説明

半導体ウエハ、その製造方法及びマスク

【課題】 半導体素子のパターン寸法を検証する際の検証精度を高め、且つ、その歩留ま りを損なうことなく検証するためのTEGを形成する。
【解決手段】 半導体ウエハの製造にあたり、2つの素子形成領域12と、素子形成領域12を相互に区画するスクライブ線領域13とが1つのレチクルショット11で形成される。各レチクルショット11の4隅のスクライブ線領域13上、及び、中央のスクライブ線領域13上に、スクライブ線領域13の幅の1/2以下の寸法を有するTEG14を形成する。各TEG14には、素子形成領域12内の半導体素子のパターンと同じ形状で、且つ、相互に同一形状のパターンが形成される。各スクライブ線領域13上で隣接する2つのTEG14は、スクライブ線領域13の長手方向に離間して配置される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウエハ、その製造方法及びマスクに関し、更に詳しくは、半導体ウエハの製造プロセスを検証するために利用されるTEG(Test Element Group)を有する半導体ウエハ、その製造方法及び該製造方法で使用するマスクに関する。
【背景技術】
【0002】
半導体素子の微細化および高密度化は依然として精力的に進められ、現在では90nmルールの設計基準で、或いは、それ以下の設計基準で作製されるDRAM(Dynamic Random Access Memory)等の超高集積半導体デバイスが開発試作されている。
【0003】
半導体装置を製造する際には、一般に、縮小投影露光装置(以下、ステッパー及びスキャナーと呼ぶ)を使用して、ホトレジスト膜のパターニングを実施することにより、半導体ウエハ上の素子形成領域に多数の半導体素子を含むLSIを形成している。近年、LSIの高集積化に伴い、半導体装置内の各半導体素子の占有面積が年々縮小されており、この目的のための微細加工化が進むにつれ、素子寸法精度に対する要求は増加する一方である。このため、半導体装置の製造過程で、素子形成領域内に形成されている素子パターンに対する寸法測定は必要不可欠である。この寸法測定では、従来から、走査電子顕微鏡(SEM: Scanning Electron Microscope)を用いることにより、素子形成領域内に形成された半導体素子に対する自動測定方法が主流となっている。
【0004】
ところで、ホトレジストのリソグラフィー工程に後続して、走査電子顕微鏡(SEM: Scanning Electron Microscope)による寸法測定を素子形成領域内で実施すると、電子線照射に伴ってレジストパターンが収縮する問題がある。このパターン縮小は、例えば、コンタクト径の拡大に伴う分離幅の減少による隣接コンタクト間の短絡や、配線パターンの細りによる断線等により、デバイス特性の不良などを引き起こすおそれがある。このような不良は、半導体装置の歩留まり低下につながり、微細化が更に進むにつれて深刻な問題となる。この問題は、他のレジスト(I線、KrF)と比較して、電子線照射によるレジスト収縮が大きいArF技術の適用時に特に顕著と考えられる。
【0005】
レジストパターンに対する収縮の問題は、走査電子顕微鏡のグリッドグとアノード間に加える電圧(加速電圧)を下げることにより、ある程度抑えることが可能となる。しかし、この場合には、測定パターン表面から励起される2次電子の発生量が減少することによって、原理的に寸法測定精度そのものが低下するという問題がある。
【0006】
レジストパターンに対する収縮の問題は、予めスクライブ線領域内に配置された各種デバイス特性評価を目的としたTEGを代用することでも回避できる。スクライブ線領域内に、TEGを形成する技術は、例えば、特許文献1、特許文献2、及び、特許文献3に記載されている。
【0007】
図7は、スクライブ線領域上に形成した、MOSFETの特性測定用のTEGパターンの一例を示している。素子形成領域12の相互間を分離するスクライブ線領域13には、素子形成領域12に形成されるMOSFETと同じサイズ及び形状のMOSFET51が形成され、MOSFET51を接続する配線52には、特性測定用のパッド53が形成されている。
【特許文献1】特開2004−158515号公報(段落0153)
【特許文献2】特開平6−295054号公報(段落0005)
【特許文献3】特開平11−186353号公報(段落0027)
【発明の開示】
【発明が解決しようとする課題】
【0008】
ところで、TEGにおけるパターン寸法の測定に際し、その測定精度を上げるためには、TEGパターンをレチクルショット内の複数箇所に配置し、ホトリソグラフィ工程に際してショット内の寸法バラツキを正確に検出することが要請される。しかしながら、デバイスの特性評価を目的とした、図7に示した従来のTEGパターンのMOSFET51は、アルミ等からなる金属配線52を介して複数の特性測定用パッド53に導通している構成上、かなり大きな面積を必要とする。このため、スクライブ線領域13上にTEGパターンを配置する際には、レチクルショットの周辺部に配置される1/2幅のスクライブ線領域上には配置できない等、TEGパターンの配置上の制約が大きくなる。
【0009】
本発明は、上記に鑑み、ステッパー及びスキャナーを利用したパターニングに後続し、当該パターニングで形成された半導体素子パターンの寸法を検証する目的で使用されるTEGによる検証精度を向上できる、改良された半導体ウエハの製造方法、その製造方法で用いられるマスク、及び、その製造方法で形成される半導体ウエハを提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するため、本発明の半導体ウエハは、半導体素子を含む集積回路がそれぞれ内部に形成されている複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とが、ホトリソグラフィを用いたパターニングによって形成された半導体ウエハにおいて、
前記ホトリソグラフィに際して1回のレチクルショットで形成された矩形状の各露光領域には、複数のTEGが前記スクライブ線領域上に配置されており、該複数のTEGが、前記素子形成領域内に形成された半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とする。
【0011】
また、本発明の半導体装置の製造方法は、半導体素子を含む集積回路がそれぞれ内部に形成される複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とを含む矩形状の露光領域を、半導体ウエハ上に繰り返し形成する、半導体装置の製造方法において、
前記矩形状の各露光領域が、前記スクライブ線領域上に配置される複数のTEGを含み、該複数のTEGが、前記素子形成領域内に形成される半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とする。
【0012】
更に、本発明のマスクは、半導体素子を含む集積回路がそれぞれ内部に形成される複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とを含む矩形状の露光領域を半導体ウエハ上に形成するためのマスクであって、
前記矩形状の露光領域が、前記スクライブ線領域上に配置される複数のTEGを含み、該複数のTEGが、前記素子形成領域内に形成される半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とする。
【発明の効果】
【0013】
本発明の半導体ウエハ、半導体ウエハの製造法、及び、マスクによると、スクライブ線上に配置された複数のTEGが、素子形成領域内に形成される半導体素子パターンと同一形状及びサイズのパターンを含む構成により、半導体ウエハ内に形成されているチップ面積を増大することなく、パターン寸法の検証における検証精度が向上する効果がある。
【0014】
本発明の半導体ウエハ及びその製造方法の好適な態様では、前記複数のTEGが、前記露光領域の4隅のスクライブ線領域上に形成されるTEGを含む。露光領域の4隅では、特にステッパー及びスキャナーによる露光に際して寸法精度が低下し勝ちであるので、この4隅のスクライブ線領域上にTEGを配置することにより、検証精度が特に向上する。
【0015】
また、隣接する2つの露光領域内にそれぞれ形成され、且つ、相互に隣接する2つの前記TEGは、同じスクライブ線領域上で、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向に位置をずらして配置されることも本発明の好ましい態様である。この場合、自動寸法測定に際して誤ったTEGで測定を行う不具合が解消できる。
【0016】
前記複数のTEGが更に、前記各露光領域の中央部分のスクライブ線領域上に形成され、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向に位置をずらして配置される2つのTEGを含むことも本発明の好ましい態様である。露光領域の中央部分にTEGを配置し、4隅のTEGにおける測定寸法と中央部分のTEGにおける測定寸法とを比較検証することで、不具合が発生した際にその場所や原因の特定がより容易になると共に、EB(Electron Beam)描画等により作製されたレチクルショット内での寸法バラツキ(マスク製造バラツキ)や、ステッパー及びスキャナーのレンズ特性に起因するレチクルショット内での寸法バラツキに対する検証精度は更に向上する。
【発明を実施するための最良の形態】
【0017】
以下、添付図面を参照し、本発明の実施形態に基づいて本発明を更に説明する。図1は、本発明の一実施形態に係る半導体ウエハの一部を示す平面図である。同図には、半導体ウエハ10上で同じマスクパターンを用いて形成された4つの露光領域(レチクルショット)11を示している。各露光領域11には、2つの素子形成領域12と、これら素子形成領域を区画するスクライブ線領域13と、露光領域11の4隅及び中央部分にそれぞれ形成されたTEG14とが含まれる。各TEG14は、全て同一のパターン形状及びサイズを有し、これら各パターンは、素子形成領域12に形成された集積回路に含まれる半導体素子や容量素子等(本明細書では、これら素子は全て半導体素子と総称する)の各パターンと同一形状 及び同一大きさに形成されている。
【0018】
各レチクルショット11における中央部の2つのTEG14は、同じスクライブ線領域13上に形成されており、そのスクライブ線領域13の中心線の両側に、且つ、スクライブ線領域13の長手方向にずらして配置される。また、図面上で上下方向に並ぶ2つの露光領域11内にそれぞれ含まれ、同じスクライブ線領域13上に且つ隣接して形成される2つのTEG14は、そのスクライブ線領域13の中心線の両側に、且つ、スクライブ線領域13の長手方向ににずらして配置される。
【0019】
図2は、図1の半導体ウエハ10で、隣接する2つの露光領域11内に形成され、且つ、同じスクライブ線領域13上に隣接して配置される2つのTEG14の配置詳細を示している。2つのTEG14は、露光領域11の境界部を構成するスクライブ線領域13の中心線15の両側に分かれて配置され、中心線15に沿った方向にW12の距離だけ離され、中心線15上の点Xに関して点対称に配置される。各TEG14には、半導体素子と同じパターン形状に形成される素子寸法測定用パターンが形成される。TEG14内に形成される各パターンは、レジストパターンのパターニング工程に後続し、或いは、レジストパターンをエッチングマスクとする半導体素子のパターニング工程に後続し、そのパターニング工程の検証の目的で、電子線照射によるパターン寸法の測定が行われる。
【0020】
例えば、スクライブ線領域13の幅W10は100μm、TEG14の1辺の長さは20〜40μm、スクライブ線領域13と素子形成領域12との境界線16から素子寸法測定パターンを構成するTEG14までの幅W11は5〜15μm、TEG14のスクライブ線領域13の長手方向に沿う離隔距離W12は10〜30μmである。露光領域11の中央部に形成された2つのTEG14の配置も、 図2に示した配置と同様である。
【0021】
上記のように、TEG14をスクライブ線領域13の長手方向に沿って離隔させるのは、以下の理由による。つまり、半導体デバイスの製造工程に際して、ホトリソグラフィ工程に後続して寸法測定を行う工程では、走査電子顕微鏡の利用による自動寸法測定が主流となっている。自動寸法測定では、前もって記憶させておいた特定箇所のパターン画像と、実際の測定ウェハ上での同一座標上の画像とを比較することによりパターン認識を行なっている。ウェハアライメント(原点補正)を行った後に、所望の座標位置に移動し、自動測定を行う際、露光機のフォーカス変動(デフォーカス)等の発生に起因した測定対象パターンの形状変化によりコントラストが低下し、正確な画像認識(マッチング処理)が困難となる。この場合、測定機自ら周辺の座標へ移動し、予め記憶させておいたパターン画像と一致する箇所を自動的に探す処理がなされる。例えば、図3の比較例に示すように、隣接する双方のTEG14を中心線15に関して対称に配置する場合には、双方のTEG14内のパターンの近接によって、自動認識装置が誤って他方のレチクルショットのTEGを指定する不具合が生じることがあるためである。
【0022】
図4は、上記実施形態の半導体ウエハ10をパターニングする際に使用されるレチクルマスクの一例を示している。本レチクルマスク20は、2つの半導体チップ(素子形成領域)22を一度に露光する露光領域21を有する。露光領域21の4隅のコーナーに隣接してTEGパターン24が配置され、また、中央部のスクライブ線領域パターン23上にもTEGパターン24が配置されている。各TEGパターン24は、同一サイズ及び同形状の寸法測定用パターンであり、ほぼ正方形状の領域内に形成されている。4隅のTEGパターン24の内で、図面上で縦方向に並ぶ2つの隅部に隣接するTEGパターン24は、一方のTEGパターン24の縁部が素子形成領域パターン22の縁部に整列し、他方のTEGパターン24の縁部は、前記一方のTEGパターン24の他方の縁部よりも更に素子形成領域パターン22の縁部から離れて配置される。図面上で横方向に並ぶ2つのTEGパターン24についても、一方のTEGパターン24の縁部が素子形成領域パターン22の縁部と整列し、他方のTEGパターン24の縁部はこれよりも離れて配置される。
【0023】
以下、上記実施形態に係る半導体ウエハの製造方法について、図5及び図6を参照して説明する。図5(a)は、シリコン窒化膜を形成した段階における、スクライブ線領域に形成されるTEGの近傍を示す平面図である。また、図5(b)は、同図(a)に示したTEGの一部分“C”を示すA−A’断面図である。まず、図5(a)及び(b)に示すように、例えばP型半導体基板であるシリコン基板30上に、熱酸化法による厚さ10nm程度のシリコン酸化膜(PAD酸化膜)31を、次いで、CVD法による150nm程度のシリコン窒化膜(フィールド窒化膜)32を、素子形成領域12と、TEG14及びアライメントマークを形成するスクライブ線領域13とに形成する。これらの図に示すように、スクライブ線領域13のTEG14には、素子形成領域12と同じ絶縁膜31、32が形成される。
【0024】
次いで、ホトレジスト膜を、素子形成領域及びスクライブ占領域を含むウエハ全面に堆積し、ホトリソグラフィ技術を用いてこれをパターニングしてレジストパターン33を形成する。図6(a)は、図5(a)に示したTEG14の一部分“C”のホトレジストパターンを示しており、このパターンは、素子形成領域12内に形成されたパターンと同じ形状及びサイズを有するものである。また、図6(b)は、その一部分“C”のA−A’線に沿う断面図である。このように、本実施形態でTEG14に形成されるパターンは、寸法測定用に特化したパターンであり、素子形成領域12に形成されるパターンとサイズ及び形状が全く同じパターンである。このように、寸法測定用に特化したパターンは、アルミ等からなる金属配線層を介して複数の特性測定用パッドを必要としないため、従来の特性測定に使用されるTEGに比して小さな面積で足りる。
【0025】
図6に示したレジストパターン33をエッチングマスクとし、シリコン窒化膜32をパターニングする。これによって、素子形成領域12内にMOSFETの拡散層を形成する領域を区画すると共に、同じパターンをスクライブ線領域13内のTEG14にも形成する。
【0026】
TEG14は、1回のレチクルショットで、そのレチクルショット11の4隅に各1つと、中央部に2つとが形成される。各TEG14には、同様なパターンがその工程段階毎に形成される。例えば、絶縁膜及び配線層の全てについて、素子形成領域12に形成される半導体素子パターンと同じ形状及び配置で最小の幅を持つパターンが形成され、その都度各パターンの寸法測定が行われることにより、パターニングが精度よく行われたか否かが判定される。
【0027】
例えばDRAM装置を製造する際には、スクライブ線領域13上のTEG14には、数k〜数十kビット分のメモリセルパターンが形成される。このとき、TEGの一辺の大きさは、例えば20〜40μmである。形成されるTEGには、拡散層を初めとして、多結晶シリコンからなるワード線、ビット線などのパターンも含まれる。TEG14には、このようにして数k〜数十kビットのメモリセルが擬似的に形成され、各パターンについて寸法測定が行われる。しかし、従来の半導体素子の特性測定用のパターンに比して、小さなサイズ(面積)の パターンで足りるので、 スクライブ線領域13の半分の幅内に収まるパターンが、各露光領域11内に複数形成できる。
【0028】
形成された複数のTEG14で、同じパターンの寸法を測定し且つこれらを相互に比較することにより、各レチクルショットのどの部分で寸法精度が不足するかなど、きめ細かな判断が可能になる。ある部分で寸法精度が不足すれば、それがステッパー及びスキャナーのレンズに起因するのか、レチクル基板上に作製した際に描画装置で生じているかなどの原因が追及できる。その結果、従来のホトグラフィ工程に工程を追加することなく、検証精度を高めることが出来る。特にスクライブ線領域上にTEGを形成したことにより、走査電子顕微鏡による素子寸法測定で、レジストパターンの縮小などに起因する不良発生の恐れがない。
【0029】
スクライブ線領域の幅の1/2以下の大きさのTEGを形成することにより、特にレチクルショットにおける4隅のスクライブ線領域上にTEGを配置でき、レチクルショットの周縁部分で特に生じやすい寸法精度の低下が検出可能である。また、これらを中央部に配置した測定パターン結果と比較することで、周辺部のパターンの何れが寸法不良を起こしているかが容易に判断でき、それに基づいてレチクルや露光機を調査することで不良原因の判定が容易になると共に、寸法モニタ精度を向上することが可能になる。
【0030】
上記実施形態では、半導体プロセスにおける従来の工程数を追加することなく、ホトリソグラフィー工程での走査電子顕微鏡による素子寸法測定時に際して、素子寸法測定パターンを利用することにより、素子形成領域12内に形成された素子パターンに対して、直接電子線を照射することを回避することが出来る。このため、レジストパターンの収縮に起因する、コンタクト径の拡大に伴う分離幅の減少による短絡故障や、配線パターンの細りによる断線やデバイス特性不良の発生等が防止できるので、半導体装置の歩留まり低下を防ぐことが可能になる。また、走査電子顕微鏡のグリットとアノード間に加える電圧(加速電圧)を下げる必要がないので、寸法測定精度を低下させることなく、素子形成領域に形成されるパターン寸法の制御が可能になる。
【0031】
本実施形態では、素子形成領域12と同じ最小設計寸法を有する素子パターンから形成される素子寸法測定パターンを、マスク回路パターン描画範囲内のスクライブ線領域上に同時に複数箇所配置している。このため、マスク製造バラツキや、ステッパーおよびスキャナーのレンズ特性に起因するショット内での寸法バラツキに対して容易にモニタが可能になると共に、チップ面積の増大を招き、且つ製品コストを大きく引き上げるといった問題を容易に回避することが可能になる。
【0032】
更に、レチクルショット境界でのスクライブ線領域13の中心線上の点に関して点対称となるように、隣接するTEGの間に例えば10〜30μm程度の一定距離を設ける構造とすることにより、ホトリソグラフィ工程での自動測定時に於ける誤測定を容易に回避する効果を得ることが可能になる。
【0033】
以上、本発明をその好適な実施態様に基づいて説明したが、本発明の半導体ウエハ、その製造方法及びマスクは、上記実施態様の構成にのみ限定されるものではなく、上記実施態様の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。また、本発明の好適な態様として記載した各構成や実施形態で記載した各構成については、本発明の必須の構成と共に用いることが好ましいが、単独であっても有益な効果を奏する構成については、必ずしも本発明の必須の構成として説明した全ての構成と共に用いる必要はない。
【産業上の利用可能性】
【0034】
本発明は、DRAMやシステムLSIなどの半導体装置を製造する際に製作される半導体ウエハ、その製造方法、及び、その製造に使用されるレチクルに利用可能である。
【図面の簡単な説明】
【0035】
【図1】本発明の一実施形態に係る半導体ウエハの一部平面図。
【図2】図1のスクライブ線領域のTEGの詳細配置を示す平面図。
【図3】図2の配置と比較するための比較例のTEGの配置を示す平面図。
【図4】図1の半導体ウエハを露光する際に使用されるレチクルマスクのパターン平面図。
【図5】(a)は半導体ウエハの一製造段階におけるスクライブ線領域のTEGの近傍を示す平面図、(b)は同図(a)のTEGの一部を示す断面図。
【図6】(a)は、TEGの一部のホトレジストパターンの平面図、(b)は(a)の A−A’線に沿う断面図。
【図7】従来のスクライブ線領域上に形成した、素子特性測定用のTEGを示す平面図。
【符号の説明】
【0036】
10:半導体ウエハ
11:レチクルショット(露光領域)
12:素子形成領域
13:スクライブ線領域
14:TEG(寸法測定パターン形成領域)
15:スクライブ線領域の中心線
16:素子形成領域とスクライブ線領域との間の境界線
20:レチクルマスク
21:露光領域
22:素子形成領域パターン
23:スクライブ線領域パターン
24:TEGパターン(寸法測定パターン形成領域)
30:シリコン基板
31:シリコン酸化膜
32:シリコン窒化膜
33:レジストパターン
51:MOSFET(デバイス特性評価用TEG)
52:配線
53:特性測定用パッド

【特許請求の範囲】
【請求項1】
半導体素子を含む集積回路がそれぞれ内部に形成されている複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とが、ホトリソグラフィを用いたパターニングによって形成された半導体ウエハにおいて、
前記ホトリソグラフィに際して1回のレチクルショットで形成された矩形状の各露光領域には、複数のTEGが前記スクライブ線領域上に配置されており、該複数のTEGが、前記素子形成領域内に形成された半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とする半導体ウエハ。
【請求項2】
前記複数のTEGが、前記露光領域の4隅のスクライブ線領域上に形成されるTEGを含む、請求項1に記載の半導体ウエハ。
【請求項3】
隣接する2つの露光領域内にそれぞれ形成され、且つ、相互に隣接する2つの前記TEGは、同じスクライブ線領域上で、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向に位置をずらして配置される、請求項2に記載の半導体ウエハ。
【請求項4】
前記複数のTEGが更に、前記各露光領域の中央部分のスクライブ線領域上に形成され、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向に位置をずらして配置される2つのTEGを含む、請求項2又は3に記載の半導体ウエハ。
【請求項5】
半導体素子を含む集積回路がそれぞれ内部に形成される複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とを含む矩形状の露光領域を、半導体ウエハ上に繰り返し形成する、半導体装置の製造方法において、
前記矩形状の各露光領域が、前記スクライブ線領域上に配置される複数のTEGを含み、該複数のTEGが、前記素子形成領域内に形成される半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とする、半導体装置の製造方法。
【請求項6】
前記複数のTEGが、前記露光領域の4隅のスクライブ線領域に形成されている、請求項5に記載の半導体装置の製造方法。
【請求項7】
隣接する2つの前記露光領域にそれぞれ形成され、且つ、相互に隣接する2つのTEGは、同じスクライブ線領域上で、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向に位置をずらして配置される、請求項6に記載の半導体装置の製造方法。
【請求項8】
前記複数のTEGが更に、前記各露光領域の中央部分のスクライブ線領域上に形成され、該スクライブ線領域の中心線を挟んで両側に別れ且つ該中心線が延びる方向にずらして配置される2つのTEGを含む、請求項6又は7に記載の半導体装置の製造方法。
【請求項9】
半導体素子を含む集積回路がそれぞれ内部に形成される複数の素子形成領域と、該複数の素子形成領域を相互に区画するスクライブ線領域とを含む矩形状の露光領域を半導体ウエハ上に形成するためのマスクであって、
前記矩形状の露光領域が、前記スクライブ線領域上に配置される複数のTEGを含み、該複数のTEGが、前記素子形成領域内に形成される半導体素子パターンと同じ形状及び同じ大きさであって、且つ、相互に同じ形状のパターンを少なくとも1つ含むことを特徴とするマスク。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−332177(P2006−332177A)
【公開日】平成18年12月7日(2006.12.7)
【国際特許分類】
【出願番号】特願2005−150906(P2005−150906)
【出願日】平成17年5月24日(2005.5.24)
【出願人】(500174247)エルピーダメモリ株式会社 (2,599)
【Fターム(参考)】