説明

内燃機関の排ガス浄化装置

【課題】NOx捕捉材のNOx浄化性能に応じて空燃比モードを適切に選択でき、NOxの浄化率を高めることによって、排ガス特性を向上させることができる内燃機関の排ガス浄化装置を提供する。
【解決手段】 混合気の空燃比を制御する空燃比制御手段6,12,2と、排気系に設けられ、内燃機関3が、空燃比が理論空燃比よりもリーンなリーンモードで運転されているときに、排ガス中のNOxを捕捉するNOx捕捉材と、排ガスを還元状態に制御することにより、NOx捕捉材に捕捉されたNOxを還元するNOx還元手段6,12,2と、NOx捕捉材の温度を検出する温度検出手段36と、内燃機関3の負荷を検出する負荷検出手段30,31,2と、NOx捕捉材の温度が所定の温度よりも低く、かつ内燃機関3の負荷が所定の負荷よりも高いときに、リーンモードを禁止するリーンモード禁止手段2と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関から排出された排ガス中のNOxを一時的に捕捉するとともに、捕捉されたNOxを還元することによって、排ガスを浄化する内燃機関の排ガス浄化装置に関する。
【背景技術】
【0002】
この種の排ガス浄化装置では、内燃機関の排気系にNOx捕捉材が設けられており、内燃機関から排出された排ガス中のNOxがNOx捕捉材に捕捉される。また、捕捉されたNOxの量が大きくなったときに、燃料の増量などにより排ガスを還元状態に制御することによって、捕捉されたNOxが還元される。以上のNOxの捕捉および還元によって、NOxが浄化されるとともに、NOx捕捉材の捕捉能力が回復される。このような排ガス浄化装置として、例えば特許文献1に開示されたものが知られている。
【0003】
この排ガス浄化装置は、ディーゼルエンジンに用いられたものであり、このエンジンの排気管には、NOxを捕捉するNOx触媒とともに、三元触媒が設けられている。通常時には、混合気の空燃比を理論空燃比よりもリーン側に制御するリーン運転を行い、そのときに排出される排ガス中のNOxをNOx触媒で捕捉する。また、捕捉されたNOx量がNOx触媒の捕捉能力の限界に達したときには、空燃比を理論空燃比よりもリッチ側に制御するリッチ運転に切り替えることによって、NOx触媒に捕捉されたNOxを還元するとともに、排ガスを三元触媒で浄化する。さらに、リーン運転からリッチ運転への切替時には、燃焼室に吸入される吸入空気量が目標吸入空気量になるまでの間、燃料噴射量を短い周期で増減し、それにより、切替時のトルク変動を抑制するようにしている。
【0004】
以上のように、この従来の技術では、通常時には、エンジンをリーン運転で運転し、排ガス中のNOxをNOx触媒で捕捉するとともに、捕捉されたNOxを還元するために、エンジンをリッチ運転で運転する。しかし、NOx触媒のNOx浄化性能は、必ずしも一定ではなく、エンジンの運転状態に応じて変化する。例えば、最近の研究によれば、NOx還元の実行中に、NOx触媒に捕捉されたNOxの一部が、実際には還元されることなくNOx触媒から脱離するという現象(以下、このような現象を「NOxスリップ」という)が発生することが判明している。NOxスリップが発生すると、脱離した一部のNOxが還元されないまま大気中に排出されるため、NOx触媒の浄化性能が実質的に低下する。これに対し、前述した従来の技術では、このようなNOx触媒の浄化性能の特性にかかわらず、通常時にリーン運転を行い、NOxの還元時にリッチ運転を行うにすぎないため、NOxスリップを抑制できず、排ガス特性の悪化を招いてしまう。
【0005】
本発明は、このような課題を解決するためになされたものであり、NOx捕捉材のNOx浄化性能に応じて内燃機関の空燃比モードを適切に選択でき、それにより、NOxの浄化率を高めることによって、排ガス特性を向上させることができる内燃機関の排ガス浄化装置を提供することを目的とする。
【0006】
【特許文献1】特開2004−183568号公報
【発明の開示】
【課題を解決するための手段】
【0007】
この目的を達成するため、請求項1に係る発明は、内燃機関3から排気系(実施形態における(以下、本項において同じ)排気管5)に排出された排ガスを浄化する内燃機関3の排ガス浄化装置1であって、内燃機関3で燃焼される混合気の空燃比を制御する空燃比制御手段(インジェクタ6、スロットル弁12、ECU2、図3のステップ2,5)と、排気系に設けられ、内燃機関3が、空燃比を理論空燃比よりもリーンな空燃比に制御するリーンモードで運転されているときに、排ガス中のNOxを捕捉するNOx捕捉材(NOx触媒17)と、排ガスを還元状態に制御することにより、NOx捕捉材に捕捉されたNOxを還元するNOx還元手段(インジェクタ6、スロットル弁12、ECU2、図8のステップ39)と、NOx捕捉材の温度(NOx触媒温度TLNC)を検出する温度検出手段(NOx触媒温度センサ36)と、内燃機関3の負荷(排ガスの空間速度SV)を検出する負荷検出手段(クランク角センサ30、エアフローセンサ31、ECU2)と、検出されたNOx捕捉材の温度が所定の温度(判定値TLNCREF)よりも低く、かつ検出された内燃機関3の負荷が所定の負荷(判定値SVREF)よりも高いときに、リーンモードによる内燃機関3の運転を禁止するリーンモード禁止手段(ECU2、図3のステップ1、4、5)と、を備えることを特徴とする。
【0008】
この内燃機関の排ガス浄化装置によれば、内燃機関で燃焼される混合気の空燃比が、空燃比制御手段によって制御される。空燃比が理論空燃比よりもリーンな空燃比に制御されるリーンモードでは、内燃機関から排出された排ガス中のNOxが、NOx捕捉材によって捕捉される。捕捉されたNOxは、NOx還元手段により還元状態に制御された排ガスによって還元され、浄化される。また、NOx捕捉材の温度および内燃機関の負荷を検出し、検出されたNOx捕捉材の温度が所定の温度よりも低く、かつ検出された内燃機関の負荷が所定の負荷よりも高いときに、リーンモードによる内燃機関の運転が禁止される。
【0009】
前述したように、NOxの還元動作中にNOxスリップが発生すると、NOx捕捉材の捕捉能力が十分であっても、捕捉されたNOxの一部が還元されることなくNOx捕捉材から脱離するため、NOx捕捉材の浄化性能は実質的に低下する。また、NOxスリップ量は、NOx捕捉材の温度が低いときに、また内燃機関の負荷が高いときに、増加する傾向がある。したがって、上記のように、NOx捕捉材の温度が所定の温度よりも低く、かつ内燃機関の負荷が所定の負荷よりも高いときに、リーンモードを禁止することによって、NOx捕捉材によるNOxの捕捉とNOx還元動作を回避でき、したがって、NOx還元の実行時に、NOxスリップ量の増大によりNOxの浄化率が低下するのを防止でき、それにより、排ガス特性を向上させることができる。
【0010】
また、前記目的を達成するため、請求項2に係る発明は、内燃機関3から排気系(排気管5)に排出された排ガスを浄化する内燃機関3の排ガス浄化装置1であって、内燃機関3で燃焼される混合気の空燃比を理論空燃比よりもリーンな空燃比に制御するリーンモードと、リーンモードよりもリッチな空燃比に制御する非リーンモード(ストイキモード)に切り替える空燃比モード切替手段(インジェクタ6、スロットル弁12、ECU2、図3のステップ54,55)と、排気系に設けられ、排ガス中のNOxを捕捉するNOx捕捉材(NOx触媒17)と、排ガスを還元状態に制御することにより、NOx捕捉材に捕捉されたNOxを還元するNOx還元手段(インジェクタ6、スロットル弁12、ECU2、図8のステップ39)と、排気系に設けられ、排ガスを浄化する三元触媒16と、NOx捕捉材および三元触媒16の少なくとも一方の温度(NOx触媒温度TLNC)を検出する温度検出手段(NOx触媒温度センサ36)と、内燃機関3の負荷(排ガスの空間速度SV)を検出する負荷検出手段(クランク角センサ30、エアフローセンサ31、ECU2)と、検出された温度および内燃機関3の負荷に応じて、内燃機関3をリーンモードで運転したときのNOx捕捉材の浄化性能を推定するNOx捕捉材浄化性能推定手段(ECU2、図10のステップ51,52)と、検出された温度および内燃機関3の負荷に応じて、内燃機関3を非リーンモードで運転したときの三元触媒16の浄化性能を推定する三元触媒浄化性能推定手段(ECU2、図10のステップ51,52)と、推定されたNOx捕捉材の浄化性能と三元触媒16の浄化性能との比較結果に応じて、リーンモードおよび非リーンモードの一方を選択する空燃比モード選択手段(ECU2、図10のステップ53〜55)と、を備えることを特徴とする。
【0011】
この内燃機関の排ガス浄化装置によれば、内燃機関の空燃比モードが、空燃比切替手段によって、空燃比を理論空燃比よりもリーンな空燃比に制御するリーンモードと、リーンモードよりもリッチな空燃比に制御する非リーンモードに切り替えられる。リーンモードでは、排ガス中のNOxがNOx捕捉材によって捕捉されるとともに、捕捉されたNOxは、NOx還元手段により還元状態に制御された排ガスによって還元され、浄化される。一方、非リーンモードでは、排ガス中のNOxは三元触媒によって浄化される。また、NOx捕捉材および三元触媒の少なくとも一方の温度および内燃機関の負荷を検出し、これらの検出された温度および内燃機関の負荷に応じて、内燃機関をリーンモードで運転したときのNOx捕捉材の浄化性能と、非リーンモードで運転したときの三元触媒の浄化性能を、それぞれ推定する。そして、推定されたNOx捕捉材の浄化性能と三元触媒の浄化性能を比較し、その比較結果に応じて、リーンモードおよび非リーンモードの一方を、空燃比モードとして選択する。
【0012】
前述したように、NOxの還元動作中にNOxスリップが発生すると、NOx捕捉材の浄化性能は実質的に低下する。このため、NOxスリップの発生状況によっては、内燃機関をリーンモードで運転したときのNOx捕捉材の浄化性能を、非リーンモードで運転したときの三元触媒のNOxの浄化性能が、上回る場合がある。また、NOxスリップ量は、NOx捕捉材の温度および内燃機関の負荷に応じて変化し、三元触媒の浄化性能もまた、その温度と内燃機関の負荷の影響を受ける。したがって、上記のように、NOx捕捉材および三元触媒の少なくとも一方の温度および内燃機関に応じてNOx捕捉材の浄化性能と三元触媒の浄化性能を推定し、予測するとともに、推定した両浄化性能の比較結果に応じて、リーンモードおよび非リーンモードの一方を選択することによって、NOx捕捉材および三元触媒のうち、浄化性能のより高いものでNOxの浄化を行わせることができる。その結果、NOxの浄化率が高められることによって、排ガス特性を向上させることができる。また、三元触媒の浄化性能が高い場合以外は、内燃機関がリーンモードで運転されるので、燃費も最大限、良好に維持でき、したがって、良好な排ガス特性と燃費の両立を図ることができる。
【発明を実施するための最良の形態】
【0013】
以下、図面を参照しながら、本発明の実施形態を説明する。図1は、本発明を適用した排ガス浄化装置1を、内燃機関3とともに示している。この内燃機関(以下「エンジン」という)3は、車両(図示せず)に搭載された、例えば4気筒(1つのみ図示)のディーゼルエンジンである。
【0014】
エンジン3のピストン3aとシリンダヘッド3bの間には、燃焼室3cが形成されている。シリンダヘッド3bには、吸気管4および排気管5(排気系)がそれぞれ接続されるとともに、燃料噴射弁(以下「インジェクタ」という)6が、燃焼室3cに臨むように取り付けられている。
【0015】
インジェクタ6(空燃比制御手段、NOx還元手段、空燃比モード切替手段)は、燃焼室3cの天壁中央部に配置されており、コモンレールを介して、高圧ポンプおよび燃料タンク(いずれも図示せず)に順に接続されている。インジェクタ6の開弁時間である燃料噴射量TOUTは、ECU2からの駆動信号によって制御される(図2参照)。
【0016】
また、エンジン3のクランクシャフト3dには、マグネットロータ30aが取り付けられており、このマグネットロータ30aとMREピックアップ30bによって、クランク角センサ30(運転状態検出手段)が構成されている。クランク角センサ30は、クランクシャフト3dの回転に伴い、パルス信号であるCRK信号およびTDC信号をECU2に出力する。
【0017】
CRK信号は、所定のクランク角(例えば30゜)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを求める。TDC信号は、各気筒のピストン3aが吸気行程開始時のTDC(上死点)付近の所定クランク角度位置にあることを表す信号であり、4気筒タイプの本例では、クランク角180゜ごとに出力される。
【0018】
吸気管4には、過給装置7が設けられており、過給装置7は、ターボチャージャで構成された過給機8と、これに連結されたアクチュエータ9と、ベーン開度制御弁10を備えている。
【0019】
過給機8は、吸気管4に設けられた回転自在のコンプレッサブレード8aと、排気管5に設けられた回転自在のタービンブレード8bおよび複数の回動自在の可変ベーン8c(2つのみ図示)と、これらのブレード8a,8bを一体に連結するシャフト8dとを有している。過給機8は、排気管5内の排ガスによりタービンブレード8bが回転駆動されるのに伴い、これと一体のコンプレッサブレード8aが回転駆動されることによって、吸気管4内の吸入空気を加圧する過給動作を行う。
【0020】
アクチュエータ9は、負圧によって作動するダイアフラム式のものであり、各可変ベーン8cに機械的に連結されている。アクチュエータ9には、負圧ポンプから負圧供給通路(いずれも図示せず)を介して負圧が供給され、この負圧供給通路の途中にベーン開度制御弁10が設けられている。ベーン開度制御弁10は、電磁弁で構成されており、その開度がECU2からの駆動信号で制御されることにより、アクチュエータ9への供給負圧が変化し、それに伴い、可変ベーン8cの開度が変化することにより、過給圧が制御される。
【0021】
吸気管4の過給機8よりも下流側には、上流側から順に、水冷式のインタークーラ11およびスロットル弁12(空燃比制御手段、NOx還元手段、空燃比モード切替手段)が設けられている。インタークーラ11は、過給装置7の過給動作により吸入空気の温度が上昇したときなどに、吸入空気を冷却するものである。スロットル弁12には、例えば直流モータで構成されたアクチュエータ12aが接続されている。スロットル弁12の開度(以下「スロットル弁開度」という)THは、アクチュエータ12aに供給される電流のデューティ比をECU2で制御することによって、制御される。
【0022】
また、吸気管4には、過給機8よりも上流側にエアフローセンサ31が、インタークーラ11とスロットル弁12の間に過給圧センサ32が、それぞれ設けられている。エアフローセンサ31は吸入空気量QAを検出し、過給圧センサ32は吸気管4内の過給圧PACTを検出し、それらの検出信号はECU2に出力される。
【0023】
さらに、吸気管4の吸気マニホールド4aは、その集合部から分岐部にわたって、スワール通路4bとバイパス通路4cに仕切られており、これらの通路4b,4cはそれぞれ、吸気ポートを介して各燃焼室3cに連通している。
【0024】
バイパス通路4cには、燃焼室3c内にスワールを発生させるためのスワール装置13が設けられている。スワール装置13は、スワール弁13aと、これを開閉するアクチュエータ13bと、スワール制御弁13cを備えている。アクチュエータ13bおよびスワール制御弁13cはそれぞれ、過給装置7のアクチュエータ9およびベーン開度制御弁10と同様に構成されており、スワール制御弁13cは、前記負圧ポンプに接続されている。以上の構成により、スワール制御弁13cの開度がECU2からの駆動信号で制御されることにより、アクチュエータ13bに供給される負圧が変化し、スワール弁13aの開度が変化することによって、スワールの強さが制御される。
【0025】
また、エンジン3には、EGR管14aおよびEGR制御弁14bを有するEGR装置14が設けられている。EGR管14aは、吸気管4と排気管5の間に、具体的には、吸気マニホールド4aの集合部のスワール通路4bと排気管5の過給機8よりも上流側とをつなぐように接続されている。このEGR管14aを介して、エンジン3の排ガスの一部が吸気管4にEGRガスとして還流し、それにより、燃焼室3c内の燃焼温度が低下することによって、排ガス中のNOxが低減される。
【0026】
EGR制御弁14bは、EGR管14aに取り付けられたリニア電磁弁で構成されており、そのバルブリフト量VLACTが、ECU2からのデューティ制御された駆動信号で制御されることによって、EGRガス量が制御される。
【0027】
また、EGR装置14にはEGRガスを冷却するためのEGR冷却装置15が設けられており、EGR冷却装置15は、バイパス通路15a、EGR通路切替弁15bおよびEGRクーラ15cを有している。バイパス通路15aは、EGR管14aのEGR制御弁14bよりも下流側に、EGR管14aをバイパスするように設けられており、EGR通路切替弁15bはバイパス通路15aの分岐部に取り付けられ、EGRクーラ15cはバイパス通路15aの途中に設けられている。EGR通路切替弁15bは、ECU2による制御によって、EGR管14aのEGR通路切替弁15bよりも下流側の部分を、EGR管14a側とバイパス通路15a側に選択的に切り替える。
【0028】
以上により、EGR通路切替弁15bがバイパス通路15a側に切り替えられた場合には、EGRガスは、バイパス通路15aに通され、EGRクーラ15cで冷却された後、吸気管4に還流する。一方、逆側に切り替えられた場合には、EGRガスは、EGR管14aのみを介し、冷却されることなく吸気管4に還流する。
【0029】
また、排気管5の過給機8よりも下流側には、上流側から順に、三元触媒16およびNOx触媒17が設けられている。三元触媒16は、ストイキ雰囲気下において、排ガス中のHCおよびCOを酸化するとともに、NOxを還元することによって、排ガスを浄化する。NOx触媒17(NOx捕捉材)は、排ガス中の酸素濃度が高い酸化雰囲気において、排ガス中のNOxを捕捉する。捕捉されたNOxは、酸素濃度が低い還元雰囲気において、排ガス中の還元剤によって還元され、浄化される。NOx触媒17には、その温度(以下「NOx触媒温度」という)TLNCを検出するNOx触媒温度センサ36(温度検出手段)が設けられており、その検出信号はECU2に出力される。
【0030】
さらに、排気管5の三元触媒16のすぐ上流側および下流側には、第1LAFセンサ33および第2のLAFセンサ34がそれぞれ設けられている。第1および第2のLAFセンサ33,34はそれぞれ、リッチ領域からリーン領域までの広範囲な空燃比の領域において排ガス中の酸素濃度VLAF1,VLAF2をリニアに検出する。ECU2は、第1LAFセンサ33で検出された酸素濃度VLAF1に基づいて、燃焼室3cで燃焼した実際のガスの空燃比を表す実空燃比A/FACTを算出する。ECU2にはさらに、アクセル開度センサ35から、アクセルペダル(図示せず)の操作量(以下「アクセル開度」という)APを表す検出信号が出力される。
【0031】
ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されている。前述した各種センサ30〜36からの検出信号はそれぞれ、I/OインターフェースでA/D変換や整形がなされた後、CPUに入力される。
【0032】
CPUは、これらの入力信号に応じ、ROMに記憶された制御プログラムなどに従って、エンジン3の運転状態を判別するとともに、判別した運転状態に応じて、燃料噴射量や吸入空気量の制御を含むエンジン3の制御を、以下のように実行する。なお、本実施形態では、ECU2によって、空燃比制御手段、NOx還元手段、負荷検出手段、リーンモード禁止手段、空燃比モード切替手段、NOx捕捉材浄化性能推定手段、三元触媒浄化性能推定、および空燃比モード選択手段が構成されている。
【0033】
図3は、エンジン3の空燃比モードの決定処理を示している。本処理は、所定時間ごとに実行される。まず、ステップ1(「S1」と図示。以下同じ)では、NOx触媒温度センサ36で検出されたNOx触媒温度TLNCが、所定の判定値TLNCREF(例えば250℃)よりも高いか否かを判別する。図4は、NOx触媒温度TLNCに対するNOx触媒17のNOx浄化率KTEMPLNCの関係を示している。同図に示すように、このNOx浄化率KTEMPLNCは、NOx触媒温度TLNCが所定の温度範囲にあるときには、ほぼ100%であるのに対し、それよりも低温側では、NOxスリップの発生により、NOx触媒温度TLNCが低くなるに従って低下するという特性を示す。この特性を考慮し、上記の判定値TLNCREFは、上記の所定の温度範囲よりも若干低い温度に設定されている。
【0034】
したがって、ステップ1の答がNOで、TLNC≧TLNCREFのときには、NOx触媒温度TLNCが高いため、NOxの還元時にNOxスリップが発生しないか、または発生してもNOxスリップ量が少なく、NOx触媒17の浄化性能が高い状態にあるとして、空燃比モードとしてリーンモードを選択し、リーンモードフラグF_LEANを「1」にセットした(ステップ2)後、本処理を終了する。
【0035】
一方、ステップ1の答がYESで、TLNC<TLNCREFのときには、排ガスの空間速度SVを算出する(ステップ3)。この排ガスの空間速度SVは、エンジン回転数NEおよび吸入空気量QAに応じ、マップ(図示せず)を検索することにより求められる。次いで、算出した排ガスの空間速度SVが、所定の判定値SVREF(例えば50000(1/h))よりも大きいか否かを判別する(ステップ4)。図5は、排ガスの空間速度SVに対するNOx触媒17のNOx浄化率KSVLNCの関係を示している。同図に示すように、このNOx浄化率KSVLNCは、排ガスの空間速度SVが所定値以下のときには、ほぼ100%であるのに対し、この所定値を超えると、NOxスリップの発生により、排ガスの空間速度SVが大きくなるに従って低下するという特性を示す。この特性を考慮し、上記の判定値SVREFは、上記の所定値よりも若干大きな値に設定されている。
【0036】
したがって、前記ステップ4の答がNOで、SV≦SVREFのときには、排ガスの空間速度が小さいため、NOxの還元時にNOxスリップが発生しないか、またはNOxスリップ量が少なく、NOx触媒17の浄化性能が高い状態にあるとして、リーンモードを選択し、前記ステップ2を実行する。
【0037】
一方、前記ステップ4の答がYESのとき、すなわち、TLNC<TLNCREFおよびSV>SVREFが成立し、NOx触媒温度TLNCが低く、かつ排ガスの空間速度SVが大きいときには、NOxスリップ量が増大するおそれがあり、NOx触媒17の浄化性能が低いとして、リーンモードを禁止してストイキモードを選択し、リーンモードフラグF_LEANを「0」にセットした(ステップ5)後、本処理を終了する。
【0038】
図6および図7は、上述したようにして選択された空燃比モードに従って実行される燃料噴射量制御処理および吸入空気量制御処理をそれぞれ示している。
【0039】
図6の燃料噴射量制御処理は、TDC信号の発生に同期して実行される。この処理ではまず、リーンモードフラグF_LEANが「1」であるか否かを判別する(ステップ11)。この答がYESで、リーンモードが選択されているときには、エンジン回転数NEおよび要求トルクPMCMDに応じ、マップ(図示せず)を検索することによって、リーンモード用の燃料噴射量TOUTLを算出する(ステップ12)。このマップでは、燃料噴射量TOUTLは、エンジン回転数NEが大きいほど、および要求トルクPMCMDが大きいほど、より大きな値に設定されるとともに、後述するストイキモード用の燃料噴射量TOUTSよりも小さな値に設定されている。なお、この要求トルクPMCMDは、エンジン3に要求されるトルクであり、エンジン回転数NEおよびアクセル開度APに応じ、マップ(図示せず)を検索することによって求められる。次いで、算出したリーンモード用の燃料噴射量TOUTLを、燃料噴射量TOUTとして設定し(ステップ13)、本処理を終了する。
【0040】
一方、前記ステップ11の答がNOで、ストイキモードが選択されているときには、エンジン回転数NEおよび要求トルクPMCMDに応じ、マップ(図示せず)を検索することによって、ストイキモード用の燃料噴射量TOUTSを算出する(ステップ14)。このマップでは、燃料噴射量TOUTSは、エンジン回転数NEが大きいほど、および要求トルクPMCMDが大きいほど、より大きな値に設定されている。次いで、算出したストイキモード用の燃料噴射量TOUTSを、燃料噴射量TOUTとして設定し(ステップ15)、本処理を終了する。
【0041】
図7の吸入空気量制御処理は、所定の時間ごとに実行される。この処理ではまず、リーンモードフラグF_LEANが「1」であるか否かを判別する(ステップ21)。この答がYESで、リーンモードが選択されているときには、スロットル弁開度THを全開値THWOTに設定し(ステップ22)、本処理を終了する。
【0042】
一方、前記ステップ21の答がNOで、ストイキモードが選択されているときには、エンジン回転数NEおよび要求トルクPMCMDに応じ、マップ(図示せず)を検索することによって、目標空燃比A/FCMDを算出する(ステップ23)。このマップでは、目標空燃比A/FCMDは、理論空燃比またはそれよりも若干リッチな空燃比に設定されている。次いで、算出した目標空燃比A/FCMDと実空燃比A/FACTとの偏差に応じ、フィードバック制御によってスロットル弁開度THを決定し(ステップ24)、本処理を終了する。
【0043】
以上のような燃料噴射量および吸入空気量の制御により、リーンモードでは、エンジン3に供給される混合気の空燃比が理論空燃比よりもリーンな空燃比に制御され、そのときに排出される排ガス中のNOxがNOx触媒17によって捕捉される。一方、ストイキモードでは、空燃比が理論空燃比またはそれよりも若干リッチな空燃比に制御され、排ガスが三元触媒16によって浄化される。
【0044】
次に、図8を参照しながら、リッチスパイクの制御処理について説明する。このリッチスパイクは、リーンモード中、NOx触媒17に捕捉されたNOxの還元動作として実行されるものであり、後述するように、燃料噴射量TOUTを増大させるとともに、吸入空気量を減少させることによって、行われる。
【0045】
まず、ステップ31では、リッチタイマのタイマ値TMRICHが0であるか否かを判別する。このリッチタイマは、リッチスパイクの実行時間を計時するものである。このステップ31の答がYESで、TMRICH=0のときには、エンジン回転数NEおよび要求トルクPMCMDに応じ、マップ(図示せず)を検索することによって、NOx排出量QNOxを算出する(ステップ32)。このNOx排出量QNOxは、そのときの排ガス中のNOx量を推定したものであり、このマップでは、エンジン回転数NEが大きいほど、および要求トルクPMCMDが大きいほど、より大きな値に設定されている。
【0046】
次いで、算出したNOx排出量QNOxを前回までのNOx排出量積算値S_QNOxに加算した値を、今回のNOx排出量積算値S_QNOxとして更新する(ステップ33)。このNOx排出量積算値S_QNOxは、NOx触媒17に捕捉されたNOxの量(以下「NOx捕捉量」という)に相当する。
【0047】
次に、アクセル開度APがほぼ値0、すなわちアクセルペダルが全閉状態にあるか否かを判別する(ステップ34)。この答がYESのとき、すなわちエンジン3が減速中またはアイドル中のときには、リッチスパイクの実行条件が成立していないと判定し、リッチスパイクフラグF_RICHを「0」にセットした(ステップ35)後、本処理を終了する。このようにリッチスパイクフラグF_RICHが「0」にセットされたときには、リッチスパイクは実行されず、リーンモードによる運転が継続される。
【0048】
一方、上記ステップ34の答がNOで、減速中およびアイドル中のいずれでもないときには、上記ステップ33で求めたNOx排出量積算値S_QNOxが、判定値S_QNOxREF以上であるか否かを判別する(ステップ36)。
【0049】
この判定値S_QNOxREFは、NOx触媒温度TLNCに応じ、図9に示すテーブルを検索することによって算出される。このテーブルでは、判定値S_QNOxREFは、TLNC≦第1所定値T1(例えば200℃)では第1判定値SQ1に設定され、T1<TLNC<第2所定値T2(例えば400℃)では、NOx触媒温度TLNCが高いほど、より大きな値にリニアに設定され、TLNC≧T2では、第1判定値SQ1よりも大きな第2判定値SQ2に設定されている。これは、NOx触媒温度TLNCが低いほど、また、NOx捕捉量が多いほど、NOxスリップによりNOxの還元率が低下するので、これに対応させるためである。
【0050】
上記ステップ36の答がNOで、S_QNOx<S_QNOxREFのときには、NOx捕捉量がまだ小さいため、リッチスパイクの実行条件が成立していないと判定し、前記ステップ35を実行する。
【0051】
一方、前記ステップ36の答がYESで、S_QNOx≧S_QNOxREFのときには、リッチスパイクの実行条件が成立していると判定し、ステップ37以降を実行する。
【0052】
このステップ37では、NOx排出量積算値S_QNOxを0にリセットし、次いで、リッチタイマのタイマ値TMRICHを所定時間TRO(例えば5sec)にセットする(ステップ38)。また、リッチスパイクフラグF_RICHを「1」にセットする(ステップ39)とともに、リッチタイマのタイマ値TMRICHをダウンカウントし(ステップ40)、本処理を終了する。このようにリッチスパイクフラグF_RICHが「1」にセットされたときには、燃料噴射量TOUTを増大させるとともに、スロットル開度THの減少により吸入空気量を減少させることによって、リッチスパイクが実行される。なお、この場合の吸入空気量の減少を、スロットル開度THの制御に代えてまたはこれとともに、過給機8の過給圧、スワール装置13のスワールの強さや、EGR装置14のEGRガス量の制御によって行ってもよい。
【0053】
一方、前記ステップ1の答がNOで、リッチスパイクの実行中のときには、アクセル開度のなまし値APAVEを次式(1)によって算出する(ステップ41)。
APAVE←α・AP+(1−α)APAVE ……(1)
ここで、αは1.0未満の所定のなまし係数である。
【0054】
次いで、算出されたなまし値APAVEがほぼ値0であるか否かを判別する(ステップ42)。この答がNOのときには、前記ステップ39以降を実行し、リッチスパイクを継続するとともに、タイマ値TMRICHをダウンカウントする。
【0055】
一方、このステップ42の答がYESで、なまし値APAVEがほぼ値0のとき、すなわちリッチスパイクの実行中、アクセル開度APが全閉状態になるとともに、その状態が継続しているときには、エンジン3の減速運転またはアイドル運転が行われたとして、リッチスパイクの実行条件が成立していないと判定する。そして、リッチスパイクフラグF_RICHを「0」にセットした(ステップ43)後、本処理を終了する。
【0056】
以上のように、本実施形態によれば、NOx触媒温度TLNCが所定の判定値TLNCREFよりも低く(ステップ1:YES)、かつ排ガスの空間速度SVが所定の判定値SVREFよりも大きい(ステップ3:YES)という条件が成立したとき、すなわちリッチスパイクの実行時にNOxスリップ量が増大すると想定されるときに、リーンモードを禁止する(ステップ5)。このリーンモードの禁止により、リーンモードでのNOx触媒17によるNOxの捕捉とリッチスパイクの実行を回避でき、したがって、リッチスパイクの実行時に、NOxスリップ量の増大によりNOx浄化率が低下するのを防止することができる。
【0057】
また、このようにリーンモードを禁止した場合には、ストイキモードを選択し、空燃比を理論空燃比またはそれよりも若干リッチな空燃比に制御するとともに、三元触媒16は、NOx触媒17よりも排気管5の上流側に配置されていて、通常、その温度がより高いので、三元触媒16によりNOxを高い浄化率で浄化でき、排ガス特性を向上させることができる。さらに、ストイキモードによる運転は上記の条件が成立する場合に限定され、それ以外ではエンジン3をリーンモードで運転するので、燃費も最大限、良好に維持でき、したがって、良好な排ガス特性と燃費の両立を図ることができる。
【0058】
図10は、本発明の第2実施形態による空燃比モードの決定処理を示している。この処理ではまず、NOx触媒温度TLNCに応じ、図11に示すテーブルを検索することによって、NOx触媒17および三元触媒16のNOx浄化率KTEMPLNC、KTEMPTWCを求める(ステップ51)。実線で示すKTEMPLNCテーブルは、NOx触媒温度TLNCと、それに応じたNOxスリップを加味したNOx触媒17のNOx浄化率KTEMPLNCとの関係を表したものであり、このため、図4に示したテーブルと同じに設定されている。
【0059】
また、点線で示すKTEMPTWCテーブルは、NOx触媒温度TLNCと、それに応じた三元触媒16のNOx浄化率KTEMPTWCとの関係を表したものである。このため、このテーブルでは、三元触媒16のNOx浄化率KTEMPTWCは、NOx触媒温度TLNCが所定値以上のときにほぼ100%に設定され、所定値よりも低温側では緩やかに減少するように設定されていて、その結果、NOx触媒17のNOx浄化率KTEMPLNCがほぼ100%の温度範囲以外では、NOx浄化率KTEMPLNCよりも高くなっている。
【0060】
次に、排ガスの空間速度SVに応じ、図12に示すテーブルを検索することによって、NOx触媒17および三元触媒16のNOx浄化率KTEMPLNC、KTEMPTWCを求める(ステップ52)。実線で示すKSVLNCテーブルは、排ガスの空間速度SVと、それに応じたNOxスリップを加味したNOx触媒17のNOx浄化率KSVLNCとの関係を表したものであり、このため、図5に示したテーブルと同じに設定されている。
【0061】
また、点線で示すKSVTWCテーブルは、排ガスの空間速度SVと、それに応じた三元触媒16のNOx浄化率KTEMPTWCとの関係を表したものである。このため、このテーブルでは、三元触媒16のNOx浄化率KTEMPTWCは、排ガスの空間速度SVが所定値以下のときにほぼ100%に設定されるとともに、この所定値を超えると、緩やかに減少するように設定されていて、NOx触媒17のNOx浄化率KSVLNCよりも高くなっている。
【0062】
次に、上記のようにして求めたNOx触媒17の2つのNOx浄化率の積KTEMPLNC・KSVLNCが、三元触媒16の2つのNOx浄化率と割引係数KTWCの積KTEMPTWC・KSVTWC・KTWCよりも大きいか否かを判別する(ステップ53)。上記の割引係数KTWCは、値1.0未満でそれに近い所定値(例えば0.8)に設定されている。この答がYESで、KTEMPLNC・KSVLNC>KTEMPTWC・KSVTWC・KTWCのときには、NOx触媒17の浄化性能が三元触媒16の浄化性能よりも高いとして、リーンモードを選択し、リーンモードフラグF_LEANを「1」にセットした(ステップ54)後、本処理を終了する。
【0063】
一方、ステップ53の答がNOで、KTEMPLNC・KSVLNC≦KTEMPTWC・KSVTWC・KTWCのときには、NOx触媒17の浄化性能よりも三元触媒16の浄化性能が高いとして、リーンモードを禁止してストイキモードを選択し、リーンモードフラグF_LEANを「0」にセットした(ステップ55)後、本処理を終了する。
【0064】
以上のように、本実施形態によれば、NOx触媒温度TLNCおよび排ガスの空間速度SVに応じて、NOx触媒17のNOx浄化率KTEMPLNC,KSVLNCと三元触媒16のNOx浄化率KTEMPTWC,KSVTWCを算出する(ステップ51,52)とともに、それらの積KTEMPLNC・KSVLNCとKTEMPTWC・KSVTWCを比較し(ステップ53)、その比較結果に応じて、浄化性能の高い方の空燃比モードを選択する(ステップ54,55)。したがって、そのときのNOx触媒温度TLNCおよび排ガスの空間速度SVに応じて、NOx触媒17および三元触媒16のうちの浄化性能のより高いものでNOxの浄化を行わせることができる。その結果、NOx浄化率が高められることによって、排ガス特性を向上させることができる。
【0065】
また、ステップ53での比較の際に、三元触媒16のNOx浄化率KTEMPTWC,KSVTWCに割引係数KTWCを乗算するので、NOx触媒17および三元触媒16の浄化性能の差が小さいときには、リーンモードが優先される。その結果、リーンモードによるエンジン3の運転が可能な限り行われることによって、燃費を最大限、良好に維持でき、したがって、良好な排ガス特性と燃費の両立を図ることができる。
【0066】
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、三元触媒16がNOx触媒17とは別個に排気管5の上流側に設けられているが、本発明を、三元触媒とNOx触媒を一体に構成したタイプの排ガス浄化装置に適用してもよいことはもちろんである。また、第2実施形態では、三元触媒16の浄化率KTEMPTWCを、NOx触媒温度TLNCに応じて求めているが、三元触媒16に温度センサを別個に設け、その検出温度に応じて求めてもよい。
【0067】
また、本発明は、ディーゼルエンジンに限らず、リーンバーンエンジンなどのガソリンエンジンにも適用することができる。さらに、本発明は、車両に搭載されたエンジンに限らず、クランク軸が鉛直方向に配置された船外機などのような船舶推進機用エンジンを含む、様々な産業用の内燃機関に適用できることはもちろんである。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
【図面の簡単な説明】
【0068】
【図1】本発明を適用した排ガス浄化装置を内燃機関とともに概略的に示す図である。
【図2】排ガス浄化装置の一部を示す図である。
【図3】空燃比モードの決定処理を示すフローチャートである。
【図4】図3の処理で用いられる判定値TLNCREFの決定方法を説明する図である。
【図5】図3の処理で用いられる判定値SVREFの決定方法を説明する図である。
【図6】燃料噴射量の制御処理を示すフローチャートである。
【図7】吸入空気量の制御処理を示すフローチャートである。
【図8】リッチスパイクの制御処理を示すフローチャートである。
【図9】図8の処理で用いられるS_QNOxREFテーブルである。
【図10】第2実施形態による空燃比モードの決定処理を示すフローチャートである。
【図11】図10の処理で用いられるKTEMPLNC,KTEMPTWCテーブルである。
【図12】図10の処理で用いられるKSVLNC,KSVTWCテーブルである。
【符号の説明】
【0069】
1 排ガス浄化装置
2 ECU(空燃比制御手段、NOx還元手段、負荷検出手段、リーンモード禁止
手段、空燃比モード切替手段、NOx捕捉材浄化性能推定手段、
三元触媒浄化性能推定、空燃比モード選択手段)
3 エンジン
5 排気管(排気系)
6 インジェクタ(空燃比制御手段、NOx還元手段、空燃比モード切替手段)
12 スロットル弁(空燃比制御手段、NOx還元手段、空燃比モード切替手段)
16 三元触媒
17 NOx触媒(NOx捕捉材)
30 クランク角センサ(負荷検出手段)
31 エアフローセンサ(負荷検出手段)
36 NOx触媒温度センサ(温度検出手段)
SV 排ガスの空間速度(内燃機関の負荷)
TLNCREF 判定値(所定の温度)
SVREF 判定値(所定の負荷)
TLNC NOx触媒温度(NOx捕捉材の温度)

【特許請求の範囲】
【請求項1】
内燃機関から排気系に排出された排ガスを浄化する内燃機関の排ガス浄化装置であって、
前記内燃機関で燃焼される混合気の空燃比を制御する空燃比制御手段と、
前記排気系に設けられ、前記内燃機関が、前記空燃比を理論空燃比よりもリーンな空燃比に制御するリーンモードで運転されているときに、排ガス中のNOxを捕捉するNOx捕捉材と、
排ガスを還元状態に制御することにより、前記NOx捕捉材に捕捉されたNOxを還元するNOx還元手段と、
当該NOx捕捉材の温度を検出する温度検出手段と、
前記内燃機関の負荷を検出する負荷検出手段と、
当該検出されたNOx捕捉材の温度が所定の温度よりも低く、かつ前記検出された内燃機関の負荷が所定の負荷よりも高いときに、前記リーンモードによる前記内燃機関の運転を禁止するリーンモード禁止手段と、
を備えることを特徴とする内燃機関の排ガス浄化装置。
【請求項2】
内燃機関から排気系に排出された排ガスを浄化する内燃機関の排ガス浄化装置であって、
前記内燃機関で燃焼される混合気の空燃比を理論空燃比よりもリーンな空燃比に制御するリーンモードと、当該リーンモードよりもリッチな空燃比に制御する非リーンモードに切り替える空燃比モード切替手段と、
前記排気系に設けられ、排ガス中のNOxを捕捉するNOx捕捉材と、
排ガスを還元状態に制御することにより、前記NOx捕捉材に捕捉されたNOxを還元するNOx還元手段と、
前記排気系に設けられ、排ガスを浄化する三元触媒と、
前記NOx捕捉材および前記三元触媒の少なくとも一方の温度を検出する温度検出手段と、
前記内燃機関の負荷を検出する負荷検出手段と、
前記検出された温度および内燃機関の負荷に応じて、前記内燃機関を前記リーンモードで運転したときの前記NOx捕捉材の浄化性能を推定するNOx捕捉材浄化性能推定手段と、
前記検出された温度および内燃機関の負荷に応じて、前記内燃機関を前記非リーンモードで運転したときの前記三元触媒の浄化性能を推定する三元触媒浄化性能推定手段と、
前記推定された前記NOx捕捉材の浄化性能と前記三元触媒の浄化性能との比較結果に応じて、前記リーンモードおよび前記非リーンモードの一方を選択する空燃比モード選択手段と、
を備えることを特徴とする内燃機関の排ガス浄化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−214320(P2006−214320A)
【公開日】平成18年8月17日(2006.8.17)
【国際特許分類】
【出願番号】特願2005−26960(P2005−26960)
【出願日】平成17年2月2日(2005.2.2)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】