説明

光検出装置

【課題】開口率を著しく向上することが可能な光検出装置を提供すること。
【解決手段】光検出装置1は、半導体基板1Nを有する半導体光検出素子10Aと、半導体光検出素子10に対向配置される搭載基板20とを備える。半導体光検出素子10Aは、ガイガーモードで動作すると共に半導体基板1N内に形成された複数のアバランシェフォトダイオードAPDと、それぞれのアバランシェフォトダイオードAPDに対して電気的に接続されると共に半導体基板1Nの主面1Nb側に配置された電極E7とを含む。搭載基板20は、電極E7毎に対応して主面20a側に配置された複数の電極E9と、それぞれの電極E9に対して電気的に接続されると共に主面20a側に配置されたクエンチング抵抗R1とを含む。電極E7と電極E9とが、バンプ電極BEを介して接続されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光検出装置に関する。
【背景技術】
【0002】
ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えている表面入射型のフォトダイオードアレイ(半導体光検出素子)が知られている(たとえば、特許文献1参照)。このフォトダイオードアレイでは、各画素を構成するアバランシェフォトダイオードが形成された半導体基板にクエンチング抵抗が設けられている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011−003739号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載された表面入射型の半導体光検出素子では、クエンチング抵抗は半導体基板の光入射面(表面)側に配置される。このため、クエンチング抵抗が配置されるスペース分、開口率が低くならざるを得ず、開口率の向上には限界があった。
【0005】
ところで、裏面入射型の半導体光検出素子では、クエンチング抵抗は半導体基板の光入射面に対向する面(裏面)側に配置される。裏面入射型の半導体光検出素子においても、画素数の増加などの要因により各画素のサイズが小さい場合、プロセス設計での制約上、各画素の領域(アクティブ領域)外にクエンチング抵抗を配置しなければならないことがある。各アバランシェフォトダイオードがガイガーモードで動作する際に形成される増倍領域は、アクティブ領域内に位置する。結果的に、クエンチング抵抗をアクティブ領域外に配置する分、開口率は低くならざるを得ない。
【0006】
本発明は、開口率を著しく向上することが可能な光検出装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る光検出装置は、互いに対向する第一及び第二主面を含む半導体基板を有する半導体光検出素子と、半導体光検出素子に対向配置されると共に、半導体基板の第二主面と対向する第三主面を有する搭載基板と、を備え、半導体光検出素子は、ガイガーモードで動作すると共に半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して電気的に接続されると共に半導体基板の第二主面側に配置された第一電極と、を含み、搭載基板は、第一電極毎に対応して第三主面側に配置された複数の第二電極と、それぞれの第二電極に対して電気的に接続されると共に第三主面側に配置されたクエンチング回路と、を含んでおり、第一電極と、該第一電極に対応する第二電極と、がバンプ電極を介して接続されていることを特徴とする。
【0008】
本発明に係る光検出装置では、クエンチング回路が、半導体光検出素子の半導体基板ではなく、搭載基板に配置される。このため、半導体基板において、クエンチング回路を配置するスペースを考慮することなく、各アバランシェフォトダイオードが形成されることとなる。この結果、光検出装置(半導体光検出素子)の開口率を著しく向上することができる。
【0009】
各アバランシェフォトダイオードは、第一導電体の半導体基板と、半導体基板の第一主面側に形成された第二導電型の第一半導体領域と、第一半導体領域内に形成され且つ第一半導体領域よりも不純物濃度が高い第二導電型の第二半導体領域と、半導体基板の第一主面側に配置され且つ第二半導体領域に電気的に接続された第三電極と、を有し、半導体基板には、アバランシェフォトダイオードに、第一主面側から第二主面側まで貫通し且つ対応する第三電極と第一電極とを電気的に接続する貫通電極が形成されていてもよい。この場合、表面入射型の半導体光検出素子が用いられた場合でも、開口率を著しく向上することができる。また、第三電極と第一電極とが貫通電極を介して電気的に接続されるため、第三電極、貫通電極、第一電極、バンプ電極、及び第二電極を介した第二半導体領域からクエンチング回路までの配線距離が比較的短い。このため、配線が有する抵抗及び容量の影響が抑制され、時間分解能が向上する。
【0010】
各アバランシェフォトダイオードは、第一導電体の半導体基板と、半導体基板の第二主面側に形成された第二導電型の第一半導体領域と、第一半導体領域とでPN接合を構成し且つ半導体基板よりも不純物濃度が高い第一導電型の第二半導体領域と、を有し、第一半導体領域と第一電極とが電気的に接続されていてもよい。この場合、裏面入射型の半導体光検出素子が用いられた場合でも、開口率を著しく向上することができる。また、第一電極と第二電極とがバンプ電極を介して電気的に接続されるため、第一半導体領域からクエンチング回路までの配線距離が極めて短い。このため、配線が有する抵抗及び容量の影響が著しく抑制され、時間分解能がより一層向上する。
【0011】
搭載基板は、クエンチング回路が並列に接続されたコモン電極を更に含んでいてもよい。この場合、配線距離が長くなることなく、各アバランシェフォトダイオード(クエンチング回路)を並列に接続することができる。
【0012】
クエンチング回路が、パッシブクエンチング回路又はアクティブクエンチング回路であってもよい。
【発明の効果】
【0013】
本発明によれば、開口率を著しく向上することが可能な光検出装置を提供することができる。
【図面の簡単な説明】
【0014】
【図1】本実施形態に係る光検出装置を示す概略斜視図である。
【図2】本実施形態に係る光検出装置の断面構成を説明するための図である。
【図3】半導体光検出素子の概略平面図である。
【図4】半導体光検出素子の概略平面図である。
【図5】搭載基板の概略平面図である。
【図6】光検出装置の回路図である。
【図7】本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。
【図8】半導体光検出素子の概略平面図である。
【図9】本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。
【図10】搭載基板の概略平面図である。
【発明を実施するための形態】
【0015】
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
【0016】
図1〜図6を参照して、本実施形態に係る光検出装置1の構成を説明する。図1は、本実施形態に係る光検出装置を示す概略斜視図である。図2は、本実施形態に係る光検出装置の断面構成を説明するための図である。図3及び図4は、半導体光検出素子の概略平面図である。図5は、搭載基板の概略平面図である。図6は、光検出装置の回路図である。
【0017】
光検出装置1は、図1及び図2に示されるように、半導体光検出素子10A、搭載基板20、及びガラス基板30を備えている。搭載基板20は、半導体光検出素子10Aに対向配置されている。ガラス基板30は、半導体光検出素子10Aに対向配置されている。半導体光検出素子10Aは、搭載基板20とガラス基板30との間に配置されている。
【0018】
半導体光検出素子10Aは、表面入射型のフォトダイオードアレイPDA1からなる。フォトダイオードアレイPDA1は、平面視で矩形形状を呈する半導体基板1Nを有している。半導体基板1Nは、互いに対向する主面1Naと主面1Nbとを含んでいる。半導体基板1Nは、Siからなる、N型(第一導電型)の半導体基板である。
【0019】
フォトダイオードアレイPDA1は、半導体基板1Nに形成された複数のアバランシェフォトダイオードAPDを含んでいる。一つのアバランシェフォトダイオードAPDは、フォトダイオードアレイPDA1における一つの画素を構成している。各アバランシェフォトダイオードAPDは、それぞれクエンチング抵抗R1と直列に接続された形で、全て並列に接続されており、電源から逆バイアス電圧が印加される。アバランシェフォトダイオードAPDからの出力電流は、後述する信号処理部SPによって検出される。
【0020】
個々のアバランシェフォトダイオードAPDは、P型(第二導電型)の第一半導体領域1PAと、P型(第二導電型)の第二半導体領域1PBと、を有している。第一半導体領域1PAは、半導体基板1Nの主面1Na側に形成されている。第二半導体領域1PBは、第一半導体領域1PA内に形成され且つ第一半導体領域1PAよりも不純物濃度が高い。第二半導体領域1PBの平面形状は、たとえば多角形(本実施形態では、八角形)である。第一半導体領域1PAの深さは、第二半導体領域1PBよりも深い。
【0021】
半導体基板1Nは、N型(第一導電型)の半導体領域1PCを有している。半導体領域1PCは、半導体基板1Nの主面1Na側に形成されている。半導体領域1PCは、後述する貫通電極TEが配置される貫通孔THに、N型の半導体基板1NとP型の第一半導体領域1PAとの間に形成されるPN接合が露出するのを防ぐ。半導体領域1PCは、貫通孔TH(貫通電極TE)に対応する位置に形成されている。
【0022】
アバランシェフォトダイオードAPDは、図3にも示されるように、半導体基板1Nの主面1Na側に配置された電極E1を有している。電極E1は、第二半導体領域1PBに接続されている。電極E1は、主面1Na側から見て、第二半導体領域1PBの外側の半導体基板1N上に、絶縁層L1を介して形成されている。図3では、構造の明確化のため、図2に示した絶縁層L1の記載を省略している。第一半導体領域1PAは、第二半導体領域1PBを介して電極E1に電気的に接続されている。
【0023】
アバランシェフォトダイオードAPDは、図4にも示されるように、半導体基板1Nの主面1Nb側にそれぞれ配置された、半導体基板1Nに電気的に接続された電極(図示省略)と、電極E5と、当該電極E5に接続された電極E7と、を有している。電極E5は、主面1Nb側から見て、第二半導体領域1PBの外側の半導体基板1N上に、絶縁層L2を介して形成されている。電極E7は、主面1Nb側から見て、第二半導体領域1PBと重複する半導体基板1N上に、絶縁層L2を介して形成されている。すなわち、電極E7は、主面1Nbにおける第二半導体領域1PBに対応する領域上に形成されている。図4では、構造の明確化のため、図2に示したパッシベーション膜PFの記載を省略している。
【0024】
フォトダイオードアレイPDA1は、複数の貫通電極TEを含んでいる。貫通電極TEは、個々のアバランシェフォトダイオードAPD毎に設けられている。貫通電極TEは、半導体基板1Nを、主面1Na側から主面1Nb側まで貫通して形成されている。すなわち、貫通電極TEは、半導体基板1Nを貫通する貫通孔TH内に配置されている。絶縁層L2は、貫通孔TH内にも形成されている。したがって、貫通電極TEは、絶縁層L2を介して、貫通孔TH内に配置される。
【0025】
貫通電極TEは、その一方端が電極E1に接続され、その他方端が電極E5に接続されている。第二半導体領域1PBは、電極E1、貫通電極TE、及び電極E5を介して、電極E7に電気的に接続されている。
【0026】
貫通電極TEは、平面視で、アバランシェフォトダイオードAPD間の領域に配置されている。本実施形態では、アバランシェフォトダイオードAPDは、第一方向にM行、第一方向に直交する第二方向にN列(M,Nは自然数)に2次元配列されている。貫通電極TEは、4つのアバランシェフォトダイオードAPDに囲まれる領域に形成されている。貫通電極TEは、アバランシェフォトダイオードAPD毎に設けられているため、第一方向にM行、第二方向にN列に2次元配列される。
【0027】
電極E1,E5,E7及び貫通電極TEはアルミニウムなどの金属からなる。半導体基板がSiからなる場合には、電極材料としては、アルミニウムの他に、AuGe/Niなどもよく用いられる。プロセス設計にも因るが、電極E5、電極E7、及び貫通電極TEは一体に形成することができる。電極E1,E5,E7及び貫通電極TEの形成方法としては、スパッタ法を用いることができる。
【0028】
Siを用いた場合におけるP型不純物としてはBなどの3族元素が用いられ、N型不純物としては、N、P又はAsなどの5族元素が用いられる。半導体の導電型であるN型とP型は、互いに置換して素子を構成しても、当該素子を機能させることができる。これらの不純物の添加方法としては、拡散法やイオン注入法を用いることができる。
【0029】
絶縁層L1,L2の材料としては、SiO又はSiNを用いることができる。絶縁層L1,L2の形成方法としては、絶縁層L1,L2がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
【0030】
搭載基板20は、互いに対向する主面20aと主面20bとを有している。搭載基板20は、平面視で矩形形状を呈している。主面20aは、半導体基板1Nの主面1Nbと対向している。搭載基板20は、主面20a側に配置された複数の電極E9を含んでいる。電極E9は、図2及び図6に示されるように、貫通電極TEに対応して配置されている。具体的には、電極E9は、主面20aにおける、電極E7に対向する各領域上に形成されている。
【0031】
半導体基板1Nの側面1Ncと搭載基板20の側面20cとは、図1及び図2に示されているように、面一とされている。すなわち、平面視で、半導体基板1Nの外縁と、搭載基板20の外縁とは、一致している。
【0032】
電極E7と電極E9とは、バンプ電極BEにより接続されている。これにより、貫通電極TEは、電極E5、電極E7、及びバンプ電極BEを介して、電極E9に電気的に接続されている。そして、第二半導体領域1PBは、電極E1、貫通電極TE、電極E5、電極E7、及びバンプ電極BEを介して、電極E9に電気的に接続されている。電極E9も、電極E1,E5,E7及び貫通電極TEと同じくアルミニウムなどの金属からなる。電極材料としては、アルミニウムの他に、AuGe/Niなどを用いてもよい。バンプ電極BEは、たとえば、はんだからなる。
【0033】
バンプ電極BEは、不図示のUBM(Under Bump Metal)を介して、電極E7に形成される。UBMは、バンプ電極BEと電気的及び物理的に接続が優れた材料からなる。UBMの形成方法は、無電解めっき法を用いることができる。バンプ電極BEの形成方法は、ハンダボールを搭載する手法又は印刷法を用いることができる。
【0034】
搭載基板20は、図5に示されるように、それぞれ複数のクエンチング抵抗R1と信号処理部SPとを含んでいる。搭載基板20は、ASIC(Application Specific Integrated Circuit)を構成している。図5では、構造の明確化のため、図2に示したパッシベーション膜PFの記載を省略している。
【0035】
クエンチング抵抗R1は、主面20a側に配置されている。クエンチング抵抗R1は、その一方端が電極E9に電気的に接続され、その他方端がコモン電極CEに接続されている。クエンチング抵抗R1は、パッシブクエンチング回路を構成している。コモン電極CEには、クエンチング抵抗R1が並列に接続されている。
【0036】
信号処理部SPは、主面20a側に配置されている。信号処理部SPは、その入力端が電極E9に電気的に接続され、その出力端が信号線TLに接続されている。信号処理部SPには、電極E1、貫通電極TE、電極E5、電極E7、バンプ電極BE、及び電極E9を介して、各アバランシェフォトダイオードAPD(半導体光検出素子10A)からの出力信号が入力される。信号処理部SPは、各アバランシェフォトダイオードAPDからの出力信号を処理する。信号処理部SPは、各アバランシェフォトダイオードAPDからの出力信号をデジタルパルスに変換するCMOS回路を含んでいる。
【0037】
半導体基板1Nの主面1Nb側及び搭載基板20の主面20a側には、バンプ電極BEに対応する位置に開口が形成されたパッシベーション膜PFが配置されている。パッシベーション膜PFは、たとえばSiNからなる。パッシベーション膜PFの形成方法としては、CVD(Chemical Vapor Deposition)法を用いることができる。
【0038】
ガラス基板30は、互いに対向する主面30aと主面30bとを有している。ガラス基板30は、平面視で矩形形状を呈している。主面30aは、半導体基板1Nの主面1Nbと対向している。主面30bは、平坦である。本実施形態では、主面30aも平坦である。ガラス基板30と半導体光検出素子10Aとは、光学接着剤OAにより光学的に接続されている。ガラス基板30は、半導体光検出素子10A上に直接形成されていてもよい。
【0039】
図示を省略するが、ガラス基板30の主面30bには光学接着剤によりシンチレータが光学的に接続される。シンチレータからのシンチレーション光は、ガラス基板30を通り、半導体光検出素子10Aに入射する。
【0040】
半導体基板1Nの側面1Ncとガラス基板30の側面30cとは、図1にも示されているように、面一とされている。すなわち、平面視で、半導体基板1Nの外縁と、ガラス基板30の外縁とは、一致している。
【0041】
光検出装置1(半導体光検出素子10A)では、N型の半導体基板1NとP型の第一半導体領域1PAとの間に、PN接合が構成されることで、アバランシェフォトダイオードAPDが形成されている。半導体基板1Nは、基板1Nの裏面に形成された電極(図示省略)に電気的に接続され、第一半導体領域1PAは、第二半導体領域1PBを介して、電極E1に接続されている。クエンチング抵抗R1はアバランシェフォトダイオードAPDに対して直列に接続されている(図6参照)。
【0042】
フォトダイオードアレイPDA1においては、個々のアバランシェフォトダイオードAPDをガイガーモードで動作させる。ガイガーモードでは、アバランシェフォトダイオードAPDのブレークダウン電圧よりも大きな逆方向電圧(逆バイアス電圧)をアバランシェフォトダイオードAPDのアノード/カソード間に印加する。すなわち、アノードには(−)電位V1を、カソードには(+)電位V2を印加する。これらの電位の極性は相対的なものであり、一方の電位をグランド電位とすることも可能である。
【0043】
アノードはP型の第一半導体領域1PAであり、カソードはN型の半導体基板1Nである。アバランシェフォトダイオードAPDに光(フォトン)が入射すると、基板内部で光電変換が行われて光電子が発生する。第一半導体領域1PAのPN接合界面の近傍領域において、アバランシェ増倍が行われ、増幅された電子群は半導体基板1Nの裏面に形成された電極に向けて流れる。すなわち、半導体光検出素子10A(フォトダイオードアレイPDA1)のいずれかの画素(アバランシェフォトダイオードAPD)に光(フォトン)が入射すると、増倍されて、信号として電極E9から取り出されて、対応する信号処理部SPに入力される。
【0044】
以上のように、本実施形態では、クエンチング抵抗R1が、半導体光検出素子10Aの半導体基板1Nではなく、搭載基板20に配置される。このため、半導体基板1Nにおいて、クエンチング抵抗R1を配置するスペースを考慮することなく、各アバランシェフォトダイオードAPDが形成されることとなる。この結果、光検出装置1(半導体光検出素子10A)の開口率を著しく向上することができる。
【0045】
各アバランシェフォトダイオードAPDは、半導体基板1Nと、第一半導体領域1PAと、第二半導体領域1PBと、第二半導体領域1PBに電気的に接続された電極E1と、を有し、半導体基板1Nには、アバランシェフォトダイオードAPD毎に、主面1Na側から主面1Nb側まで貫通し且つ対応する電極E1と電極E5とを電気的に接続する貫通電極TEが形成されている。これにより、表面入射型の半導体光検出素子10Aが用いられた場合でも、開口率を著しく向上することができる。また、電極E1と電極E5とが貫通電極TEを介して電気的に接続されるため、電極E1、貫通電極TE、電極E5,E7、バンプ電極BE、及び電極E9を介した第二半導体領域1PBからクエンチング抵抗R1までの配線距離が比較的短い。このため、光検出装置1では、第二半導体領域1PBからクエンチング抵抗R1までの配線が有する抵抗及び容量の影響が抑制され、時間分解能が向上する。
【0046】
搭載基板20は、クエンチング抵抗R1が並列に接続されたコモン電極CEを含んでいる。これにより、配線距離が長くなることなく、各アバランシェフォトダイオードAPD(クエンチング抵抗R1)を並列に接続することができる。
【0047】
本実施形態では、半導体光検出素子10Aに対向配置されたガラス基板30により、半導体基板1Nの機械的強度を高めることができる。特に、半導体基板1Nが薄化されている場合に、極めて有効である。
【0048】
次に、図7及び図8を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図7は、本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。図8は、半導体光検出素子の概略平面図である。
【0049】
光検出装置1は、図7及び図8に示されるように、半導体光検出素子10B、搭載基板20、及びガラス基板30を備えている。搭載基板20は、半導体光検出素子10Bに対向配置されている。ガラス基板30は、半導体光検出素子10Bに対向配置されている。半導体光検出素子10Bは、搭載基板20とガラス基板30との間に配置されている。
【0050】
半導体光検出素子10Bは、裏面入射型のフォトダイオードアレイPDA2からなる。フォトダイオードアレイPDA2は、平面視で矩形形状を呈する半導体基板2Nを有している。半導体基板2Nは、互いに対向する主面2Naと主面2Nbとを含んでいる。半導体基板2Nは、Siからなる、P型(第一導電型)の半導体基板である。半導体基板2Nは、基板1Nの主面2Nb側に形成された電極(図示省略)に電気的に接続されている。
【0051】
フォトダイオードアレイPDA2は、半導体基板2Nに形成された複数のアバランシェフォトダイオードAPDを含んでいる。一つのアバランシェフォトダイオードAPDは、フォトダイオードアレイPDA2における一つの画素を構成している。
【0052】
個々のアバランシェフォトダイオードAPDは、N型(第一導電型)の第一半導体領域2PAと、P型(第二導電型)の第二半導体領域2PBと、を有している。第一半導体領域2PAは、半導体基板2Nの主面2Nb側に形成されている。第二半導体領域2PBは、第一半導体領域2PAとでPN接合を構成し且つ半導体基板2Nよりも不純物濃度が高い。第一半導体領域2PAの平面形状は、たとえば多角形(本実施形態では、八角形)である。第一半導体領域2PAはカソード層として機能し、第二半導体領域2PBは増倍層として機能する。
【0053】
半導体基板2Nの主面2Na側には、アキュムレーション層と絶縁層とが配置されている(いずれも、不図示)。アキュムレーション層は、半導体基板2N内において主面2Na側からP型不純物を半導体基板2Nよりも高い不純物濃度となるようにイオン注入又は拡散させることにより、形成される。絶縁層は、アキュムレーション層上に形成される。絶縁層の材料としては、SiO又はSiNを用いることができる。絶縁層の形成方法としては、絶縁層がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
【0054】
アバランシェフォトダイオードAPDは、図8にも示されるように、半導体基板2Nの主面2Nb側に配置された電極E11を有している。電極E11は、第一半導体領域2PAに接続されている。電極E11は、主面2Nb側から見て、第一半導体領域2PAに対応する半導体基板2N上に、絶縁層L4を介して形成されている。図8では、構造の明確化のため、図2に示した絶縁層L4及びパッシベーション膜PFの記載を省略している。
【0055】
電極E11と電極E9とは、バンプ電極BEにより接続されている。これにより、第一半導体領域2PAは、電極E11及びバンプ電極BEを介して、電極E9に電気的に接続されている。電極E11も、電極E9と同じくアルミニウムなどの金属からなる。電極材料としては、アルミニウムの他に、AuGe/Niなどを用いてもよい。
【0056】
以上のように、本変形例においても、クエンチング抵抗R1が、半導体光検出素子10Bの半導体基板2Nではなく、搭載基板20に配置される。このため、半導体基板2Nにおいて、クエンチング抵抗R1を配置するスペースを考慮することなく、各アバランシェフォトダイオードAPDが形成されることとなる。この結果、光検出装置1(半導体光検出素子10B)の開口率を著しく向上することができる。
【0057】
各アバランシェフォトダイオードAPDは、半導体基板2Nと、第一半導体領域2PAと、第二半導体領域2PBと、を有し、第一半導体領域2PAと電極E9とが電気的に接続されている。これにより、裏面入射型の半導体光検出素子10Bが用いられた場合でも、開口率を著しく向上することができる。また、電極E11と電極E9とがバンプ電極BEを介して電気的に接続されるため、第一半導体領域2PAからクエンチング抵抗R1までの配線距離が極めて短い。このため、第一半導体領域2PAからクエンチング抵抗R1までの配線が有する抵抗及び容量の影響が著しく抑制され、時間分解能がより一層向上する。
【0058】
本変形例でも、半導体光検出素子10Bに対向配置されたガラス基板30により、半導体基板2Nの機械的強度を高めることができる。特に、半導体基板2Nが薄化されている場合に、極めて有効である。
【0059】
半導体基板2Nは、図9に示されるように、複数のアバランシェフォトダイオードAPDが形成された領域が主面2Na側から薄化されて、半導体基板2Nにおける複数のアバランシェフォトダイオードAPDが形成された領域に対応する部分が除去されている。薄化された領域の周囲には、半導体基板2Nが枠部として存在している。半導体基板2Nの除去は、エッチング(たとえば、ドライエッチングなど)又は研磨などにより行うことができる。
【0060】
半導体基板2Nの主面2Na側には、アキュムレーション層ACと絶縁層L5とが配置されている。アキュムレーション層ACは、半導体基板2N内において主面2Na側からP型不純物を半導体基板2Nよりも高い不純物濃度となるようにイオン注入又は拡散させることにより、形成される。絶縁層L5は、アキュムレーション層AC上に形成される。絶縁層L5の材料としては、SiO又はSiNを用いることができる。絶縁層L5の形成方法としては、絶縁層L5がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
【0061】
以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
【0062】
搭載基板20は、パッシブクエンチング回路(クエンチング抵抗)の代わりに、図10に示されるように、アクティブクエンチング回路AQを含んでいてもよい。アクティブクエンチング回路AQは、信号処理部SPとしても機能し、CMOS回路を含んでいる。各アクティブクエンチング回路AQには、コモン電極CEと信号線TLとが接続されている。
【0063】
アクティブクエンチング回路AQは、各アバランシェフォトダイオードAPDからの出力信号をデジタルパルスに変換すると共に、変換したデジタルパルスを利用してMOSのON/OFF動作を行い、電圧の強制ドロップとリセット動作とを行う。搭載基板20がアクティブクエンチング回路AQを含むことにより、半導体光検出素子10A,10Bがガイガーモードで動作する際の電圧回復時間を低減することができる。
【0064】
第一及び第二半導体領域1PB,1PB,2PA,2PBの形状は、上述した形状に限られることなく、他の形状(たとえば、円形状など)であってもよい。また、半導体基板1N,2Nに形成されるアバランシェフォトダイオードAPDの数(行数及び列数)や配列は、上述したものに限られない。
【産業上の利用可能性】
【0065】
本発明は、微弱光を検出する光検出装置に利用することができる。
【符号の説明】
【0066】
1…光検出装置、1N,2N…半導体基板、1Na,1Nb,2Na,2Nb…主面、1PA…第一半導体領域、1PB…第二半導体領域、2PA…第一半導体領域、2PB…第二半導体領域、10A,10B…半導体光検出素子、20…搭載基板、20a,20b…主面、APD…アバランシェフォトダイオード、AQ…アクティブクエンチング回路、BE…バンプ電極、CE…コモン電極、E1,E5,E7,E9,E11…電極、PDA1,PDA2…フォトダイオードアレイ、R1…クエンチング抵抗、TE…貫通電極。

【特許請求の範囲】
【請求項1】
互いに対向する第一及び第二主面を含む半導体基板を有する半導体光検出素子と、
前記半導体光検出素子に対向配置されると共に、前記半導体基板の前記第二主面と対向する第三主面を有する搭載基板と、を備え、
前記半導体光検出素子は、ガイガーモードで動作すると共に半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して電気的に接続されると共に前記半導体基板の前記第二主面側に配置された第一電極と、を含み、
前記搭載基板は、前記第一電極毎に対応して前記第三主面側に配置された複数の第二電極と、それぞれの前記第二電極に対して電気的に接続されると共に前記第三主面側に配置されたクエンチング回路と、を含んでおり、
前記第一電極と、該第一電極に対応する前記第二電極と、がバンプ電極を介して接続されていることを特徴とする光検出装置。
【請求項2】
各前記アバランシェフォトダイオードは、
第一導電体の前記半導体基板と、
前記半導体基板の前記第一主面側に形成された第二導電型の第一半導体領域と、
前記第一半導体領域内に形成され且つ前記第一半導体領域よりも不純物濃度が高い第二導電型の第二半導体領域と、
前記半導体基板の前記第一主面側に配置され且つ前記第二半導体領域に電気的に接続された第三電極と、を有し、
前記半導体基板には、前記アバランシェフォトダイオード毎に、前記第一主面側から前記第二主面側まで貫通し且つ対応する前記第三電極と前記第一電極とを電気的に接続する貫通電極が形成されていることを特徴とする請求項1に記載の光検出装置。
【請求項3】
各前記アバランシェフォトダイオードは、
第一導電体の前記半導体基板と、
前記半導体基板の前記第二主面側に形成された第二導電型の第一半導体領域と、
前記第一半導体領域とでPN接合を構成し且つ前記半導体基板よりも不純物濃度が高い第一導電型の第二半導体領域と、を有し、
前記第一半導体領域と前記第一電極とが電気的に接続されていることを特徴とする請求項1に記載の光検出装置。
【請求項4】
前記搭載基板は、前記クエンチング回路が並列に接続されたコモン電極を更に含んでいることを特徴とする請求項1〜3のいずれか一項に記載の光検出装置。
【請求項5】
前記クエンチング回路が、パッシブクエンチング回路又はアクティブクエンチング回路であることを特徴とする請求項1〜4のいずれか一項に記載の光検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−89919(P2013−89919A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−232109(P2011−232109)
【出願日】平成23年10月21日(2011.10.21)
【出願人】(000236436)浜松ホトニクス株式会社 (1,479)
【Fターム(参考)】