説明

位置情報取得装置、位置情報取得方法、および、端末装置用プログラム

【課題】帯域内ノイズの影響を軽減して測位解の精度改善を実現する。
【解決手段】第一の条件を満たす信号をGPS信号として捕捉・追尾する信号捕捉追尾手段と、該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出手段と、該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定手段と、移動体位置判定手段により該所定の場所に位置すると判定されるときに、GPS信号を捕捉・追尾するための条件を該第一の条件と異なる第二の条件に変更する捕捉追尾条件変更手段とを具備し、信号捕捉追尾手段が、移動体位置判定手段により該所定の場所に位置すると判定されている期間中、該第二の条件に基づいて信号捕捉・追尾を行う位置情報取得装置を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、移動体に搭載され、GPS(Global Positioning System)衛星からのGPS信号を用いて当該移動体の位置情報を取得する位置情報取得装置に関する。また、GPS衛星からのGPS信号を用いて移動体の位置情報を取得するための位置情報取得方法に関する。また、GPS信号を用いて移動体の位置情報を取得する端末装置の制御部に実行させるための端末装置用プログラムに関する。
【背景技術】
【0002】
GPSは、地球を周回するGPS衛星から発信されるGPS信号を用いて位置情報を取得するための測位システムである。このGPSは、例えば車両等の移動体に設置されるナビゲーションシステムに利用されている。このようなナビゲーションシステムには、複数のGPS衛星を捕捉・追尾し、それらの衛星から得られるGPS信号を用いて位置および速度測位を行うGPSレシーバが実装されている。
【0003】
GPSの変調方式には、ノイズに強いスペクトル拡散通信方式が採用されている。しかし、ノイズの周波数がGPS信号の周波数帯域(以下、「GPS帯域」と記す)内である場合には、当該ノイズ(以下、このようなノイズを「帯域内ノイズ」と記す)の影響によりGPS信号のCN比が低下し得る。また、GPSレシーバにおいて、信号強度の高い帯域内ノイズの周波数との同期が取れ、PRN(Pseudo Random Noise)コード相関が誤って取れてしまうことがあり得る。この場合、帯域内ノイズが測位演算に用いられることになる。このため、測位解の精度が低下してしまう。
【0004】
ここで、近年、車内には種々の機能を実現するための機器が数多く備えられている。そして、これらの機器が発する電磁波が帯域内ノイズとして受信障害の一要因となり、GPS信号のCN比を低下させることがある。GPS信号を受信するためのGPSアンテナは、一般に車内に設置されることが多く、上記のような機器による電磁波の影響を受け易い。また、車両生産時に組み込まれるナビゲーションシステムの場合、例えばダッシュボード内にGPSアンテナを設置することがある。この場合、GPSレシーバは、上記機器によるノイズに加えて不要輻射ノイズの影響も大きく受けてしまう。
【0005】
一方で、上記機器によるノイズや不要輻射ノイズの影響を回避するため、例えばGPSアンテナを車外に設置することが考えられる。しかし、車外には、例えばGPS帯域と近い周波数帯である携帯電話等の電磁波が飛来している。従って、GPSアンテナを車外に設置してもノイズの影響を回避することは困難であると言える。
【0006】
例えば車両がGPS信号を受信し難い場所(例えばトンネル等)に進入したときに帯域内ノイズ(例えば直前まで捕捉・追尾していたGPS信号のドップラー周波数に近い周波数のノイズ等)が存在すると、GPSレシーバが当該帯域内ノイズをGPS信号として誤捕捉・誤追尾することがある。上述したようにGPSレシーバを取り巻く受信環境には帯域内ノイズが恒常的に存在する。従って、このような誤追尾は比較的発生し易い現象であると言える。誤追尾が発生した場合、GPSレシーバは、GPS信号を受信して捕捉・追尾できる状態に復帰しない限り、帯域内ノイズを用いて位置および速度測位を行うことになる。従って、その測位解に著しい誤差が生じる可能性がある。また、GPSレシーバが有する複数チャンネルの中で帯域内ノイズを捕捉・追尾したチャンネルが多い場合、本来の正しいGPS信号に割り当てられるべきチャンネル数が減少してしまう。このため、測位解の精度の低下だけでなく、GPS信号への追尾数が規定数に達せず測位不能に陥る可能性もある。また、誤追尾した帯域内ノイズを測位に使用した場合、制御部等で計算されるクロックにずれが生じ、正しいGPS信号の捕捉・追尾が困難になることもある。
【0007】
例えば下記特許文献1には、トンネルに埋設されたシステムであって、GPS衛星からのGPS信号を受信して当該トンネル内の空間に送信するシステムが開示されている。下記特許文献1に記載のシステムによれば、トンネル内に位置する車両にもGPS信号を良好に受信させることが可能となる。
【特許文献1】特開平9−203777号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、上記特許文献1に記載のシステムを構築する場合、全国各地のトンネルに大規模な工事を施す必要がある。このような工事には莫大な費用および時間が掛かるため好ましくない。従って、例えばGPSレシーバ側で性能改善を行うことにより、トンネル等のGPS信号を受信し難い場所での帯域内ノイズの影響を軽減して測位解の精度を改善させることが望まれている。
【0009】
なお、GPSレシーバが帯域内ノイズを捕捉・追尾しないようにするために、例えばGPS信号の捕捉・追尾条件の基準を上げる(すなわち捕捉・追尾感度を低下させる)ことが考えられる。ところが、上記捕捉・追尾条件の基準を上げてしまうと、信号レベルの高いGPS信号しか捕捉・追尾できなくなることがある。つまり、帯域内ノイズだけでなく信号レベルがそれ程高くないGPS信号までもが捕捉・追尾されなくなってしまうことがある。この結果、捕捉・追尾可能なGPS信号が少なくなり、例えば測位率の低下等が起こる。このような観点から、上記捕捉・追尾条件の基準を単純に上げるだけでは測位解の精度を改善させることはできない。
【0010】
そこで、本発明は上記の事情に鑑みて、帯域内ノイズの影響を軽減して測位解の精度改善を実現するのに好適な位置情報取得装置、位置情報取得方法、および、端末装置用プログラムを提供することを課題としている。
【課題を解決するための手段】
【0011】
上記の課題を解決する本発明の一態様に係る移動体に搭載された位置情報取得装置は、GPS衛星からのGPS信号を用いて当該移動体の位置情報を取得する装置に関するものである。この位置情報取得装置は、第一の条件を満たす信号をGPS信号として捕捉・追尾する信号捕捉追尾手段と、該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出手段と、該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定手段と、移動体位置判定手段により該所定の場所に位置すると判定されるときに、GPS信号を捕捉・追尾するための条件を該第一の条件と異なる第二の条件に変更する捕捉追尾条件変更手段とを具備したものである。上記信号捕捉追尾手段は、移動体位置判定手段により該所定の場所に位置すると判定されている期間中、該第二の条件に基づいて信号捕捉・追尾を行う。
【0012】
このように構成された位置情報取得装置によれば、移動体が例えばトンネル等の場所に入ったときにGPS信号を捕捉・追尾するための条件を一時的に厳しいものとすることができる。つまり、帯域内ノイズを捕捉・追尾する可能性が高まる場所では捕捉・追尾条件を厳しく設定することが可能になるため、帯域内ノイズを誤って捕捉・追尾する可能性が軽減する。そして、それ以外の場所では捕捉・追尾条件を比較的緩く設定することが可能になるため、例えば捕捉・追尾条件を厳しくしたことによる測位率の低下等の発生が防止される。すなわち、本発明に係る位置情報取得装置によれば、帯域内ノイズの影響および測位率の低下等を好適に軽減させることができるため、測位解の精度の改善が実現される。
【0013】
例えば該第二の条件は該第一の条件よりも厳しい条件であっても良い。
【0014】
上記位置情報取得装置は、例えば所定の記憶媒体と、信号捕捉追尾手段により捕捉・追尾された該第一の条件を満たす追尾信号が該第二の条件を満たさない場合、当該追尾信号をノイズ成分として所定の記憶媒体に記憶する記憶手段と、信号捕捉追尾手段により捕捉・追尾される追尾信号が所定の記憶媒体に記憶されているノイズ成分と一致するものであるか否かを判定するノイズ判定手段とを更に具備したものであっても良い。この場合、上記信号捕捉追尾手段は、ノイズ判定手段により該ノイズ成分と一致するものであると判定された追尾信号の捕捉・追尾を中止するよう動作しても良い。
【0015】
また、上記位置情報取得装置は、例えば所定の記憶媒体と、信号捕捉追尾手段により捕捉・追尾された該第一の条件を満たす追尾信号が該第二の条件を満たさない場合、当該追尾信号をノイズ成分として所定の記憶媒体に記憶する記憶手段と、信号捕捉追尾手段により捕捉・追尾される追尾信号が所定の記憶媒体に記憶されているノイズ成分と一致するものであるか否かを判定するノイズ判定手段と、該第二の条件に基づいて、該ノイズ成分と一致するものであると判定された追尾信号がGPS信号か否かを判定するGPS信号判定手段とを更に具備したものであっても良い。この場合、上記信号捕捉追尾手段は、GPS信号判定手段によりGPS信号でないと判定された追尾信号の捕捉・追尾を中止するよう動作しても良い。
【0016】
上記位置情報取得装置において、例えば記憶手段が所定の記憶媒体に記憶可能なノイズ成分の情報の数は所定数に制限されていても良い。
【0017】
また、上記位置情報取得装置において、例えば信号捕捉追尾手段が捕捉・追尾した追尾信号に対して航法メッセージの有無を確認する処理を、該第一の条件下では実行せず該第二の条件下では実行するようにしても良い。
【0018】
また、上記位置情報取得装置は、例えばGPS信号を用いた測位に対応した地図データを更に具備したものであっても良い。この場合、上記移動体位置判定手段は、位置情報算出手段により算出された位置情報と地図データとを比較して、該移動体が所定の場所に位置するか否かを判定するよう動作しても良い。
【0019】
また、上記の課題を解決する本発明の一態様に係る位置情報取得方法は、GPS衛星からのGPS信号を用いて移動体の位置情報を取得するための方法である。この位置情報取得方法は、第一の条件を満たす信号をGPS信号として捕捉・追尾する信号捕捉追尾ステップと、該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出ステップと、該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定ステップとを含み、移動体位置判定ステップにおいて該所定の場所に位置すると判定される場合、信号捕捉追尾ステップにおいて、該第一の条件よりも厳しい第二の条件に基づいて信号捕捉・追尾を行う。
【0020】
また、上記の課題を解決する本発明の一態様に係る端末装置用プログラムは、第一の条件を満たす信号をGPS衛星からのGPS信号として捕捉・追尾する信号捕捉追尾機能と、該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出機能と、該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定機能と、移動体位置判定機能により該所定の場所に位置すると判定されるとき、GPS信号を捕捉・追尾するための条件を該第一の条件よりも厳しい第二の条件に変更する捕捉追尾条件変更機能とを、GPS信号を用いて移動体の位置情報を取得する端末装置の制御部に実行させるための端末装置用プログラムであり、移動体位置判定機能により該所定の場所に位置すると判定されている期間中、信号捕捉追尾機能に、該第二の条件に基づいた信号捕捉・追尾を実行させることを特徴としたものである。
【発明の効果】
【0021】
本発明に係る位置情報取得装置、位置情報取得方法、および、端末装置用プログラムによれば、帯域内ノイズの影響および測位率の低下等が好適に軽減されて、測位解の精度の改善が実現されるようになる。
【発明を実施するための最良の形態】
【0022】
以下に、図面を参照して、本発明の実施の形態のナビゲーションシステムの構成および作用について説明する。
【0023】
図1は、本発明の実施の形態のナビゲーションシステム200の構成を示したブロック図である。ナビゲーションシステム200は、車両(不図示)に搭載された所謂カーナビゲーション装置である。ナビゲーションシステム200は、GPSレシーバ100、ジャイロセンサ102、車速センサ104、加速度センサ106、CPU(Central Processing Unit)108、HDD(Hard Disk Drive)110、RAM(Random Access Memory)112、表示部114、スピーカ116、および、入力部118を備えている。CPU108は、ナビゲーションシステム200全体の制御を統括して実行する。ナビゲーションシステム200の各構成要素はCPU108の制御下で各種機能を実現する。
【0024】
GPSレシーバ100は、地球を周回する複数のGPS衛星の幾つかを捕捉・追尾する。そして、捕捉・追尾したGPS衛星からのGPS信号を用いて位置測位を行い、車両の現在位置情報を得る。また、同様に、GPS信号を用いた速度測位を行い、車両の走行速度の情報を得る。GPSレシーバ100は、得られた測位(以下、便宜上「GPS測位」と称する)結果をCPU108に送出する。
【0025】
ジャイロセンサ102、車速センサ104、および加速度センサ106は、周知のデッドレコニング(Dead Reckoning、以下、「DR」と略記)用のセンサである。ジャイロセンサ102は、車両の水平面における方位に関する角速度を計測し、その計測結果をCPU108に出力する。車速センサ104は、車両の左右の駆動輪の回転速度を検出し、その平均速度に応じた車速パルス信号を生成してCPU108に出力する。加速度センサ106は、車両の勾配に関する情報を計測し、その計測結果をCPU108に出力する。なお、説明の便宜上、これらのセンサ出力を「DRセンサ出力」と記す。CPU108は、これらのDRセンサ出力に基づいて周知の自律航法を行うことができる。
【0026】
HDD110は、地図データベースやプログラム等の各種データを格納した記録媒体である。RAM112は、例えばHDD110に格納されているデータやプログラム等が一時的に展開されるメモリである。CPU108は、例えばHDD110に格納されているプログラムを読み出してRAM112の所定領域に展開して実行させる。これにより、例えばナビゲーション用のプログラムが動作してナビゲーション機能が実現される。
【0027】
表示部114は例えばナビゲーション用画面等を表示するためのものである。この表示部114は例えば感圧式又は静電式等の周知のタッチ・パネルであり、入力手段を兼ねている。入力部118はユーザ・オペレーションを成すためのものであり、例えばフロントパネル(不図示)に設置されたメカニカル式の入力キーである。例えば電源スイッチは入力部118を構成する一要素である。表示部114又は入力部118が操作されると、それに応じた信号がCPU108に入力する。そしてCPU108は、ユーザ・オペレーションに対応した処理が実行されるよう各構成要素を制御する。スピーカ116は、例えば分岐地点での進行方向の報知等のナビゲーション用音声を出力する。
【0028】
ここで、GPSレシーバ100について詳説する。図2に、本発明の実施の形態のGPSレシーバ100の構成をブロック図で示す。GPSレシーバ100は、上述したように、複数のGPS衛星を捕捉・追尾してGPS測位演算する。GPSレシーバ100は大別して、RF(Radio Frequency)部1とデジタル処理部2から構成される。RF部1は、GPS信号を受信してダウンコンバートし、デジタル処理部2に渡す。デジタル処理部2は、RF部1から受け取った信号をサンプリングして捕捉、追尾、測位し、CPU108にGPS測位結果を出力する。
【0029】
RF部1は、GPSアンテナ10、RF入力部11、BPF(Band Pass Filter)12および14、LNA(Low Noise Amplifier)13、ダウンコンバータ15、AGC(Auto Gain Control)16、TCXO(Temperature Compensated Crystal Oscillator)17、および、周波数シンセサイザー18を有している。
【0030】
GPSアンテナ10がGPS衛星から発信されるGPS信号を受信すると、その受信信号は、RF入力部11を介してBPF12に入力される。そして、この信号は、BPF12を通過して所定帯域に制限されて、低雑音増幅器であるLNA13、BPF14を経てGPS帯域外のノイズが減衰され、ダウンコンバータ15に入力する。
【0031】
TCXO17は、ダウンコンバータ15に入力された受信信号の周波数よりも低い周波数を発振する局部発振器である。周波数シンセサイザー18は、TCXO17からの出力に基づいて局部発振器信号を生成し、ダウンコンバータ15に出力する。ダウンコンバータ15は、周波数シンセサイザー18からの局部発振器信号を用い、受信信号であるRF信号を、安定動作や選択特性が改善される中間周波数すなわちIF(Intermediate Frequency)信号に変換する。IF信号はAGC16でゲインコントロールされて、デジタル処理部2に出力される。
【0032】
デジタル処理部2は、復調部21、測位演算部22、および、インターフェース23を有している。復調部21は、A/D変換部21a、複数のチャンネル21b、および、NCO(Number Controlled Oscillator)21cを有している。
【0033】
A/D変換部21aは、RF部1からのIF信号をサンプリングして直交復調し、I(In-phase)信号とQ(Quadra-phase)信号に変換する。なお、I信号は直交復調の際の同相成分である。また、Q信号はI信号と直交関係にある成分である。以下、説明の便宜上、I信号とQ信号とをまとめて「IQ信号」と略記する。
【0034】
A/D変換部21aは、変換したIQ信号を複数のチャンネル21bに出力する。ここで、GPSレシーバ100は、測位演算するためには最低でも3つ又は4つのGPS信号を同時に捕捉・追尾するよう動作する必要がある。GPSレシーバ100において、各GPS信号に対する処理を同時に実行できるようにするため、チャンネル21bは複数備えられている。各GPS信号に対応するIQ信号は、それぞれ別個のチャンネル21bで処理される。
【0035】
NCO21cは、数値制御された周波数を発振する発振器である。各チャンネル21bでは、入力したIQ信号に対して、NCO21cの出力に基づいたドップラー除去、少なくとも1つのコリレータによるコード相関検出、および、積算処理が実行される。そして、これらの処理を施された信号は、測位演算部22に出力される。測位演算部22は、各チャンネル21bからの信号に関する測定値を算出する。また、NCO21cには、周波数シンセサイザー18から基準クロックが入力されている。NCO21cは、キャリアに関するNCO制御、PRNコードのリファレンスコード生成、コードに関するNCO制御を実行する。
【0036】
ここで、各チャンネル21bに入力される信号に基づいて所望の測定値を得る処理について説明する。GPS信号を捕捉するために必要なサーチ周波数のレンジは、主として、ドップラー効果による受信周波数の偏位と、TCXO17のばらつき(個体差や経年変化)および変動(温度特性や電源変動)等の偏差によって決定される。先ず、測位演算部22が、衛星の軌道情報である航法メッセージ、前回測位位置、および、現在時刻に基づいて当該信号のドップラー周波数とコード位相のサーチレンジを推定してそれらの設定値を生成し、NCO21cに出力する。そして、各チャンネル21bにおいて実行されるサーチ処理の制御を行う。
【0037】
また、測位演算部22は、各チャンネル21bでサーチされるPRNコードをチャンネル21b毎に指定する。これにより、各チャンネル21bでは、設定されたドップラー周波数に基づいたドップラー除去が行われ、設定された位相サーチレンジ内において指定されたPRNコードのリファレンスコードと入力信号との相関ピークが検出される。次いで、積算処理が実行され、入力信号のレベルが所定の閾値を越えた場合に当該入力信号がGPS信号として捕捉される。なお、このときの積算時間を長く設定すればするほど捕捉感度が上昇する。この積算時間も測位演算部22によって設定される。
【0038】
各チャンネル21bでは、更に、測位演算部22に含まれるトラッキングループフィルタ、および、NCO21cを介して捕捉されたGPS信号のキャリア、コードへのトラッキングエラーを補正し、GPS信号の追尾を続行する。なお、GPS信号の捕捉に失敗した場合には、通常、測位演算部22が、より広いサーチ周波数のレンジ、コード位相のレンジ、および、より高い感度を再設定してNCO21cに出力する。そして、NCO21cの制御下でチャンネル21bにおいて上述の処理が再試行される。
【0039】
測位演算部22は、測位に必要な複数のGPS信号に含まれる航法メッセージを取得し、コード位相(疑似距離)、キャリア周波数(疑似距離レート)、キャリア位相(デルタスードレンジ)、SN比、GPSレシーバ100におけるGPSタイムラグを算出する。そして、これらのGPS信号からの測定値およびデータに基づいて、位置、速度、方位、時刻を算出(すなわち測位演算)する。算出されたGPS測位結果は、インターフェース23を介してCPU108に出力される。なお、CPU108側からGPSレシーバ100に設定値を入力することで、ナビゲーションシステム200に対してより適応的なダイナミックな制御を実現することも可能である。
【0040】
ここで、GPSレシーバ100からのGPS測位結果および各センサからのDRセンサ出力を受け取った際のCPU108の処理について説明する。
【0041】
CPU108は、各センサが出力したDRセンサ出力に基づいてDR測位演算を行い、車両の進行方向および移動距離を得る。次いで、CPU108は、演算したDR測位結果およびGPS測位結果と、夫々の測位結果に対する誤差推定値とを比較する。そして、この比較結果に基づいて高精度と判定される測位結果を選択し、選択された測位結果をマップマッチングする。また、CPU108は、各測位結果に基づいてHDD110の地図データベースを検索し、現在位置周辺の地図画像データを抽出する。次いで、この抽出された地図画像データに車両の現在位置を示す自車位置マークが重畳表示された画面を表示部114に表示させる。
【0042】
なお、ここでいうマップマッチングとは、表示部114に表示されている地図中の道路から外れた位置に自車位置マークが表示される等の誤差を補正することを示す。マップマッチングを行うことによって自車位置と地図との整合性が取れ、ユーザは自車の現在位置を正確に把握することができる。マップマッチングは、ナビゲーションの実行に拘わらず常時行われている。
【0043】
ある目的地に向けてナビゲーションするようにユーザ・オペレーションが成されたとき、CPU108は、ナビゲーション用のプログラムをHDD110から読み出して例えばDRAM112に展開する。次いでHDD110の地図データベースを読み込み、且つ、測位結果に基づく現在位置情報および設定された目的地の情報を参照して、例えば周知のダイクストラ法により経路検索を実行する。そして、最適と判断される経路を検索結果として得る。CPU108は、例えば得られた経路や当該経路に関する種々の情報を表示部114に表示させる。ユーザはこのようなナビゲーション情報を参照することで目的地までの経路を把握することができる。
【0044】
次に、図3および4に示されるフローチャートを参照して、本実施形態において精度の高いGPS測位結果を取得するために実行される処理について説明する。図3は、CPU108が実行する走行状態監視処理を示したフローチャートである。また、図4は、GPSレシーバ100が実行するノイズ判定処理を示したフローチャートである。
【0045】
先ず、図3に示されている走行状態監視処理について説明する。CPU108は、例えばナビゲーションシステム200の電源がオンされてからオフされるまでの期間、マップマッチングが行われる度に(例えば毎秒1回)走行状態監視処理を実行する。CPU108は、マップマッチングを実行すると、車両がトンネル(又は、GPS信号を受信し難いとされる所定の領域、例えば地下駐車場や立体駐車場、高架下等)に入ったか否かを判定する(ステップ1、以下の明細書および図面においてステップを「S」と略記)。ここで、CPU108にとって、車両がHDD110の地図上の何れに位置するか、および、その移動方向については既知である。HDD110の地図上で車両がトンネルに進入したとき、車両が現実にトンネルに進入したものとみなす。
【0046】
HDD110の地図上の車両の位置および移動方向に基づいて当該車両がトンネルに進入したと判定されるとき(S1:YES)、CPU108は、その旨を報知する情報(以下、「進入報知情報」と記す)をGPSレシーバ100に出力して(S2)S3の処理に進む。また、車両がトンネルに進入していないと判定されるとき(S1:NO)、CPU108は、S2の処理を行うことなくS3の処理に進む。GPSレシーバ100に入力した進入報知情報は、例えば測位演算部22の内部メモリ(不図示)に保持される。内部メモリに後述の通り抜け報知情報が保持されている場合には、測位演算部22は、進入報知情報を上書きして保存する。
【0047】
S3の処理においてCPU108は、HDD110の地図上の車両の位置および移動方向を参照して、当該車両がトンネルから抜け出たか否かを判定する。車両がトンネルから抜け出たと判定されるとき(S3:YES)、CPU108は、その旨を報知する情報(以下、「通り抜け報知情報」と記す)をGPSレシーバ100に出力して(S4)、図3のフローチャートの処理を終了する。また、車両がトンネルから抜け出ていないと判定されるとき(S3:NO)、CPU108は、S4の処理を行うことなく図3のフローチャートの処理を終了する。GPSレシーバ100に入力した通り抜け報知情報は、例えば進入報知情報と同様に、測位演算部22の内部メモリに保持される。内部メモリに進入報知情報が保持されている場合には、測位演算部22は、通り抜け報知情報を上書きして保存する。
【0048】
この走行状態監視処理により、測位演算部22の内部メモリに、現在車両がトンネル(又はGPS信号を受信し難いとされる所定の領域)内に位置するか否かを表す情報が保持されることになる。
【0049】
次に、図4に示されているノイズ判定処理について説明する。GPSレシーバ100は、例えばナビゲーションシステム200の電源がオンされてからオフされるまでの期間、上述したGPS測位演算が行われる度に(例えば毎秒1回)ノイズ判定処理を実行する。GPSレシーバ100は、GPS測位演算を実行して各チャンネル21bでGPS信号を捕捉してこれを追尾すると、測位演算部22の内部メモリを参照して、現在車両がトンネル(又はGPS信号を受信し難いとされる所定の領域)内に位置するか否かを判定する(S11)。
【0050】
S11の処理において、測位演算部22の内部メモリに進入報知情報が保持されている場合、GPSレシーバ100は、現在車両がトンネル内等のGPS信号を受信し難い場所に位置すると判断する(S11:YES)。次いで、GPS信号を捕捉・追尾しているチャンネル21bにおける捕捉・追尾条件の基準を変更する(S12)。
【0051】
ここで、ナビゲーションシステム200は移動体に搭載されており、GPSアンテナ10の受信状態が刻々と変化する。このため、ノイズが重畳して波形が乱れたりすることが多々起こり得る。従って、GPS信号の捕捉・追尾条件の基準を下げて(すなわち捕捉・追尾感度を高くして)しまうと、例えば帯域内ノイズをGPS信号として捕捉・追尾し易くなり、測位精度が低下することがある。
【0052】
また、受信状態が刻々と変換することから、GPS信号の受信が断続的になったり受信強度が不安定になったりすることも多々起こり得る。従って、GPS信号の捕捉・追尾条件の基準を上げて(すなわち捕捉・追尾感度を低下させて)しまうと、例えば捕捉・追尾可能なGPS信号が少なくなり、場合によっては捕捉・追尾すべき必要最低限の数に満たないこともあり得る。これにより、例えば測位率の低下や、測位のリアルタイム性喪失、DOP(Dilution of Precision)増加等が起こり、結果的に測位精度が低下する。
【0053】
このような測位精度低下の問題を回避するため、一般に設計段階において、測位精度とのバランスを考慮した捕捉・追尾条件の最適化が行われている。捕捉・追尾条件を最適化する例として、キャリア同期やコード相関等の判定に用いられる閾値を適切な値に設定することが知られている。これらの閾値を適切な値に設定することで、捕捉・追尾感度に起因した測位精度の低下を起こり難くしている。
【0054】
また、GPSレシーバ100は、ナビゲーションシステム200の電源オン直後に初期測位を実行すると、図4のノイズ判定処理と並行して、航法メッセージの内容を長い周期で読み込みながら疑似距離、レンジレート等の測定値に基づいて毎秒1回のGPS測位を実行する。この航法メッセージの確認処理は、例えばナビゲーションシステム200の電源オン直後等の限られた期間にだけ実行される。
【0055】
航法メッセージの伝送速度は非常に遅く(50bps)、例えばエフェメリスは1サブフレームに6秒を要する。従って、1秒毎の測位に用いられる疑似距離等の測定値に対してエフェメリスをリアルタイムに得ることはできない。また、エフェメリスは30秒周期で送信されるデータであり、その内容は2時間変更されない。これらの観点から、航法メッセージの確認処理を常に実行する必要はなく、例えば電源投入直後等の限定された期間にだけ実行すれば良いと言える。また、航法メッセージの確認処理を常に実行した場合、その分だけ信号処理系統に負荷が掛かり、測位率低下が起こり得るため好ましくない。このような理由により、捕捉・追尾条件を最適化する一例として、航法メッセージの確認処理を限られた期間にだけ実行するようにしている。
【0056】
図4のフローチャートの説明に戻る。S12の処理における捕捉・追尾条件の基準変更には、キャリア同期やコード相関等の判定に用いられる閾値を高くすること、航法メッセージの確認処理を実行すること等が含まれる。すなわちGPSレシーバ100は、S12の処理において捕捉・追尾条件の基準を上げて当該条件を厳しく設定する。
【0057】
GPSレシーバ100は、S12の処理で変更された捕捉・追尾条件に基づいて、各チャンネル21bで捕捉・追尾している信号(以下、「追尾信号」と記す)がGPS信号であるか否かを判定する(S13)。S12の処理で上記閾値を高くすることによって、例えば帯域内ノイズとのコード相関が誤って取れてしまう可能性を低下させることができる。
【0058】
S13の処理においてGPSレシーバ100は、例えば捕捉・追尾条件を変更したことでコード相関が取れなくなった追尾信号や、航法メッセージを含まないことが明らかとなった追尾信号等をノイズであると判断する(S13:NO)。次いで、ノイズと判断された追尾信号(以下、「ノイズ追尾信号」と記す)を測位に用いないように測位演算部22を制御し(S14)、当該ノイズ追尾信号の周波数および位相等の情報(すなわち捕捉・追尾時に特定した測定値の情報)を妨害波情報として測定演算部22の内部メモリに保持する(S15)。そして、当該ノイズ追尾信号を捕捉・追尾していたチャンネル21bをリセット(すなわちノイズ追尾信号の捕捉・追尾を中止)して(S16)、図4のノイズ判定処理のフローチャートを終了する。このようにチャンネル21bをリセットすることにより、次回のGPS測位演算において新たなGPS衛星の捕捉・追尾動作が実行されることになる。なお、この場合、S12の処理で変更された捕捉・追尾条件に基づいてGPS衛星の捕捉・追尾動作が実行される。従って、チャンネル21bでノイズ追尾信号を再び捕捉・追尾してしまう可能性は極めて低い。
【0059】
また、S11の処理において、測位演算部22の内部メモリに通り抜け報知情報が保持されている(又は何れの情報も保持されていない)場合、GPSレシーバ100は、現在車両がトンネル外でありGPS信号を良好に受信できる場所に位置すると判断する(S11:NO)。次いで、各チャンネル21bの追尾信号と、測位演算部22の内部メモリに保持されている妨害波情報とを比較する。そして、その比較結果に基づいて、各チャンネル21bの追尾信号の中でその周波数および位相が妨害波情報と一致するものがあるか否かを判定する(S17)。なお、S17の処理においては、追尾信号と妨害波情報との周波数および位相の差が所定値以内であれば「一致」とみなされる。
【0060】
S17の処理において、妨害波情報と一致する周波数および位相の追尾信号が検知された場合(S17:YES)、GPSレシーバ100は、当該追尾信号がノイズ追尾信号である可能性があるとしてS12の処理に進む。次いで、S12の処理において、そのチャンネル21bにおける捕捉・追尾条件の基準を上げてS13以降の上述した処理を実行する。
【0061】
また、S17の処理において、妨害波情報と一致する周波数および位相の追尾信号が検知されなかった場合(S17:NO)、GPSレシーバ100は、全ての追尾信号がGPS信号であると判断して、それらを用いた測位を行うように測位演算部22を制御し(S18)、図4のノイズ判定処理のフローチャートを終了する。なお、測位演算部22の内部メモリに妨害波情報が保持されていない場合、GPSレシーバ100は、S17の処理を実行することなくS18の処理を実行して、図4のノイズ判定処理のフローチャートを終了する。また、S13の処理においてノイズ追尾信号が存在しないと判定された場合も(S13:YES)、GPSレシーバ100は、上記と同様にS18の処理を実行して図4のノイズ判定処理のフローチャートを終了する。
【0062】
本実施形態によれば、ノイズ追尾信号を除外してGPS信号だけを用いて測位演算を実行することが可能となる。また、帯域内ノイズ等の情報を妨害波情報として保持することにより、例えばトンネル外等のGPS信号を良好に受信することが可能な場所においても、ノイズ追尾信号を除外した測位演算を実行することが可能となる。このため、測位精度とのバランスを考慮して捕捉・追尾条件を最適化させつつも、本来のGPS信号だけでの測位を実現することができ、その結果、測位解の精度が改善する。
【0063】
以上が本発明の実施の形態である。本発明はこれらの実施の形態に限定されるものではなく様々な範囲で変形が可能である。例えば図3の走行状態監視処理および図4のノイズ判定処理は本実施形態では一秒に一回実行されるが、別の実施の形態では一秒よりも短い周期で実行されても良い。
【0064】
また、例えば妨害波情報の数が多い場合、S13の処理における判定基準が高くなり過ぎたり、再捕捉・追尾および再測位に時間が掛かったりするようになってしまう。従って、測位演算部22の内部メモリで保持可能な妨害波情報の数に上限を設定することが望ましい。
【0065】
また、妨害波情報と同一の周波数帯の信号がS13の処理でGPS信号として判定された場合、当該妨害波情報を測位演算部22の内部メモリから削除するようにしても良い。
【0066】
また、別の実施の形態では、妨害波情報等は測位演算部22の内部メモリでなく、デジタル処理部2内に別個に備えられたメモリ(不図示)に記憶されても良い。
【0067】
また、別の実施の形態では、S17の処理において妨害波情報と一致する周波数および位相の追尾信号が検知された場合、S12以降の処理を行うことなく当該追尾信号をノイズ追尾信号であると確定して測位に用いず、その捕捉・追尾を中止しても良い。
【図面の簡単な説明】
【0068】
【図1】本発明の実施の形態のナビゲーションシステムの構成を示したブロック図である。
【図2】本発明の実施の形態のGPSレシーバの構成をブロック図で示す。
【図3】本発明の実施の形態において実行される走行状態監視処理を示したフローチャートである。
【図4】本発明の実施の形態において実行されるノイズ判定処理を示したフローチャートである。
【符号の説明】
【0069】
1 RF部
2 デジタル処理部
100 GPSレシーバ
102 ジャイロセンサ
104 車速センサ
106 加速度センサ
108 CPU
110 HDD
112 RAM
114 表示部
116 スピーカ
118 入力部
200 ナビゲーションシステム

【特許請求の範囲】
【請求項1】
移動体に搭載され、GPS(Global Positioning System)衛星からのGPS信号を用いて当該移動体の位置情報を取得する位置情報取得装置において、
第一の条件を満たす信号をGPS信号として捕捉・追尾する信号捕捉追尾手段と、
該捕捉・追尾した追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出手段と、
該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定手段と、
前記移動体位置判定手段により該所定の場所に位置すると判定されるとき、GPS信号を捕捉・追尾するための条件を該第一の条件と異なる第二の条件に変更する捕捉追尾条件変更手段と、を具備し、
前記信号捕捉追尾手段は、前記移動体位置判定手段により該所定の場所に位置すると判定されている期間中、該第二の条件に基づいて信号捕捉・追尾を行うこと、を特徴とする位置情報取得装置。
【請求項2】
該第二の条件は該第一の条件よりも厳しい条件であること、を特徴とする請求項1に記載の位置情報取得装置。
【請求項3】
所定の記憶媒体と、
前記信号捕捉追尾手段により捕捉・追尾された該第一の条件を満たす追尾信号が該第二の条件を満たさない場合、当該追尾信号をノイズ成分として前記所定の記憶媒体に記憶する記憶手段と、
前記信号捕捉追尾手段により捕捉・追尾される追尾信号が前記所定の記憶媒体に記憶されているノイズ成分と一致するものであるか否かを判定するノイズ判定手段と、を更に具備し、
前記信号捕捉追尾手段は、前記ノイズ判定手段により該ノイズ成分と一致するものであると判定された追尾信号の捕捉・追尾を中止すること、を特徴とする請求項1又は請求項2の何れかに記載の位置情報取得装置。
【請求項4】
所定の記憶媒体と、
前記信号捕捉追尾手段により捕捉・追尾された該第一の条件を満たす追尾信号が該第二の条件を満たさない場合、当該追尾信号をノイズ成分として前記所定の記憶媒体に記憶する記憶手段と、
前記信号捕捉追尾手段により捕捉・追尾される追尾信号が前記所定の記憶媒体に記憶されているノイズ成分と一致するものであるか否かを判定するノイズ判定手段と、
該第二の条件に基づいて、該ノイズ成分と一致するものであると判定された追尾信号がGPS信号か否かを判定するGPS信号判定手段と、を更に具備し、
前記信号捕捉追尾手段は、前記GPS信号判定手段によりGPS信号でないと判定された追尾信号の捕捉・追尾を中止すること、を特徴とする請求項1又は請求項2の何れかに記載の位置情報取得装置。
【請求項5】
前記記憶手段が前記所定の記憶媒体に記憶可能なノイズ成分の情報の数は所定数に制限されていること、を特徴とする請求項3又は請求項4の何れかに記載の位置情報取得装置。
【請求項6】
前記信号捕捉追尾手段が捕捉・追尾した追尾信号に対して航法メッセージの有無を確認する処理を、該第一の条件下では実行せず該第二の条件下では実行すること、を特徴とする請求項1から請求項5の何れかに記載の位置情報取得装置。
【請求項7】
GPS信号を用いた測位に対応した地図データを更に具備し、
前記移動体位置判定手段は、前記位置情報算出手段により算出された位置情報と前記地図データとを比較して、該移動体が所定の場所に位置するか否かを判定すること、を特徴とする請求項1から請求項6の何れかに記載の位置情報取得装置。
【請求項8】
GPS衛星からのGPS信号を用いて移動体の位置情報を取得するための位置情報取得方法において、
第一の条件を満たす信号をGPS信号として捕捉・追尾する信号捕捉追尾ステップと、
該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出ステップと、
該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定ステップと、を含み、
前記移動体位置判定ステップにおいて該所定の場所に位置すると判定される場合、前記信号捕捉追尾ステップにおいて、該第一の条件よりも厳しい第二の条件に基づいて信号捕捉・追尾を行う、位置情報取得方法。
【請求項9】
第一の条件を満たす信号をGPS衛星からのGPS信号として捕捉・追尾する信号捕捉追尾機能と、
該捕捉・追尾された追尾信号を用いて測位を行い、該移動体の位置情報を算出する位置情報算出機能と、
該算出された位置情報に基づいて該移動体が所定の場所に位置するか否かを判定する移動体位置判定機能と、
前記移動体位置判定機能により該所定の場所に位置すると判定されるとき、GPS信号を捕捉・追尾するための条件を該第一の条件よりも厳しい第二の条件に変更する捕捉追尾条件変更機能とを、GPS信号を用いて移動体の位置情報を取得する端末装置の制御部に実行させるための端末装置用プログラムであり、
前記移動体位置判定機能により該所定の場所に位置すると判定されている期間中、前記信号捕捉追尾機能に、該第二の条件に基づいた信号捕捉・追尾を実行させること、を特徴とする端末装置用プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−89309(P2008−89309A)
【公開日】平成20年4月17日(2008.4.17)
【国際特許分類】
【出願番号】特願2006−266993(P2006−266993)
【出願日】平成18年9月29日(2006.9.29)
【出願人】(000001487)クラリオン株式会社 (1,722)
【Fターム(参考)】