子を契機として、主プラズマPL2が中央の補助プラズマPL1の近傍で発生し、それが周辺へと面状に拡大し、そして消滅することが、繰り返される。もし、補助プラズマPL1を櫛形状電極の周辺部に配置すれば、その近傍から誘電体バリア放電が繰り返し起こることはいうまでも無い。
【0027】
一般に、誘電体バリア放電によるプラズマ源1のみを単独で用いてプラズマを生成する場合、第2の高周波電源3−2には周波数が数十kHzの高周波電源を用い、印加する電圧(Vpp)には数kVが必要になる。この場合、高い電圧によって加速された荷電粒子(イオン)によって少しずつ誘電体層5の表面が消耗する。消耗により電極4−1及び4−2が露出すると、誘電体バリア放電が成立しなくなり、2つの金属電極4−1、4−2間での局所的なアーク放電に移行する。アーク放電では局所的に高密度なプラズマが生成され、且つ、大きな電流が流れるため、短時間で電極及び放電面が大きく損傷する。そのため、プラズマ生成のための放電電圧Vは低い方が望ましい。また、印加電圧Vと誘電体層の厚さT又は電極間距離Lによっては、誘電体5内で絶縁破壊を引き起こす可能性がある。この観点からも、放電のために印加する電圧Vは低い方が望ましい。
【0028】
そこで、誘電体バリア放電面の直近、例えば10mm以下の距離Sに、コロナ放電を補助プラズマ源、即ち火種として生成し、誘電体バリア放電部へ荷電粒子や励起状態の粒子を供給すると、誘電体バリア放電による主プラズマ生成に必要な高周波電力の電圧Vを下げることが可能となる。
【0029】
コロナ放電は、2つの金属製電極11−1、11−2の間での放電であるため、誘電体バリア放電のように表面に誘電体層が無く、電極の消耗の影響をあまり考えなくて良い。また、火種として補助プラズマの生成を行うことが目的であるため、あまり高い密度のプラズマを生成する必要もない。また、補助プラズマを火種として利用するため、主プラズマ源1に電極4―1、4−2の消耗を加速するような大きな電力の投入の必要は無い。
【0030】
発明者の実験によれば、主プラズマ源1のみで安定したプラズマを生成するには5kVの高周波電力が必要であったのに対し、補助プラズマと併用することにより、2.5kVの高周波電力でも十分に安定したプラズマを生成させることができる。すなわち、本発明によれば、補助プラズマと併用しない場合に比べて、第2の高周波電源(RFP2)のパワー、換言すると主プラズマ源1の印加電圧Vを1/2以下に低減できる。
【0031】
このように、耐久性の高いコロナ放電によるプラズマ源を、主となる誘電体バリア放電によるプラズマの放電アシストとして利用することにより、誘電体バリア放電部の放電維持電圧を下げ、放電プレート2の寿命を延ばすことができる。結果としてプラズマモジュール100全体の耐久性を高くすることができる。
【0032】
本実施例のプラズマ処理装置の用途として、例えば、図3Aに示したように、被処理体としての空気やヘリウム等の気体、あるいは、混合ガスを、誘電体層5の上側の誘電体バリア放電面に沿って供給し、この気体あるいは混合ガスをプラズマ化し、オゾンやラジカル等を生成する。そして、気体の改質、洗浄、滅菌等の処理を行うことが挙げられる。
【0033】
このように、本実施例によれば、誘電体バリア放電の放電電圧を下げることが可能となるため、主プラズマ源の放電用部の寿命を長くし、かつ、安価なものとすることが可能となる。
【実施例2】
【0034】
次に、本発明の第2の実施例になるプラズマ処理装置を、図4を用いて説明する。図4は、誘電体バリア放電により、円筒状(円筒外周)にメインのプラズマ生成する方式のプラズマモジュール101を示している。
【0035】
円筒状のプラズマモジュール101は、誘電体バリア放電による主プラズマ源1と、コロナ放電による補助プラズマ源10とを有している。
【0036】
補助プラズマ源10は、先端の尖った一対の金属製電極(第1の電極)11(11−1,11−2)、及び放電用の第1の高周波電源3−1とを備えている。
【0037】
主プラズマ源1は、円筒型の金属製の基板電極30の表面に、厚さTの誘電体層5が形成されている。そして、この誘電体層5の上に、金属製の螺旋状電極4が巻かれている。基板電極30と螺旋状電極4は第2の高周波電源3−2に接続されている。この例では、基板電極30と螺旋状電極4により、第2の電極が構成されている。基板電極30と電極4に高周波電力を印加することにより、電極4に沿ってプラズマが生成され、全体としては円筒状にプラズマが生成されることになる。
【0038】
主プラズマ源1における誘電体バリア放電によるプラズマ生成のための放電維持電圧を低下させるために、主プラズマ源1の近傍に、補助プラズマ源10を設置している。補助プラズマPL1と主プラズマPL2の距離Sは、実施例1と同様、10mm以下が望ましい。すなわち、補助プラズマ源10のコロナ放電電極11は誘電体バリア放電面から例えば10mm以下の距離Sに設置する。その他の条件も実施例1と同様である。これにより、コロナ放電で生成された荷電粒子や励起粒子を、主プラズマを生成する誘電体バリア放電のための火種として利用することができる。
【0039】
本実施例のプラズマ処理装置は、例えば、被処理体の円筒部にプラズマモジュール101の円筒状の誘電体層5を挿入し、誘電体バリア放電により、円筒外周に主プラズマ生成し、被処理体である円筒部の内面、例えば軸受け面の成膜、改質、洗浄等の処理を行うことができる。
【0040】
本実施例によれば、誘電体バリア放電の放電電圧を下げることが可能となるため、主プラズマ源の放電用部の寿命を長くし、かつ、安価なものとすることが可能となる。
【実施例3】
【0041】
次に、本発明の実施例3について、図5A、図5Bを用いて説明する。図5Aは第3の実施例の放電モジュールの構成を示す平面図であり、図5Bは、第3の実施例の放電モジュールを側面から見た、動作説明図である。実施例1と同等の構成部分は説明を省略する。
【0042】
この実施例では、共通の誘電体5の内部に、誘電体バリア放電用の電極が2対設置されている。電極4−1と4−2は実施例1の第2の電極に相当するものであり、放電用の第2の高周波電源3−2に接続され、主プラズマPL2を生成する。電極4−3と4−4は電極4−1、4−2の脇に設置されており、実施例1の第1の電極に相当し、第1の高周波電源3−1に接続されている。即ち、本実施例は、誘電体バリア放電によるプラズマ源を2つ(第1のプラズマ源1−1と第2のプラズマ源1−2)有した構造となっている。補助プラズマPL1と主プラズマPL2の距離Sは、実施例1と同様、10mm以下が望ましい。すなわち、電極4−3と4−4の中央の位置と、4−1の端面の位置との間は、前記距離Sに設定する。また、補助プラズマPL1の体積は主プラズマPL2の体積の1/10以下とする。その他の条件も実施例1と同様である。
【0043】
第1のプラズマ源(補助プラズマ源)1−1には第1の高周波電源が印加され、第2のプラズマ源1−2よりも高い周波数で放電を行う。一例として、第1の高周波電源周波数f1を100KHz、第2の高周波電源の周波数f2を10KHzとする。第1の高周波電源3−1の周波数を高くすると、電極4−3と4−4とがコンデンサーとして働くようになり、印加した電力の多くが放電に使われることなく、電極間を通過するので、電力損失が大きくなる。一方で、プラズマ放電維持に必要な放電電圧は低くなるため、誘電体の消耗は少なくなる。そのため、第1のプラズマ源1−1は、補助プラズマ源、すなわち主プラズマ源1−2に対するプラズマ放電維持用の火種として用い、プラズマ処理を行うための主プラズマ源としては使用しない。これにより、プラズマ処理用の主プラズマ生成のためのプラズマ源1−2の放電維持に必要な電圧Vを低下させることができ、主プラズマ源の寿命を延ばすことができる。また、主プラズマ源の放電用部を安価なものとすることができる。
【0044】
本実施例のプラズマ処理装置は、例えば、図5Bに示したように、半導体基板等の被処理体7が、第2の(主)プラズマ源1−2によって生成される主プラズマPL2によってプラズマ処理される。本実施例の装置は、被処理体である気体や基板等の固体に対して、成膜、親水性等の改質、有機物の除去等の洗浄、あるいは滅菌等の処理を行うことができる。
【実施例4】
【0045】
次に、本発明の実施例4について図6ないし図8Bを用いて説明する。図6は第4の実施例の放電モジュールの構成を示す側面図である。図7Aは、放電モジュールの主プラズマ源の構成を示す平面図である。
【0046】
本実施例では、図6に示すように、第1のプラズマ源1−1と第2のプラズマ源1−2とを有している。第1のプラズマ源1−1は誘電体バリア放電による補助プラズマを生成し、第2のプラズマ源1−2によって生成される主プラズマの放電維持に必要な電圧Vを低下させるためのものである。
【0047】
主プラズマ源1−2では、第2の電極として、誘電体52内に電極4−1が埋め込まれており、さらに、プラズマ生成側の誘電体52の表面に櫛形状の電極4−2が設置されている。電極4−1は4−1a、4−1b、4−1c、4−1dに分割されており、電力配分機8を介して電源3−2に接続されている。また、電極4−2も電源3−2に接続されている。電力分配機8は、電源3−1から供給される高周波電力を、電極4−1a〜dのどの電極に供給するかを制御することができる。
【0048】
図7Bは放電モジュールの、補助プラズマ源の構成を示す側面図、図7Cは補助プラズマ源の構成を示す平面図である。補助プラズマ源1−1は、第1の電極として、誘電体51の内部に電極4−3が設置され、また、誘電体51の表面に電極4−4が設置され、それぞれが高周波電源3−1に接続されている。
【0049】
図8Aに示したように、被処理体7、例えば基板は、第2の(主)プラズマ源1−2によって生成される主プラズマPL2によってプラズマ処理される。また、図8Bに示したように、被処理体7に対して、プラズマPL2−1を生成したり、PL2−2を生成することができる。すなわち、供給される高周波電力を電力分配機8によって制御することにより、例えばa〜d全面に主プラズマを生成したり、4−1aの部分だけに主プラズマを生成することができ、プラズマ処理する部分を選択することが可能となっている。
【0050】
当然、電極4−1は矩形で分割する必要はなく、丸形や複雑な模様でもよい。即ち、誘電体内に設置された電極4−1の幾何形状に応じてプラズマを発生させる部分と、発生させない部分を作り出すことができる。
【0051】
前記各実施例と同様に、第1の高周波電源3−1の周波数は第2の高周波電源3−2の周波数よりも高くなっており、補助プラズマ源は主プラズマ源1−2の放電維持に必要な電圧を下げるための補助プラズマを生成することを目的としている。本実施例の効果は、実施例3と同様なものである。
【実施例5】
【0052】
次に、本発明の第5の実施例について、図9を参照して説明する。図9は、第5の実施例になる、プラズマ処理装置の概略を示す平面図である。
本実施例のプラズマ処理装置は、気体、または気液混合の被処理ガスにプラズマ処理を施すためのプラズマ処理装置である。プラズマ処理装置のダクト状の筐体16の内側周辺には、実施例1で示した平板型のプラズマ放電モジュール100が4つ(100−1,100−2,100−3,100−4)設置されている。また、ガス流路の中心付近には実施例2で示した円筒型プラズマモジュール101が1つ設置されている。処理ガスはダクト状の筐体16内を紙面に垂直方向に流れている。これにより、筐体16内の5箇所に、主プラズマPL2−1〜PL2−5が生成される。勿論、放電モジュール100及び101の数や配置は図示した構成と異なってもよい。主プラズマPL2−1〜PL2−5を用いて、1つあるいは複数の被処理体に連続して、あるいは、並行して、成膜、改質、洗浄、滅菌等の処理を行うことができる。
【実施例6】
【0053】
次に、本発明の実施例6のプラズマ処理装置について図10を参照して述べる。本実施例は、被処理体7が主プラズマから離れた位置で処理される、リモートプラズマ方式のプラズマ処理装置に関するものである。主プラズマ源1は、実施例1に記載の誘電体バリア放電モジュール100における主プラズマ源1と同等の構成であり、放電プレート2と、第2の高周波電源(RFP2)3−2とを備えている。実施例1と異なり、放電プレート2が縦方向に配置されている。そして、主プラズマ源1の近傍、ここでは、主プラズマ源1の上側に、前記各実施例と同様に、放電維持に必要な電圧を下げるための補助プラズマを生成することを目的として、補助プラズマ源10が設置されている。補助プラズマ源10は、一対の金属製電極11、放電用の第1の高周波電源3−1、及びガス供給系9−1を備えている。主プラズマ源1の放電プレート2に対向して、平板15が配置されている。この平板15はガス供給系9−2、9−3が設けられ、平板15と放電プレート2の誘電体バリア放電面との間の空間に、処理ガスが供給される。被処理体7はローラー17で輸送されるようになっている。
【0054】
まず、ガス供給系9−1からメタン等のガスCHが供給され、一対の金属製電極11−1と11−2に第1の高周波電源3−1から高周波電力が印加されることにより、コロナ放電方式の補助プラズマ源10によって補助プラズマPL1を生成する。ここで生成された補助プラズマは、主プラズマを生成するための主プラズマ源1へ輸送され、ここでメタンCH等のガスがプラズマ化され主プラズマPL2を生成する。そして、生成された主プラズマはその下方にある被処理体7に対して照射され、主プラズマ中のラジカルやイオン、電子などにより、被処理体7の表面に所定のプラズマ処理が施されるようになっている。
【0055】
また、複数の処理ガスを用いる場合は、主にプラズマ生成のためのガスは、ガス供給系9−1から供給し、その他の混合ガスは主プラズマ源1に対向して設置された平板15からガス供給系9−2、9−3から供給してもよい。
【0056】
本実施例でも、誘電体バリア放電の放電電圧を下げることが可能となるため、主プラズマ源1の放電用部の寿命を長くすることが可能となる。
【実施例7】
【0057】
次に、本発明の実施例7について図11を参照して述べる。本実施例は、主プラズマ源1に、誘電体バリア放電を行うための平行平板型の放電電極を採用している。すなわち、主プラズマを生成する主プラズマ源1は、表面に誘電体5の層を有する一対の平行な平板からなる放電プレート2が相対向するようにして配置された、平行平板電極4−1,4−2を有している。電極4−1,4−2には第2の高周波電源(RFP2)が接続されている。主プラズマ源1の平行平板電極4−1,4−2の近傍に、補助プラズマ源10を設置している。実施例1と同様、補助プラズマPL1と主プラズマPL2の距離は、最短部で10mm以下になるようにする。その他の構成は、実施例6のリモートプラズマ方式のプラズマ処理装置と同じである。主プラズマ源1で生成された主プラズマはその下方にある被処理体7に対して照射され、主プラズマ中のラジカルやイオン、電子などにより、被処理体7の表面に所定のプラズマ処理が施される。
【0058】
本実施例においても、補助プラズマ源10の採用により、平行平板型の誘電体バリア放電に基づく主プラズマ生成における放電維持に必要な電圧を低下させる効果がある。なお、実施例3と同様に、平行平板型の誘電体バリア放電モジュールを2つ備え、一方を補助(アシスト)プラズマ源、他方を主プラズマ源として用いる方式でもよい。
【符号の説明】
【0059】
1:主プラズマ源、2:放電プレート、3−1:第1の高周波電源(RFP1)、3−2:第2の高周波電源(RFP2)、4:電極、5:誘電体、7:被処理体、8:電力分配機、9:ガス供給系、10:補助プラズマ源、11:金属製電極、12:コロナ放電プラズマ、15:平板、16:筐体、17:ローラー、30:円筒型基板電極、100:放電モジュール、101:円筒型プラズマモジュール、PL1:補助プラズマ、PL2:主プラズマ。

【特許請求の範囲】
【請求項1】
第1の高周波電源と放電用の第1の電極とを有し、補助プラズマを生成する補助プラズマ源と、
第2の高周波電源と放電用の第2の電極とを有し、主プラズマを生成する主プラズマ源とを備え、
前記補助プラズマ源の第1の電極は、前記主プラズマ源のプラズマ生成領域の近傍に配置されており、
前記第1の高周波電源の周波数は前記第2の高周波電源の周波数よりも高い
ことを特徴とするプラズマ処理装置。
【請求項2】
請求項1において、
前記主プラズマ源は、
前記第2の電極と、該第2の電極を覆う誘電体膜とを有する放電プレートを備え、誘電体バリア放電を行うプラズマ源である
ことを特徴とするプラズマ処理装置。
【請求項3】
請求項1において、
前記補助プラズマ源は、
前記第1の電極を構成する一対の対向電極間にコロナ放電を生ずるコロナ放電方式のプラズマ源である
ことを特徴とするプラズマ処理装置。
【請求項4】
請求項1において、
前記主プラズマ源は、誘電体バリア放電を行うプラズマ源であり、
前記補助プラズマ源は、コロナ放電方式のプラズマ源であり、
前記誘電体バリア放電が発生するタイミングで、常に前記コロナ放電が存在しそれによる荷電粒子や励起状態の粒子を連続して前記主プラズマ源に供給する
ことを特徴とするプラズマ処理装置。
【請求項5】
請求項1において、
前記第2の電極は、一対の櫛形状を有しており、該第2の電極を誘電体膜で覆うことにより平板型の放電プレートが構成されており、
前記第2の電極を覆う前記誘電体膜上のプラズマ生成領域の近傍に、前記補助プラズマ源の第1の電極を構成する一対の対向電極が配置されている
ことを特徴とするプラズマ処理装置。
【請求項6】
請求項2において、
前記誘電体バリア放電のための放電部が、円筒状の金属からなる基板電極を有し、
該基板電極の表面は誘電体層でコーティングされ、
該誘電体層の上に螺旋状電極を巻き付けた構成である
ことを特徴とするプラズマ処理装置。
【請求項7】
請求項1において、
2対の電極を誘電体膜で覆った平板型の放電プレートを備えており、
一方の一対の前記電極に前記第1の高周波電源が接続されて前記補助プラズマ源を構成し、
他方の一対の前記電極に前記第2の高周波電源が接続されて前記主プラズマ源を構成している
ことを特徴とするプラズマ処理装置。
【請求項8】
請求項1において、
前記補助プラズマ源は、前記第1の電極として、第1の誘電体の内部に設置された電極と前記第1の誘電体の表面に設置された電極からなる、前記第1の電極を備えており、
前記主プラズマ源は、第2の電極として、第2の誘電体に埋め込まれた平面状の複数の分割電極と、前記第2の誘電体の表面に設置された櫛形状の電極を備えており、前記第2の誘電体に設置された電極の形状に沿って、前記主プラズマが生成される
ことを特徴とするプラズマ処理装置。
【請求項9】
請求項8において、
前記第2の高周波電源と前記各分割電極との間に設けられた電力分配機を備えており、
前記主プラズマ源の放電部は、前記電力分配機により、プラズマ生成領域が分割制御される
ことを特徴とするプラズマ処理装置。
【請求項10】
請求項1において、
前記主プラズマ源の放電部は、
前記第2の電極が、誘電体膜で覆われた一対の対向する平板型の放電プレートで構成されており、
前記一対の対向する平板型の放電プレートのプラズマ生成領域の近傍に、前記補助プラズマ源の第1の電極を構成する一対の対向電極が配置されている
ことを特徴とするプラズマ処理装置。
【請求項11】
請求項1において、
前記補助プラズマ及び前記主プラズマの各プラズマ生成領域は、大気圧雰囲気である
ことを特徴とするプラズマ処理装置。
【請求項12】
請求項4において、
プラズマ生成のためのガスを供給する手段を備え、
前記ガスの流れの上流側に前記コロナ放電方式の前記補助プラズマ源が設置され、
前記ガスの流れの下流側に前記誘電体バリア放電方式の主プラズマ源が設置され、
さらにその下流側に、被処理体が設置される
ことを特徴とするプラズマ処理装置。
【請求項13】
第1の高周波電源と放電用の第1の電極とを有し、補助プラズマを生成する補助プラズマ源と、
第2の高周波電源と放電用の第2の電極とを有し、主プラズマを生成する主プラズマ源とを備え、
前記補助プラズマ源の第1の電極は、前記主プラズマ源のプラズマ生成領域の近傍に配置されており、
前記補助プラズマの体積は前記主プラズマの体積の1/10以下である
ことを特徴とするプラズマ処理装置。
【請求項14】
請求項13において、
前記第1の高周波電源の周波数は前記第2の高周波電源の周波数よりも高く、
前記第1の高周波電源の電力は、前記第2の高周波電源の電力の1/10以下である
ことを特徴とするプラズマ処理装置。
【請求項15】
請求項13において、
前記主プラズマ源は、
前記第2の電極と、該第2の電極を覆う誘電体膜とを有する放電プレートを備え、誘電体バリア放電を行うプラズマ源であり、
前記補助プラズマ源は、
前記第1の電極を構成する一対の対向電極間にコロナ放電を生ずるコロナ放電方式のプラズマ源である
ことを特徴とするプラズマ処理装置。
【請求項16】
請求項14において、
前記補助プラズマ及び前記主プラズマの各プラズマ生成領域は、大気圧雰囲気であり、
前記誘電体バリア放電が発生するタイミングで、常に前記コロナ放電が存在しそれによるイオン、電子などの荷電粒子や励起状態の粒子を連続して前記主プラズマ源に供給する
ことを特徴とするプラズマ処理装置。
【請求項17】
第1の高周波電源と放電用の第1の電極とを有し、補助プラズマを生成する補助プラズマ源と、
第2の高周波電源と放電用の第2の電極とを有し、主プラズマを生成する主プラズマ源とを備え、
前記補助プラズマ源の第1の電極は、前記主プラズマ源のプラズマ生成領域の近傍に配置されており、
前記補助プラズマと前記主プラズマの2つのプラズマ間は、前記補助プラズマにより発生した荷電粒子や励起状態の粒子が十分な量だけ前記主プラズマの生成領域へ拡散し得る距離にある
ことを特徴とするプラズマ処理装置。
【請求項18】
請求項17において、
前記補助プラズマと前記主プラズマの距離Sは、10mm以下である
ことを特徴とするプラズマ処理装置。
【請求項19】
請求項17において、
前記第1の高周波電源の周波数は前記第2の高周波電源の周波数よりも高く、
前記補助プラズマの体積は前記主プラズマの体積の1/10以下である
ことを特徴とするプラズマ処理装置。
【請求項20】
請求項17において、
前記主プラズマ源は、
前記第2の電極と、該第2の電極を覆う誘電体膜とを有する放電プレートを備え、誘電体バリア放電を行うプラズマ源であり、
前記補助プラズマ源は、
前記第1の電極を構成する一対の対向電極間にコロナ放電を生ずるコロナ放電方式のプラズマ源であり、
前記誘電体バリア放電が発生するタイミングで、常に前記コロナ放電が存在しそれによる荷電粒子や励起状態の粒子を連続して前記主プラズマ源に供給する
ことを特徴とするプラズマ処理装置。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−119123(P2012−119123A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2010−266420(P2010−266420)
【出願日】平成22年11月30日(2010.11.30)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】